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It is demonstrated that Eberly and Singh's notion of partial stationarity of a quantum system can be
reconciled with Mandelstam and Tamm s approach to deriving energy-time inequalities. The result of this

merger is an improved stationarity time, which provides a more precise measure of the degree of stationar-

ity of the system under study, and which permits a sharper statement of the energy-time uncertainty rela-

tion than that given by Eberly and Singh.

I. INTRODUCTION

It is generally appreciated that in most cases of interest
the times appearing in the usual Mandelstam-Tamm (MT)
inequality'

, Mr)
I d/dt (A„) i 2 l& H

constitute very poor bounds in the sense that their product
with the energy dispersion AH turns out to be much larger
than t1/2 (Refs. 2 and 4). In (1), A„may be the operator
corresponding to any observable of the system under study,
provided the time rate of change of its expectation value in
the given state,

—"
(A„& = —'([HA„] +&(

~""),
does not vanish. But apart from possessing the dimension
of time, the set of times r$ & thus produced does not seem

pj

to allow any obvious interpretation as a set of characteristic
times of evolution of the system under study. '

Since the original paper by Mandelstam and Tamm, ' there
have been numerous attempts to improve this situation. 5

One of the most fruitful propositions was put forward by
Eberly and Singh6 (ES) through the concept of partial sta-
tionarity of a quantum system. This concept arises from the
'observation that for a stationary ensemble the density
operator commutes with the Hamiltonian, and conversely, ~

whence dp/dt = 0 from the equation of motion of the densi-
ty operator (in the Schrodinger picture)

dp i(
dt h

On the other hand, the expectation value of (3) vanishes
for all ensembles, stationary or nonstationary, i.e. , (dp/

dt) = 0, so that the dispersion of the time derivative of the
density operator provides a natural measure of the degree of
stationarity of the given ensemble. Its reciprocal value,

r)ES) 2g dp
dt

(4)

II. IMPROVED STATIONARITY TIME

Eberly and Singh overcame the unsatisfactory ambiguity
of the many possible choices of an operator A„ in (1) by in-
troducing the stationarity time (4), which through the

was introduced by Eberly and Singh as the stationarity time
of the given system in the given state, where, in addition to
the original definition, 6 we have incorporated an inessential
factor of 2 for later convenience. Eberly and Singh6 proved
that for any quantum system.)~&~H» g (5)

2

with the equality holding for a pure state density operator.
They remarked that while not being an element of the set
(1) of MS times, rps seemed to bound all those times
from below.

However, it is the purpose of this note to demonstrate the
interesting fact that if Eberly and Singh's6 stationarity time
is made a member of the family of MS times, or, in other
words, if Eberly and Singh's concept of partial stationarity
is combined with Mandelstam and Tamm's' general ap-
proach to deriving energy-time inequalities for a given sys-
tem, then an improved stationarity time emerges, which, in
turn, bounds Eberly and Singh's stationarity time (4) from
belo~. Section II will give a proof of this assertion, and
Sec. III will discuss the pertinence of this improved sta-
tionarity time.
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operator dp/dr refers to the system as a whole, rather than
to an arbitrary observable A„;

However, the different approaches manifesting them-
selves in Eqs. (1) and (4), respectively, can be reconciled by
observing that —as was pointed out by Eberly and Singh—the operator

dp (6)
dl;

characterizes, in a certain sense, the stationarity properties
of the given quantum system. Therefore, it seems natural
to apply the Mandelstam-Tamm procedure to this "sta-
tionarity" operator, rather than to some observable 3„.

To this end, we require the equation of,motion of s,
which we obtain by taking the time derivative of Eq. (3),

Pk Pm Hkm
df

(16)

and

&/2

=~ ' —'g4 +p )4 —p )'IH
k, m

1/2

-& '
2 g4» —u )'IH» I'

k, m

(17)

For our purp'oses, it is convenient to write (15) and (14) in
the alternative form

—= —[s,H]+ —p,
dS I I QH
dt h h

'
Qt

(7)
respectively. The inequality sign in (17) stems from the
sum of any two probabilities of a mixed state being less or
equal to unity,

where we have made allowance for a possible time depen-
dence of the Hamiltonian. Taking the expectation value of
(7), we find by invoking Schwarz's inequality

(—' = —l([.,H]) l~ —a. sH
dt h

'
h

Pk+ Pm

the equality holding for mixed states composed of exactly
two pure states.

Inserting (16) and the right-hand side of (17) into (9), we
find

since
1

p, =Trp p, =0

' —1/2

k, m

1

rk'")~& 2g(~» —~ )'IH» I'

2 Tr 202
dt

(12)

Since a pure state statistical operator is idempotent, (4), (9),
(11), and (12) immediately imply that

r )LK) r )ES) (13)

for pure states.
For mixed states, we recall [cf. Eq. (7) of Ref. 6] that in

the basis of eigenstates of p, (11) takes the form
' 1/2»=~ ' XI»(I» c)'I~a I'— (14)

k, m

Similarly, we find for the right-hand side of (12),

Pk Pk —
Pm Hkm

k, m

(15)

Defining the stationarity time (labeled with the initials of
the present authors) of the system by

r .LK) 5$
I(»/«) I

we are led to

&WALK) gH (10)
2

It remains to be demonstrated that, in general, (10) pro-
vides a sharper statement of the energy-time uncertainty re-
lation than does (5). To this end, we note that the numera-
tor of (9), which is just (2rps)) ', can be written as

( s2 ) )l2 )r
—1 (Tr (p

3/f2 p
28p H )] 1/2

while the denominator of (9) can be represented as

1

1 r —1/2

~)r 2 g(p»+p )(I)» —p )'IH» I'
», m

(Es)7$

where (18) has been used. Thus, we have shown that

r$LK) ( r)ES) (19)

for mixed states, where the equality holds for mixed states
composed of exactly two pure states.

III. DISCUSSION

The improved stationarity time (9) enjoys a number of
desirable features. Firstly, it reconciles Eberly and Singh's
proposition for an energy-time inequality with that of Man-
delstam and Tamm, ' thereby removing the alleged "round-
about way" of the introduction of the former, which has
prevented some authors from appreciating its appropriate-
ness. At the same time, we have fully retained the favor-
able characteristic of Eberly and Singh's stationarity time,
namely, of referring to the quantum system as a whole,
rather than to one of its observables.

Secondly, for all mixed states composed of more than two
pure states, the improved stationarity time provides a
sharper statement of the time-energy uncertainty relation
than does Eberly and Singh's version. This is because for a
particular mixed state of this kind, the improved stationarity
time r)LK) is always less than rPs), thus furnishing a more
precise measure of the degree of stationarity of the given
quantum system in that state. This is of relevance to cer-
tain investigations in quantum chemistry, where the degree
of stationarity of only approximately known stationary states
is tested by the stationarity time 7 Ps) of the system in that
state. '0
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