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Auger transitions in open-shell atoms In and Sn
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M4 5N4 SN4 5 Auger transitions in open-shell atoms In and Sn are studied by comparing the calculated

profiles with the experimental free-atom spectra. In and Sn atoms have the ground-state electron config-
urations. . . 4d Ss Sp and. . . 4d Ss Sp respectively. The usefulness of the applied theory to predict
the fine structure, which is due to the coupling of the electrons in the Sp shell with the electrons involved
in the Auger decay, is investigated in going from the closed-shell atom Cd to the open-shell atoms In and
Sn.

I. INTRODUCTION

After intensive studies of the Auger spectra of closed-
shell atoms (rare gases, alkaline-earth metals, Mg, Zn, Cd,
and Hg) during the last years, the interest is now more
turning to Auger electron spectra of open-shell atoms. Very
few detailed studies of non-closed-shell Auger transitions
for single-ionized atoms have been published until now. In
order to understand a little better the influence of the par-
tially filled outermost shell on the fine structure of the
Auger spectra, we report in this paper a detailed analysis of
the M4 5N4 5%4 5 spectra of In and Sn atoms.

The ground-state electron configurations of In and Sn are
. . . 3d' 4s 4p 4d' 5s 5p and . . . 3d' 4s 4p 4d' 5s 5p
respectively. The 3d ' 4d transitions of In and Sn
show a rich fine structure due to the coupling of the elec-
trons participating into the Auger decay with the electrons
in the outermost partially filled shell. Owing to the variety
of the energy levels lying close to each other, a detailed
analysis of an open-shell Auger spectrum is very difficult
without knowledge of the intensity distribution. In this
work we study how the theory predicts the redistribution of
the intensity of the parent lines to the daughters. Further-
more, we discuss the influence of this redistribution to the
profile of the spectrum and the possibilities to carry out a
detailed interpretation of the experimental spectrum.

II. EXPERIMENT
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The M4 5%4 5N4 5 Auger spectrum of free In atoms was
published recently. ' An assignment of the main peak struc-
ture of the spectrum was based on a comparison with opti-
cally known final-state energy levels. '

The M4 qN4 5N4 q spectrum of atomic Sn has not been
published earlier. The spectrum has been measured by
means of the cylindrical-mirror-type electron spectrometer
equipped with the resistance-heated high-temperature fur-
nace. The spectrum was excited by a primary electron
beam of 3 kV voltage and 1 mA current. The applied vapor
pressure inside the furnace was about 0.1 Pa, corresponding
to a temperature of about 1100'C. The standard pulse-
counting method was used applying a microprocessor based
spectrometer control and data-collecting system. The Auger
electrons were registered without any retardation before
analyzer field.

The energy calibration of the spectrum of atomic Sn was
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FIG. 1. Experimental M4 5N4 ~N4 5 Auger electron spectra of
Cd, In, and Sn atoms. The spectra of Cd and In are obtained from
Refs. 6 and 1; respectively, and the spectrum of Sn is measured in
this work. Background subtraction and dispersion correction have
been performed in the plotted profiles.
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achieved recording simulataneously with the vapor spectrum
also the Ar L3M2 3M2, 3( D2) and Ne EL2 3L2 3('D2) lines.
The energy values of 203.50 and 804.46 eV were used for
these Ar and Ne lines, respectively. The experimental
free-atom spectrum of Sn is shown in Fig. 1, together with
the atomic spectra of Cd (from Ref. 6) and In (from Ref.
I).

theory experiment

III. DISCUSSION
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In order to follow the splitting of the parent lines to the
daughters in going from a closed-shell Auger spectrum to
open-shell spectra we have first carried out an energy
analysis of the M4 5%4 5%4 5 spectra for the elements from
Cd to Sn. Cd has a closed-shell ground-state electron con-
figuration. . . 3d' 4s 4p 4d' Ss . The splitting observed in
the spectrum is all due to the vacancies produced by the
Auger decay. In the spectrum of In we observe extra fine
structure due to the coupling of the outer Sp electron with
the electrons participating into the decay. A drastic increase
in the number of the possible energy levels takes place in
the case of Sn. The ground-state electron configuration of
Sn is. . . 3d' 4s'4p 4d' Ss Sp . The final-state energy-level
structures of the elements Cd to Sn are depicted in Fig. 2.
The level which is found to gain most of the intensity in the
Auger spectrum is choosen to be the reference level. The
drawing is based on the calculations carried out with the
multiconfiguration Dirac-Pock program of Grant Kenzie

7and Norrington. The energies of the final-state levels are
determined by performing relativistic pelf-consistent field
(SCF) calculations for the doubly ionized atom using
single-manifold approach corresponding to nonrelativistic
configuration. The energies of Auger transitions are ob-
tained as differences between separately optimized total en-
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FIG. 3. Comparison between calculated and experimental (Ref.
2) splitting of )hp. . . 3d 4s 4p 4d Ss configuration of Cd.

ergies of the singly ionized initia1- and doub1y ionized final-
state levels of the Auger process (the ASCF approach).

For Cd and In the final-state energy-level structure can be
taken from optical data and thus a comparison between
calculated and experimental energies becomes possible. Fig-
ure 3 sho~s this kind of comparison for the energy splitting
relative to the 'G4 level of the 4d configuration of Cd.
For In the experimental splitting shown in Fig. 4 is obtained
from In v and corresponds the . . . 4d85p configuration
whereas the calculated energy splitting is for the
. . . 4d Ss Sp configuration of In. The deviations in the8 2

energy-leve1 splittings of the . . . 41 Ss Sp and. . . 4d85p
configurations of In are not, however, expected to be large.
According to the Dirac-Fock calculations the two splittings
agree within 5%.

An inspection of Fig. 3 sho~s that the theory clearly
overestimates the splitting of the. . . 4d85s configuration
for Cd. Especially the position of the 'So level is poorly es-

theory experiment
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FIG. 2. Final-state energy-level structures of Cd, In, and Sn
atoms predicted by the single-manifold Dirac-Fock calculations.

FIG. 4. Comparison between calculated and experimental final-
state energy splitting of In. The calculations are carried out for the

8 2. . . 4d Ss Sp configuration and the experimental results correspond
to the. . . 4d8Sp configuration of In.
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