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Systematic upper and lower bounds for the real and imaginary parts of transition amplitudes
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It is proved that the imaginary part of the diagonal matrix element (4
~
(E H ——il')

~
4) of

the Green's function is the maximum of a variational functional. This provides convenient lower
bounds. Upper bounds to the imaginary part are deduced with the aid of Pade approximants.
Upper bounds of the real part of the transition amplitude are shown to follow from the unitarity re-
lation. Finally, upper and lower bounds on nondiagonal matrix elements are derived and it is also
shown that it is possible to obtain both upper and lower bounds on the real part of the transition am-
plitude. The negative consequence of employing these bounds is that we must deal with four-body
operators.

I. INTRODUCTION

Variational principles represent an important tool in the
theory of collisions. Time-independent formalisms of col-
lision processes are more often utilized than time-
dependent formalisms, even though they are a priori
equivalent, because the former avoid the technically
cumbersome limits at infinite time which cause consider-
able difficulty in the latter. The question of strict upper
and lower bounds for transition amplitudes, cross sec-
tions, or probabilities, however, has been seldom dis-
cussed. 3 This is due to the fact that time-independent
variational functionals, while they directly provide the
transition amplitude, generate complex numbers which
correspond to extrema. Time-dependent variational func-,
tionals, on the other hand, are often based on an ex-
tremum of the action rather than a strict maximum or
minimum, and this extremum is not easily related to a
bound on the transition probability itself. Since bounds to
experimental cross sections or theoretical predictions are
of major interest, the present paper is devoted to a deriva-
tion of such bounds.

To discuss the bounds on collision amplitudes, we rely
on the fact that in a time-independent formalism these
bounds can be related to the bounds on the matrix element
of the (resolvent) operator (E H —iI ) ', whe—re H is an
A-particle Hamiltonian,

A A

H =M+7 = g t; —t, ~ + g vtj . (1.1)
1=1 i&j=l

We shall take the imaginary part of the energy, I', to be
finite in the discussion-and the on-shell limit will be only
formally defined. The collision amplitudes discussed in
this paper are thus to be interpreted as energy averaged-
amplitudes. If one introduces real, square-integrable wave
packets

(
4) = V (X) and [4")= V' [g'), where (X) and

~

X') are, respectively, the initial and final channel wave
functions, all the transition amplitudes needed can be ex-
pressed in terms of diagonal matrix elements of the sym-

metric resolvent operator, (ql
)
6

~

qt), (ql'
(
G

~

ql'), and
((%'+ql')

~
6

~

(ql+'P') ). This is convenient because H is
usually a real-symmetric operator and

~

4') and
~

4') can
often be chosen to be real so that one can first investigate
easily the bounds on a diagonal matrix element.

The crux of the argument lies in the consideration of
the diagonal amplitude

bT=—(ei(E —H —il ) 'i%), (1.2)

where b, T represents the correction to the Born amplitude.
The imaginary part of hT is defined as I Y where

Y—= &e
~
[(E—H)'+I']-'~q) . (1.3)

G. VARIATIONAL PRINCIPLE
FOR THE IMACiINARY PART

OF THE TRANSITION AMPLITUDE

Let us define an operator Q by

Q=(E H) +I—
The functional

(eiq)(q ic)
(@JQf@)

(2.1)

(2.2)

We show in Sec. II the condition under which Y is a max-
imum of a variational functional, In Sec. III, we show
that this condition is indeed realized so that the variation-
al principle provides the lower bounds on K %'e discuss
the Fade approximants of Y, in Sec. IV, which lead to the
upper bounds and additional lower bounds. In Sec. V, we
discuss the unitarity of the transition amplitude and ob-
tain upper bounds on the real part of the transition ampli-
tude. The case of nondiagonal elements is discussed in
Sec. VI, with new bounds obtained for the real part. An
illustrative example is provided in Sec. VII. Finally, the
physical significance and application of these results is the
subject of Sec. VIII, which includes the discussion and
concluding remarks.

