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Radiative lifetime of hydrogenic and quasihydrogenic atoms
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A universal formula for the upper bound of the radiative lifetime of a hydrogenic level is found to be

(3t3/2mo. 3Z4e4)n3(i+ 2)2. When compared with the exact lifetimes, the expression is found to agree

within 10%, For quasihydrogenic atoms and ions, experimental lifetimes are generally found to coincide

with the upper bound values.

Ao= mn3e4/A3 (2)

In Eq. (2) m is the reduced mass and n the fine-structure

Quasihydrogenic atoms are Rydberg systems where the
optical electron's angular momentum I is sufficiently high
for its behavior to be hydrogenic. In such nonpenetrating
states, the energy usually deviates from the hydrogenic
value by less than 1%, and may readily be calculated by-per-
turbation theory. ' Similar departure from the hydrogenic
radiative lifetime has been found to be at the few percent
level, which is negligible for the present purpose.

The radiative lifetime of a hydrogenic state can be calcu-
lated exactly by summing over the appropriate Einstein A

coefficients. Ho~ever, for applications to astrophysics, plas-
ma physics, and for planning experiments, it is highly desir-
able to have a simple though approximate closed expression.
In this work, the lifetime of quasihydrogenic atoms is found
to be given by 93 n (/+~)2 ps. This expression is applica-

ble as long as I is two units or more than the highest orbital
angular momenta of the core electrons (with no restriction
on the principal quantum number n) It is dem. onstrated to
be usually within the typical experimental error bars of
+ 10%.

For a hydrogenic state specified by n and 1, the radiative
lifetime has been found to vary as n by Bethe and Sal-
peter. 4 Without establishing the l dependence, the propor-
tionality constant cannot be found. Restricted to circular or-
bits where I = n —1, an expression with the same constant
(93 ps) was obtained' both classically and quantum mechan-
ically. Using a semiclassical approach in the general case,
Omidvar discovered an I dependence, but it was only
asymptotic. In fact, the coefficients varied over more than a
factor of 2, depending on n and I. In comparison, the
present expression, derived quantum mechanically, varies as
(/+~) . The constant, derived as an upper bound, is

found to yield lifetimes differing from the exact values by
only a few percent for a11 I & 0. Thus, this universal formu-
la for the radiative lifetime supercedes Omidvar's tables at
the present level of experimental accuracy. Indeed, it is
found to agree with experimental values in quasihydrogenic
systems, which extends from tens of picoseconds to mi-
croseconds. Furthermore, the formula is applicable to
molecules and exotic atoms.

In a hydrogenic atom of nuclear charge Ze, the electric di-
pole transition probability (n, / s, k) is given by the Ein-
stein A coefficient. ~

A (n, / s, k) = AaZ'(n ' —s ')'f'(n, / s, k)/2, (1)
where the basic unit of transition rate is

constant. For ordinary atoms, m is practically the mass of
the electron, so Ao has the value of 1.604& 10' sec

The oscillator strength f in Eq. (1) is known to have
many alternative forms —length, velocity, and acceleration.
Since the emission rate is determined by the radiative
power, it is more appropriate to choose the velocity-
acceleration form. '

f (n, / s, k) = (2i/t/3m ) [Z e (n 2 —s )/2aa]

x (n, / I p Is, k)' (s, k I'7 VIn, /) . (3)

In Eq. (3), aa=t /me is the Bohr radius, p = —i//V, and
'7V=Ze2r/r3. When Eq. (3) is substituted into Eq. (1),
the energy factors cancel so that the expression becomes

A (n, / s, k) = —(~)A oZao (n, / I& Is, k) (s, k I r /r In, /)

(4)

From the selection rules of an allowed transition, the ra-
diative lifetime is related to the A coefficients by

T(n, /) = g A (n, / s, /+1)+ X A (n, / s, / —1)
,
s&n s(n

(5)

