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The intensities of hyper-Rayleigh and hyper-Raman scatterings are, already in the electric dipole approxi-
mation, shown to be different in right- and left-handed elliptically polarized incident light. The existence
of this differential scattering requires the third-rank hyperpolarizability tensor b;.I, to be complex and j,k

symmetric only,

I. GENERAL REMARKS

Initially, hyper-Raman and hyper-Rayleigh scatterings
were described on the assumption of full index symmetry in
the b»I, tensor. ' This assumption is justified as long as
none of the frequencies —incident or scattered —approaches
an electronic transition frequency of the molecule. Howev-
er, in practice, this condition of remoteness from absorption
bands is, for the scatterings in question, rather less realistic
than that for linear Rayleigh and Raman processes. Hence,
the complete description of these nonlinear scatterings
demands, in principle, the use of a partly (j,k)-symmetric
b»q tensor; the indices j and A: are associated with the same
incident frequency. Index unsymmetry in b~j, leads to new
selection rules and to the emergence of new purely unsym-
metric hyper-Raman lines in the scattered spectrum. 4 5

Purely unsymmetric hyper-Rayleigh also occurs for mol-
ecules of the point groups D4, Dq, and D6. These scat-
terings, associated with the unsymmetric irreducible part of
weight 2 of b»&, manifest the phenomenon of inverse
polarization4 5—an effect comparable with the inverse polar-
ization of antisymmetric Rayleigh and Raman scatterings.

The next step in the generalization of the electric dipole
hyper-Rayleigh and hyper-Raman description naturally con-
sists in considering the tensor b»I, as not only unsymmetric
but complex as well. This is the procedure we shall adopt
here. %e shall propose a classical theory of scattering since
this will prove sufficient for demonstrating the origin of el-
liptical differential scattering.

Electric dipole elliptical intensity differential (EDEID)
scattering has no counterpart in linear scatterings. The first
two letters ED are used to distinguish this effect from CID
(circular intensity differential), or generally from BID,
which is produced as a result of interference in the scattered
field amplitudes arising from electric dipole, magnetic di-
pole, and electric quadrupole transitions in optically active
molecules. 7 As for hyper-Rayleigh and hyper-Raman, CID
has been considered in the paper by Andrews and
Thirunamachandran. As we shall see further on, EDCID
does not exist.

II. THEORY OF SCATTERING

A molecule in a strong electromagnetic wave

E, (co, t) = E,(t) exp[ —i (cot —kz)1

generally undergoes nonlinear polarization. The latter is a
source of new electromagnetic waves of frequencies that are
multiples of co. The processes in question are related to the
quadratic in E&(to, t) electric dipole moment induced in the
molecule:

btJk biJk(Q) beak+ g bljkQL+ (2)

The tensor b»I, is responsible for hyper-Rayleigh scattering
at the double frequency co, =2', whereas hyper-Raman is
associated with the derivative b»q and comprises the Stokes
~, = 2' —cog and anti-Stokes co, = 2'+ co~ frequencies,

where co~ is the frequency corresponding to the vibrational

mode X. The higher terms of the expansion (2) correspond
to overtones.

Since the phases of vibrations of different molecules are
uncorrelated, the hyper-Raman scattered light is an approxi-
mately incoherent sum of scatterings from each of the N
molecules. In the case of hyper-Rayleigh this is true in the
dilute gas approximation. %e shall restrict ourselves to the
description of just this incoherent scattering.

The scattered integral intensity tensor IJ = N(m;mJ") o,E
involves a sixth-order rotational averaging ( ) n of the
directional cosines' describing the transformation of the
tensor components btJk from the laboratory-fixed frame (La-
tin indices i,j,k) to the molecule-fixed frame (Greek indices
n, P, y). In general, we have also to perform an averaging

( ) E over the ensemble of the incident field amplitudes E& if
we allow them to fluctuate: E, = E,(t)—ergodic theorem.

Assume the incident elliptically polarized light propagating
along the z direction and having ellipticity $. The elliptic
major axis makes an azimuth Q with the x axis. The scat-
tered light is observed in the YZ =yz plane along the Z axis
at an angle 0 relative to z. The total intensity scattered at 0
is found from I= IiJX&X~+ ItJ l't 1;, whe're 2. and V are unit
vectors along Sand Y, respectively.

Finally, after rather cumbersome manipulations, one

m, = TbitkEJ(to, t)Ek(to, t)

where the summation convention over a repeated index is
implied.

According to the transition polarizability theory of Plac-
zek, extended to the nonlinear case, the tensor bI,I, depends
on vibrations of nuclei which modulate the scattered ampli-
tudes, and can be expanded in terms of normal coordinates
Q& of vibration
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I = I [4A + [4B+C(1+cos20) ] cos2(2$) +2E(l+ cos28)

+D cos(2$) cos(2$) sin 28+ 8 sin(4$) sin(2$) sin tl]

(3)

where $ ) 0 refers to right-handed (+) incident light, while

$ ( 0 ( —) to left-handed light in the optical convention.
The symbol I stands for a scattering factor the exact form

a = (I+ I )—/(I-++ s )- (4)

[where the superscripts (+) following I refer to the in-
cident handedness] takes the form

of which is redundant here; we mention only that it is pro-
portional to the second-order coherence degree g of the
incident light as well as to co, .

With regard to (3), the elliptical intensity differential ra-
tio7

F~sin4$ ~ sin(2$) sin20

4A + [4B+C(1+cos20) ] cos2(2$) + D cos(2$) cos(2$) sin20+ 2E(1+cos28)
(5)

a = b~py b~py,

d = b~ppbyy~,

b = b~pybp~yp c = b~ppb~yy p

e = bpp~byy~

In particular, for right angled scattering and for P=m/4
and $ = m/8 this reads

5 )2=2F/(8A+4B+ C+4E)
EDEID manifests some striking properties. Namely,

when the axes of the incident polarization ellipse coincide
with the axes x and y, 5 tends to zero. The same situation
occurs for forward and backward scattering irrespective of P.
In the case of circular polarization —P = +7r/4 —5 =0, too.

Generally, 5 can take positive as well as negative values,
since the signs of the molecular rotational invariants (and
primarily that of the invariant I', fundamental for the effect
in question) are not determined. Their form is as follows:

3 = 11a —6b —Sc+4(d+ d') —6e

B= —Sa+4b+8c —5(d+ d')+4e
C = 8a —12b —10c+ 15(d+ d") —12e

D = —4a + 6b —2c+ 3 (d+ d") + 6e

E = —6a + 9b+ 4c —6(d+ d') + 9e
E= TI(d' d), —

where

Following the decomposition of the tensor b py into a
symmetric part b p„with respect to permutation of all its in-
dices and a residual unsymmetric part b», however, still
P, y symmetric, and using their irreducible weights 1,3 and
1,2, respectively, 5 the parameter Fcan be represented as

So, EDEID is related to interference in the scattered ampli-
tudes coming from the symmetric and unsymmetric irredu-
cible tensors of weight 1.

Under nonresonance conditions, the b py tensor is com-
plex and simultaneously unsymmetric if the wave functions
determining the electric dipole transition moments in b»
are complex as in the case of paramagnetic molecules with
degenerate ground electronic level. "

Under near-resonance conditions b py is, by definition,
unsymmetric, and becomes complex already owing to the
presence of half-width damping factors. '2 Significant
enhancement in the magnitude of the scattered intensity is
then also expected.

In the case of optically active molecules the magnitude of
EDEID should be 103 times greater than the differential
scattering due to higher-order cross electric dipole and quad-
rupole and magnetic dipole terms.
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