31 51 1985 The American Physical Society



52 B. G. GIRAUD AND M. A. NAGARAJAN 31

0&F& 1

p2
(2.3)

The minimum of F is trivially obtained by choosing @ to
be orthogonal to %. To determine another extremum of
F, we first note that the Euler-Lagrange conditions

(fn —
I
~) (~

I
) I

0&) =0,
(c I (fn —

I
e)(e

I
) =0,

(2.4a)

. (2.4b)

are equivalent because of the Hermiticity of the operator

is real when the trial function 4 is a square-integrable A-

particle state in the domain of the Hermitian self-
conjugate operator Q. It is understood that 'k is also
square integrable either because it is approximated by a
wave packet or because it is the product VX of a channel
function X and a rapidly decreasing channel potential V.
We shall choose to normalize 4 by (4

I
4') = 1 in our sub-

sequent discussions.
It is obvious that F obeys the following inequalities:

Thus, Y is a maximum of F if W can be proved to be a
semidefinite positive operator. This is the subject of Sec.
III.

III. PROOF OF POSITIVITY OF A

The operator P' is the difference of the positive opera-
tor YQ and the projector

I
%)(%I. Let the continuous

eigenvalue e and a discrete index v label the complete set
of eigenstates g,„ofQ. Following the discussions of Ref.
6, two kinds of eigenstates Xz of W can be defined by the
diagonalization equation

namely,
(i) square-integrable eigenstates for which g does not lie

in the continuum of Q, i.e.,

w=fn
I
e)(eI —. (2.5) &y,.I

~)
(3.2)

In Eq. (2.5), f is just the (positive) value taken by F. An
extremum is just reached when, according to Eq. (2.4),

I
c)=an 'I e-), (2.6)

where A, is an arbitrary constant. The corresponding sta-
tionary value of F is

with the quantization condition

~ „ I &@..I
+& I'

Ye—q
(3.3)

F(n 'I q))=-&~In-'Ie&
(2.7)

and
(ii) eigenstates for which q lies in the continuum of

YQ, i.e.,

where

[4)= I~) —Q-'I%)
is arbitrary. Explicitly, Eq. (2.8) can be written as

((0
I

Q-'+(4
I

)Q(Q-'
I
0 )+ I

~))

/

The denominator of Eq. (2.9) being positive definite, it is
only the numerator ~which is of interest. It can be writ-
ten as

m=(e'
I
(Yn

I
+)(q

I )—I@')
=(O'I w

I
4'),

where we have set f= Y in Eq. (2.6), for W.

(2.10)

This illustrates that Y does result from a variational prin-
ciple based on the functional F. It should be even more
useful for practical applications to prove that Y is not just
an extrernum of F, but is the supremum allowed by the
inequalities, Eq. (2.3).

Let us consider the difference

5 F= (O'I Q '
I
4)

((0 I
Q —'+(e'

I ) I% ) (% I (Q '
I
4)+ I

e') )

((e
I
n '+(e' -I )n(

I
e') ~n-'

I
e) )

(2.8)

(q,„Ir„)=5(q —~)+a '" (e
I r„),(g,.I

+&
(3.4)

where H denotes the principal part.
[It should be pointed out that discrete eigenstates of H

lie in the continuum of Q which would thus complicate
the handling of Eq. (3.4). But this complication is not
relevant to the fact that Eq. (3.3) has at most one solution
in the domain where g takes on any value between —00

and the threshold YI of YQ. In this domain, the right-
hand side of Eq. (3.3) is a finite, regular, and monotoni-
cally increasing function of g with a value equal to zero
when g tends to —ao. ]

According to Eq. (2.4), the special eigenvalue g actually
vanishes. For g=0, Eq. (3.3) yields

+~„ I O,.l+ I'
(3.5)

v

which is exactly what one would obtain from the defini-
tion Y=(4

I
Q '

I
4). All other eigenvalues of W are

larger than or equal to YI
Thus ~ in Eq. (2.10) and 5 F in Eq. (2.9) are positive

or zero. This proves that Y is the supremum of F, name-
ly, its rnaxirnum. It should be stressed that as long as
I.%) is square integrable, so is Q '

I
4) since Q ' & I

The stationarity equation, Eq (2.6), is a. supremum of F
which remains in the Hilbert space. No singularities need
be expected in a practical application of the variational
principle.
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IV. UPPER BOUNDS
AND ADDITIONAL LOWER BOUNDS OF Y

In this section we consider Eq. (1.3) under the form

I + E —H
(4.1)

&[N+1/N+1], (4.2)

where we specify, for the sake of clarity, that N —1 and
N represent the degrees of the numerator and denomina-
tor of the [N —1/N] Pade approximant, respectively.