Exact values for T(n, /) have been calculated for values of
n and / up to 25. The task at hand is to evaluate Eq. (5)
analytically by introducing suitable approximations. From
Bethe and Salpeter, it is known that the oscillator strengths,
and hence the A coefficients, are numerically much smaller
when An and AI are in the opposite sense than when they
are in the same sense. Furthermore, the A coefficients are
positive when s & n, but negative when s & n (The sign is.

derived from the energy factor since the squared dipole ma-
trix element is always positive. )

The first approximation is to neglect all terms in the first
sum in Eq. (5), which is valid except in the case of / =0 (s
states), where all the terms in the second sum vanish.
Since all terms in both sums are positive, this approxima-
tion results in a lower bound for the denominator or an
upper bound for T. The second approximation is to extend
the second sum to all values of s including the continuum.
Since negative terms are now added to the sum, the result is
once more a lower bound for the denominator. Therefore,
an upper bound for the radiative lifetime is established,

T(n, /) & —3/(4AaZaoM) (6)
where

M= g(n, /IV' Is/ —1) (s, / —II r/r In, /)

31 495 1985 The American Physical Society



496 BRIEF REPORTS 3I

Applying closure and standard Racah algebra, ~ it is found
that

M= n, l ——
21+1 '

dr
I —1 1

()r 2

ooo Q' QQ~~&~~
~Jk

a
1

n, l —
2
—n, l —n, l, 3 n l

2l + 1 r' d»
' r' (8)

In Eq. (8), the first term is seen to vanish upon integration
by parts for l &0. The expectation value of r in the
second term is known analytically, so it is found that

M = —[I(!+1)/(2l + 1)]Z3/[n3 l(l + 2 )(I + 1)a03] . (9)

Finally, substituting Eq. (9) into Eq. (6) yields the desired
upper bound,

T(n, l ) ( Con '(l + ~ ) '/Z' (I & 0) (10)

where Co= 3/(2A o). For an ordinary atom Co= 93.2 ps,
while for an exotic atom, Co has to be divided by the re-
duced mass in electron mass units as is evident from Eq.
(2).

The expression in Eq. (10) is now compared with the
semiclassical result

T(n, l) —C„in3 l2/Z4 (n, l » 1)

Apparently they differ only by the replacement of l by l + 2 .
However, C„I in Eq. (11) varies with l (and n) approaching
a constant only when n and l are much greater than unity,
while Co in Eq. (10) is independent of n and !. For large
values of n and l, Omidvar found an approximate value
C =84.7 (and 87.1) ps, which is consistent with the upper
bound value of Co= 93.2 ps.

Actually, from the exact quantum-mechanical expressions
given by Eq. (5), Omidvar has calculated his C„I for all n

and l less than 25. It is of interest to see how close C, de-
fined by

C= Z'T(n, l)/n'(I+~)', (12)

comes to Co for various values of n and l when Z =1. In
Fig. 1, C is plotted against n for a fixed number of radial
nodes in the wave function, given by n, =n —l —1. For
n„= 0 and 1, C rapidly approaches the upper bound C(] indi-
cated by the arrow. The reasons are that the neglected coef-
ficients 2 (n, l s, l +1) actually vanish and that the contin-
uum values of A (n, l s, l —1) are very small as indicated

by the remark that "circular orbits are difficult to ionize. "
The solid line for n„=2 represents a more typical situation
and as n, increases, the more highly elliptical orbits show a
larger deviation from Co. Nevertheless, for all n„C ap-
proaches (though not reaches) Co monotonically as n in-
creases, and even for the lowest values of n, C is only about
10% below its upper limit value. Therefore, Eq. (10) not
only gives an upper bound, it also yields an approximate
value accurate to 10'/o.