In other words, diagonal Fade approximants make a de-
creasing, convergent sequence of upper bounds and para-
diagonal approximants make an increasing, convergent se-
quence of lower bounds, respectively. Trivial examples
are provided by the [0/0] and the [0/1] approximants,
namely,

(4.3)

As a matter of fact, these bounds are not independent
of the functional F studied in Secs. II and III. As dis-
cussed by Baker and Nuttall among others, trial func-
tions which are linear superpositions of qi, (E H) qi, —
(E H) iP, etc.,—provide Pade approximants when they
are used in Eq. (2.2) for F. We notice, however, that Pade
approximants provide both upper and lower bounds.

V. BOUNDS ON THE REAL PART
FROM A SATURATION OF UNITARITY

Let
~

n ) represent a complete set of states and assume

~

iII ) to be one of these states, for example
~
0). Then one

obtains

E —H '+I'

where A, is an arbitrary constant (A, = 1 for the case of in-
terest). An expansion of Y in powers of A, and a recon-
struction of Y by Pade approximants are useful. For a
spectral representation of Y in terms of the eigenstates of
H is trivial whereby Y is a Stieltjes function of A, for
A, &0. We further note that (E H) is —a positive semi-
definite operator while both I' and A, are positive. All
these properties lead to the well-known inequalities7

[N —2 /N —1]& [N —1 /N] & . . Y«. . . [N/N]

M//////////////////X

Y=B
Y=b

FIG. 1. Figure illustrates the allowed values of X and Y ac-
cording to the inequality Eq. (SA). The strip defined by Y =B
and Y=b yields the bounds on Y and the cross-hatched region
defines the allowed values of X.

As shown in Fig. 1, the physical amplitude hT
=I'(X +i Y) is thus restricted to the interior or the rim of
the disc

r Y&X +Y (5.4)

On the other hand, Secs. III and IV have established that
one can calculate two positive numbers b and B such that

B&Y&b. (5.5)

It is then trivial to derive from the two inequalities, Eqs.
(5.4) and (5.5), that X is bounded above, i.e.,

X &C—:max(l B B,I b ——b ) (5.6)

C1/2 (X(g1/2

and

b = lim lim [N —1/N]
I ~ON~ oo

It should be pointed out that the strip in the complex
plane selected by the inequality, Eq. (5.5), may lie close to
the real axis or close to the top of the unitarity disk,
namely, the point (O, l ). In the former case, C is deter-
mined by B while in the latter case it is determined by b.
However, it must be stressed that the best bounds b and B
that one may hope to find should behave like I ' and not
like I . This is because the limit I Y is finite when
I ~0. The first case, namely, a strip close to the real axis
is thus a more likely result of any precise practical calcu-
lation. (The value o'f the bounds on Y in the limit I ~0
are to be defined as

or

(5.1)

(5.2)

B = lim lim [N/N],
I ~ON~ oo

respectively. ) The bound C will thus depend on B rather
than on b.

where Y has been defined by Eq. (1.3), and we have de-
fined the real part of the amplitude by

(5 3)

VI. NONDIAGONAL ELEMENTS
AND NEW BOUNDS ON THE REAL PART

In many cases both 4 and H have simultaneously a real
representation, while the Green's function
(E H —il ) is a sym—metric non-Hermitian operator.
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A nondiagonal element (O'
I
G

I
'0), where 4' is a real

wave packet can be expressed by

2(+'I G
I
q') = (('P+'P')

I
G

I
('P+P')) —('PI G

I
P)

—(e'I G
I

e') . (6.1)

An upper bound to the real part of (+
I
G

I
4) is then ob-

tained by a subtraction of the lower bounds to the real
parts of (4 I

6
I
4) and (O'I G

I

4') from an upper
bound to the real part of ((4+4")

I
G

I
(%'+'p')). Alter-

natively, one may consider the relation

2aa'( O'
I
G

I
4 ) = + ((a%'+a'4'}

I
G

I
(a%'+a'4') )

+a'(+ IG Ie)+a'(e'IG
I
W)

(6.3)

and still obtain an upper bound to the real part of
(%"

I
G

I
%') out of a lower bound to

Re((%'—%")
I
G

I
(O' —'p'}) and upper bounds to

Re(%
I
G

I
4) and Re(%'

I
G

I
4').

The same procedure applies equally well to the imagi-
nary parts of off-diagonal elements. Furthermore, when
lower bounds of off-diagonal elements are needed, it is
trivial to exchange the roles of upper and lower bounds to
be subtracted along the rules provided by Eqs. (6.1) and
(6.2).

Thus, the set of bounds obtained in the previous sec-
tions provide considerable fiexibi1ity for the evaluation of
bounds on nondiagonal elements. One can equally consid-
er mixtures of states, a%+a%', to obtain relations

ties of 0 ' and the variational properties discussed in
Secs. II to IV.

It is remarkable that this relation between hT and
Imb. T demands only one set of calculations at the predeter
mined energy E. This is in sharp contrast with the usual
relation between hT and ImhT via dispersion relations
where one needs to evaluate ImhT at all energies. As a
matter of fact, Eq. (6.6}contains all the information need-
ed for both upper and lower bounds to both the real and
imaginary parts of (O'

I
G

I
4').

More generally, all the information needed for both real
and imaginary parts of a general nondiagonal element
( Ij'

I
G

I
4) for arbitrary 4 and 4' are contained in diag-

onal matrix elements of the positive Hermitian operator
0 ' between suitable admixtures of 4, (E —H)%', %", and
(E —H)%'.

VII. AN ILLUSTRATIVE EXAMPLE

u(q)=e (7.1)

namely, we consider a one-particle, three-dimensional
scattering by a separable potential. For the calculation of
AT, Eq. (1.2), we assume that the norinalization of the
wave packet X which represents the "channel" is such that

( q I
+)=(q

I
& IX) =u(q) . (7.2)

The resulting normalization of 4 is thus not unity, but

The Hamiltonian considered in this section is written in
momentum representation as

( q I
(M+ 7")

I q ') =q 5( q —q ')+ u (q)u (q')

with

in order to optimize the bounds under study with respect
to the real numbers a and a'.

We want to stress the fact that the real part of the tran-
sition amplitude can be interpreted as a nondiagonal ele-
ment of the imaginary part, i.e.,

I'o ——(O'
I
0') =(n/2) i =1.9687 .

It is then trivial to show that

b T= with D(E)= dq
1 —D(E) E —q' —tr

It is then convenient to define

(7.3)

(7.4)

x e)
(E —H) +r

and

QA(E)= f dq
(E —2)2+ r2

where

E —H —iI
(6.4)

2 2

8(E) f d
(E q2)2+r2

and obtain

(7.5)

4"=(E H)% . — (6.5)

Thus, in order to calculate Re(%'
I
G

I
4) one can consid-

er the more general element

Im((a++a"4")
I
G

I
(a++a"4"))

=I (4 I
[a+a"(E—H)]Q '[a+a"(E—H')]

I
4), ImhT =

EA —B+sI A

(1 EA +B)+iI2—
RehT = (Ew —a)(i —Ew +s)—r2w 2

(1 EH+8) +I A—
rw

(1 EA +B)2+r23'—

(7.6)

(7.7)

(7.8)

(6.6}

where full advantage can be taken of the positivity proper-

The integrals A and B can be evaluated numerically
very easily, hence the exact values of b, T can be tabulated.
These are shown in Table I for various values of E and I,
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TABLE I. Imaginary and real part of the multistep amplitude for various values of the energy E and
the off-shell shift I . Pade approximants [0/1] (lower bound) and [1/1] and [0/0] (upper bounds) are
given for comparison with the imaginary part.

k
(E =k2)

2
E=4

0.1
0.2
0.3
0.4
0.5
1

1.5
2.0
2.5

I'[0/1]

0.097
0.191
0.280
0.362
0.434
0.653
0.692
0.654
0.595

ImhT

0.264
0.415
0.542
0.635
0.718
0.854
0.792
0.702
0.623

I'[1/1]
11.013
5.535
3.721
2.822
2.289
1.256
0.924
0.753
0.641

r[0/o]
19.687
9.843
6.562
4.922
3.937
1.969
1.313
0.984
0.788

1.230
1.681
1.597
1.484
1.386
0.905
0.590
0.407
0.294

E =16
0.5
1

2

0.011
0.011
0.011

0.011
0.011
0.011

0.082
0.029
0.019

0.148

6
E =36

0.5
1.0
2.0

0.002
0.002
0.002

0.002
0.002
0.002

0.013
0.005
0.003

0.059

together with Pade approximants. For the Pade approxi-
mants to the imaginary part we consider the expansion