For experimental verification we turn to quasihydrogenic
atoms and ions. First the condition for using the hydrogen-
ic formula should be clarified. If the core contains electrons
in the state n', l', the transition from n, l to n', l' will be for-
bidden, or at least disrupted, by the Pauli exclusion princi-
ple. Therefore, in the electric dipole process l —l' should be
greater than one. For cores with only s electrons, nd states
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FIG. 1. The constant C given by Eq. (12) for hydrogenic life-
times. Each curve represents a fixed value of n, specified in the
lower right corner. The arrow indicates the upper bound value of
93.2 ps.

will satisfy this condition, while for cores with p electrons, it
requires states with higher l starting with nf. Table I shows
recent experimental lifetimes of states in ions satisfying
the above criterion. When more than one measurement is
available, preference is given to the one with the least quot-
ed.error or the most recent date. While the lifetimes range
over five orders of magnitude, C obtained from Eq. (12) is

remarkably constant. Within experimental errors it is usual-

ly consistent with and somewhat lower than the upper
bound value of 93 ps. Even in the few cases of significant
discrepancy, other measurements conforming to the upper
limit can often be found. Indeed, Table I suggests that Eq.
(10) may be used to discriminate between conflicting data.
For example, earlier measurements of the 4f 'F and F in
Ov which yielded lifetimes three times larger than those in

Table I were clearly in error.
It is noteworthy to point out that the validity of Eq. (10)

is not affected by the presence of an open-shell core as in
the cases of OIv and CII in Table I. This is not surprising
in view of the fact that in the j-l coupling scheme the line
strengths and, hence, A coefficients are hydrogenic when
summed over the K (final) quantum number of the lower
states. ' On the other hand, there is considerable evidence
that Eq. (10) is not valid unless the aforementioned cri-
terion l —l') 1 is met. Examples are the np 'P series of
He t, the nd series of Na r, and the nf' series of Rb t,
where application of Eq. (12) yields values for C of 26, 160,
and 55 ps, respectively. Since the quantum defects of all
three series are only a few hundreths, it is evident that re-
placing n by n the effective quantum number does not suf-
fice.

Next we consider the l-averaged lifetime defined by

n —1 t
—1

T(n) = X (2l +1)/n T(n, l) (13)
~i=o
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TABLE I. Experimental radiative lifetimes in quasihydrogen ions T is listed in order of decreasing Z and
increasing n and I so that the lifetime generally increases. Spectrocsopic terms and configurations are given in.
cases of possible ambiguity. C is obtained from Eq. (12).

Ion State Reference T (ns) C (ps)