( I' +LEE HP )—
with

Yo Yik, Y2A,

12 j4 p6 (7.9)

Y„=(ei(E—H)'"ie) . (7.10)

A straightforward but slightly tedious calculation leads to

Yi ——Yo(E ——', E++6 )—Yo(2E ——,
' + Fo), (7.11)

(7.13)

One thus obtains readily the approximants

+ Yo(6E —9E+—,) —Yo(4E —3)+Yo, (7.12)

where one takes advantage of the trivial result

ing we refer always to those approximants-multiplied by
I'.

Several comments are in order at this stage. It is seen
from Table I that the bounds are very satisfactory when I
is of order E or a moderate fraction of E, say, I -E/3.
One should expect a fast convergence of the Pade approxi-
m ants when their order increases. However, when
I (E/10, it is seen that low-order Pade approximants do
not provide narrow bounds. The reason for this is clear.
On one hand, while I F has a finite limit as I —+0, it is
seen that upper bounds such as I [0/0], Eq. (7.14) and
I [1/1], Eq. (7.16), diverge like I' '. On the other hand,
lower bounds such as I [0/1], Eq. (7.15), vanish like I .
This clearly indicates the need for higher-order Pade ap-
proximants and/or a matrix Pade extension of the
method. In this matrix method trial functions contain pa-
rameters which can be used to push up (down) the lower
(upper) bounds.

It is instructive to compare in Fig. 2 the trends of I F
and the trends of its Pade approximants when I"—+0. As
has just been stated, while I Y has a finite limit, upper
bounds tend to diverge like I ' and lower bounds to van-
ish like I . The slope of I F is of some interest for the
understanding of such a pattern. It is given by

[0/0] =

YG""=rY,+Y,

(7.14)

(7.15)

S= (I F)= . d 1=
dr

= Sr r+(&irwz a)* )

AE H —1—=A% "
~

' e 717
[A(E H) +1]—

g2
[1/1]=[0/0]-

I (I Yi+F2)
(7.16)

The physical quantity of interest is not Y but I' F, hence
in Table I these Pade approximants have been multiplied
by I in order to be compared with Imb, T. In the follow-

with the notation A=I . [It can be noticed here that
the Taylor expansion with respect to A, , Eqs. (4.1) and
(7.9), which we used for the derivation of the Pade ap-
proximants is as well an expansion in powers of A.] Let g
label an eigenvalue of (H E), the spectrum of this—
operator extending from (Bo+E) to + o—o, where Bo is
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Real and imaginary
amplitudes

[N + 1 /N + 1] for a value I ~+ i in the same region:

lim I Y & I ~+ i Y(I ~+ i )

2.4—

2.2

&M~+i & I ~[N+1/N+1](I ~)

& I ~[N/N](I N ) =MN . (7.20)

2.0

1.0

0.6

Hence the sequence of minima ~~ is the fastest sequence
of decreasing upper bounds available from the Pade ap-
proximants, and the corresponding values I ~ are the op-
timal values of the imaginary parts to be used. It may
here be stressed that the use of a finite imaginary part I
in the present theory is not just an artificial device to
avoid the on-shell limit. On the contrary, I becomes a
variational parameter in order to generate a minimum
~~ for each approximant [N/N] multiplied by I .

As discussed at the end of Sec. VI, the case of RehT
hardly differs from'that of ImhT. (There is numerical
evidence, however, that the derivative remains finite. )
The present illustrative example will just specify, for the
sake of completeness, those moments of (E —H) whose
calculation would be necessary. According to the defini-
tion 4"= (E H)4, —

(t++AD"), , (e+e"))1

I +A(E —H)

0.2

2.5
I

3

FIG. 2. Imaginary and real part of the multistep amplitude
for various values of the off-shell shift I . Pade approximants
[0/1] (lower bound) and [1/1] and [0/0] (upper bounds) are
given for comparison with the imaginary part. Dashed lines are
conjectured, showing minima for 1 [N/N] and
1"[N + 1 / N + 1].