Ar VIII

Cl vo

0vi

Svi

Cl vi

Svi

Qv

Oiv

Tiiv

Ga ui

Li II

Cu

Mgu

Hei

Lii

Hei

Lit

Hei

Hei

Lit

Hei

Lit

Nai

Sg
6g
6h

Sg

4f
4f
4f 3F

Sg
6g
6h
7h
7l
8k

4f 1F
4f F
Sf iF
Sf F
Sg iG
Sg ~G

4f (2s2p)2F
4f (2s2p) D
4f (2s2p } G
4f (2s2p)4G

4f
5g

4f ~F

4f (2s2p)'G

4f
3d 'D
3d ~D

3d

4d iD
4d ~D

4d

4f iF
4f ~F

5d iD
Sd ~D

Sd

Sf F
6d
7d
8d
9d
10d
lid

13f
14f
15f

10

12

10

13

13
11
13

14

18

19

20

21
19
20

21

20

0.063 + 0.006
0.115 + 0.010
0.143 + 0.010

0.101 + 0.015

0.051+0.005

0.051+0.002

0.049+ 0.004

0.18 + 0.007
0.28 + 0.04
0.52+ 0.02
0.91+0.10
0.99 + 0.04

2.3 + 0.6

0.10 + 0.01
0.11 + 0.01
0.21 + 0.02
0.22 + 0.02
0.37 + 0.04
0.39 + 0.04

0.32 + 0.03
0.23 + 0.03
0.29 + 0.03
0.24+ 0.03

0.23 + 0.02

2.8 + 0.6

5.1 + 0.4

4.0+ 0.2

3.7 + 0.4

15.2 + 0.5
14.25 + 0.34

14.9+ 0.6

36,4 + 1.2
32.1 + 1.3
32.7 + 1.3

80+ 6
71.6+ 3

63.5+ 5.7
57.2 + 2.3

56+ 2

142+ 20

104.9 + 5.0
174.5 + 10.5

243+ 17
346+ 31
487 + 48
654+ 65

2270 + 400
2640 + 450
3540 +500

102 + 10
108+9
89+6
96+14
84+ 8

84+ 3

81+7
92+ 5
83+ 12

103+4
114+13
88+4

103 + 27

79+ 8
88+ 8
86+ 8
99+10
92+9-
97+10

105 + 10
75+ 10
95+10
78+10
75+7
90+ 19

104+ 8

81+4

75+8
90+ 3
84+ 2

88+4
91+3
80+ 3
81+5

102+ 8
91+4
81+7
73+ 3

72+3

93+13
78+4
82+ 5
76+ 6
76+ 7
78+ 8
79+ 8

84+ 15
78+ 14
85+ 12
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Substituting Eq. (10) into (13), it is seen that
T

n —1

T(n) & Co(n'/2Z ) X (l+ 2)
I=O

(14)

TABLE II. Hydrogenic l-averaged lifetimes T and T" are given
by Eqs. (16) and (17), respectively. The number in parenthesis is
the power of 10. All lifetimes are in nanoseconds.

where the small A coefficient for 1=0 is neglected. As is
Omidvar's work, the sum in Eq. (14) can be obtained
analytically in the limit of large n, i.e.,

n=1
(l+~) '= lim [(2n —1)+y+1n2 —2], (15)

l=1 n ~ oo

where y is Euler's constant. For a finite value of n, the
left-hand side (LHS) exceeds the right-hand side (RHS).
Therefore, when Eq. (15) is substituted into Eq. (14), the
upper bound no longer holds. Instead, the lifetime is ap-
proximately given by

2
3
4
5

10
15
20
25
66

166

T(exact) (ns)

2.13(O)
1.00(1)
3.31(1)
8.65(1)
1.91(3)
1.23(4)
4.66(4)
1.32(S)

T (ns)

2.03 (0)
9.17(O)
3.01(1)
7.94(1)
1.81(3)
1.18(4)
4.51(4)
1.29(5)
1.29(7)
1.08(9)

T (ns)

1.31(0)
7.12(O)
2.50(1)
6.77(1)
1.60(3)
1.06(4)
4.06(4)
1.16(S)
1.17(7)
0.98(9)

T(n) = Co(n /2Z )[in(2n —1) —0.365] (16)

Clearly Eq. (16) supports Omidvar's asymptotic n5//nn law.
Once more, Eq. (16) may be compared with the semiclassi-
cal expression:

T"(n ) = C (n /2Z4) [ln(1.4136n ) ] (17)

Obviously they differ only in the constant and in the details
of the logarithm factor. In Table II, T and T" are com-
pared with the exact lifetime for n ranging up to 25. Evi-
dently T always lies between the T" and the exact value and
never deviates from the latter by more than a few percent.
These considerations suggest that the radiative lifetimes of
radio recombination lines such as the H 66a and the H
166o. will be accurately predicted by Eq. (16). As seen in
Table II, the latter just exceeds one second.

Another useful application in astrophysics is to the recent-
ly identified infrared emission lines from the solar chromo-
sphere. The lifetimes for these Rydberg states centered on

n =7 and I =6 in MgI and Sit are trivially given by Eq.
(10). They should facilitate the disentangling of the cascad-
ing processes and the modeling of the solar atmosphere.
Similarly, lifetimes for the intermediate range (2 & n & 10)
radiative cascades in muonic and in other exotic atoms2 carl
be predicted to the required accuracy.

Finally, Eq. (10) is also applicable to certain molecular
Rydberg states. So far the only direct lifetime measure-
ments 9 appear to be for the n =3 levels in para-H2. For
the 13 reported 3d levels, they range from 11.1 to 15.6 ns
with a varying accuracy of a few percent. The correspond-
ing values of C are from 71 to 96 ps, generally conforming
to the upper limit value of 93 ps in spite of considerable
mixing with the 3s level whose hydrogenic lifetime is an or-
der of magnitude larger. For less penetrating states such as
the 4f'and the Sg levels, 3 our universal formula is expected
to predict the radiative lifetime even more accurately.
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