hm rY&r&Y(r&)&~&.I' —+0
(7.19)

But one also finds the following additional inequalities in-
cluding the minimum of the next Pade approximant

the binding energy of the ground state. If p(21 ) is the cor-
responding spectral density of ql, then

ce 2—
S=A d ( )(Eo+E) (A21 +1)

OO a a —1~ p (7.18)
A i/2 (~2+ 1 )2

with a=A'/ g and Ao A' (Bo+E). ——
Without going into an asymptotic expansion of S about

r~0 it is st in Fig. 2 that S seems to be positive and
large in the present case. As illustrated qualitatively in
Fig. 2 and discussed earlier, this pattern may provide an
optimization for the case of an [N/N] Pade approximant.
Nainely, if a [N/N] approximant multiplied by I' has a
minimum ~~ for a value I ~, in the region where S is
positive, the followIng inequalities hold:

„,&(++q") I(++q")&

—,&(~+q")
I
(E —H)'I (~+~")}

2+,&(q++") I(E —H)'I(q+q")) —. .

This also reads (with real numbers for all moments)

((e+e"), , (e+e")l1

I'+A, (E —H)'

(7.21)

1 jlL

(Yo+2Yi/2+ Yi) — ( Yi+2 3Y/+2Y2)p2 p4

A2
+ ( Y2 +2 Y5/2 + Y3 )p6

with the obvious notation

Y(2 +i)/2 = &+
I
« H)'"+'

I
+& . —

As a trivial case one finds

Yi/2 Yo(E——, ) —Yo
3 2

and so on for higher moments.

(7.22)

(7.23)

(7.24)

VIII. APPLICATIONS, DISCUSSION,
AND CONCLUSION

The calculation of the functional E, Eq. (2.2), seems a
prIori cumbersome because if H involves two-body opera-
tors, 0 involves an algebra of four-body operators. If,
however, a set of single orbital products are used as trial
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functions @, the calculation of Ii is no longer as formi-
dable. One then generates a Hartree or Hartree-Fock-type
approximation' to the imaginary part of the transition
amplitude. Since Y is the maximum of F, this mean-field
approximation (or any other approximate @) provides a
lower bound to K Iterative algorithms are thus expected
to converge.

Since the elastic forward amplitudes provide the total
cross section through their imaginary part, our result thus
provides a systematic lower bound to the total cross sec-
tion. This result is of interest in practical cases and also
in analytic models when a convenient class of analytically
calculable trial functions N and operators II are available.
The other bounds which have been investigated in this pa-
per seem to require slightly more involved practical calcu-
lations, for they use moments of the Hamiltonian. This
complexity, however, is not worse than that found in tra-
ditional shell model calculations.

Finally, it should be pointed out that the bounds on sin-
gle channel and multichannel scattering amplitudes have
been discussed by Blau et al. , Sugar and Blankenbecler,
and others referred to in these papers. They discuss the
scattering problem within the framework of Feshbach-
projection-operator" formalism and thus consider the
bounds on the total transition amplitude. Our formalism
considers the bounds on the correction to the Born (or
DWBA) amplitude. This correction term in the case of

the forward elastic amplitude is the diagonal matrix ele-
ment of the resolvent operator. If a wave-packet descrip-
tion is made for the channel wave functions, the discus-
sion of bounds on the imaginary part of the amplitude ex-
actly parallels the evaluation of bounds on the strength
function. Thus, once again we find a unification of the
nuclear structure and nuclear reaction aspects of the prob-
lem.

In the present stage of our theory we consider that the
goal of reducing transition amplitude calculations to shell
model calculations is now within reasonable reach when
off-shell amplitudes are concerned. The only major and
stimulating question to be met is the on-shell limit. We
have stressed several times in this paper that the proper
behavior of a bound when I ~0 should be of order I
This question is now under investigation. For the time
being, we restrict ourselves to finite values of I, the phys-
ical meaning of which is already of great interest to both
the theorist and experimentalist.

A result of some significance seems to appear, namely,
that I might indeed be a variational parameter for the
very estimation of the on-shell limit, as discussed in Fig.
2. If the sign of the derivative of I Y when I ~0 turns
out to be negative, a variation with respect to I will just
trade lower limits of upper bounds for upper limits of
lower bounds. This opens an interesting line of investiga-
tion in the future applications of the theory.
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