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Exact results for a damped quantum-mechanical harmonic oscillator
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Exact calculations for a quantum oscillator linearly coupled to a thermal reservoir are presented.
Explicit results (variances and correlations) for the response and the spontaneous fluctuations are
evaluated for two different models of the heat bath; a reservoir with a spectrum which is similar to
that of acoustic phonons and another which is analogous to optic phonons. The low-temperature
behavior is shown to depend sensitively on the spectral density of the thermal reservoir. The mass
and the frequency of the oscillator become renorrnalized through the coupling to the bath. These re-
norrnalizations are intrinsically frequency dependent. Moreover, the commonly used form of
Ehrenfest's equation for the dynamics of the linearly damped oscillator is shown to only be a reason-
able approximation within certain frequency regimes.

I. INTRODUCTION

The dynamics of a quantum-mechanical particle cou-
pled to a heat bath has been the subject of great interest,
and has a long history. ' " These systems form archetypes
for many important processes, where quantum-
mechanical systems equilibrate with a heat bath. The
coupling to the heat bath can have important conse-
quences on the dynamics of the system, by altering the ef-
fective potential in which the particle moves, as well as by
allowing energy to be exchanged with the thermal reser-
voir, thereby allowing the system to attain thermal equili=
brium. Recently, there has been a resurgence of interest
in this problem.

" Caldeira and Legget ' have shown
that the coupling to the heat bath can be eliminated, at
the expense of including a retarded term into the effective
Lagrangian. The motion of a particle subjected to this
kind of dynamics presents us with both technical and con-
ceptual difficulties. Perhaps, the greatest difficulty is that
of reconciling our classical notions of energy dissipation
with our quantum-mechanical notions. For example, it is
well known that a quantum system in its ground state
cannot dissipate energy, whereas a system in the excited
state can. This dissipation of energy can be completely
dissociated from the value of the expectation value of the
linear momentum of the particle. Likewise, both the
ground state and the excited states can have finite mean
square fluctuations in the momentum. Even the energy
which is dissipated can come from changes in the energy
associated with both the displacement and momentum de-
grees of freedom. Our classical concepts relate the dissi-
pation of energy directly to the presence of a nonzero
momentum.

In order to clarify some of these issues, we shall address
the simplest model of a quantum-mechanical system that
one can envisage. Namely, we shall investigate some of
the dynamic properties of a harmonic oscillator, which is
coupled via its displacement q, to a thermal reservoir
composed of an infinite number of independent harmonic
oscillators. This form for the heat bath, was used by Cal-
deira and Leggett ' in the problem of macroscopic quan-

turn tunneling. The independent oscillators are assumed
to represent all the normal modes of the infinite heat bath.
As a consequence, we expect that the normal-mode fre-
quencies and the coupling strengths should form a contin-
uum. However, in order to reconcile the equations of
motion for the path of minimum action of the quantized
system with the classical motion of a particle in the pres-
ence of damping, they ' were forced to restrict the cou-
pling functional of the heat bath to a certain class model-
ing Ohmic dissipation. Recently, a phenomenological ap-
proach to the quantum theory of a harmonic oscillator
with Ohmic dissipation has been put forward by Grabert
et al. We show how previous calculations provide a mi-
croscopic basis for the results obtained in Ref. 6. Also we
consider the case of a different, non-Ohmic heat-bath cou-
pling.

In Sec. II, we present a microscopic Hamiltonian con-
taining a linear coupling to a heat bath formed of har-
monic oscillators, and calculate the exact frequency-
dependent susceptibility. In Sec. III, we evaluate the
dynamic correlation functions for two different types of
dissipative mechanisms. We consider in model A the case
of Ohmic dissipation regularized by a Drude cutoff and in
model B, a dissipative mechanism resulting from a cou-
pling similar to optical phonons. Our results are dis-
cussed in Sec. IV.

II. THE MODEL SYSTEM

The model consists of a particle of mass M, labeled by
position variable q and momentum p. The particle is
governed by the Hamiltonian first introduced by Ullers-
ma, it moves in a harmonic potential

2M 2
+ COoq (2.1)

The heat bath consists of an infinite number of harmonic
oscillators, the normal modes. The mass and the frequen-
cy of the nth heat-bath oscillator are rn„and co„, respec-
tively. The Hamiltonian which governs the heat bath is
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2
mn COn+

2 4n
n=1 mn

(2.2)
N

i X~(t) =i5(t) i—McooX«q(t) i—g A.„X~ q(t),Bt

where P„and m.„are the position and tnomentum coordi-
nates of the nth normal mode.

The particle is coupled to the heat bath by a term in the
Hamiltonian, which is both linear in the particle position
q and linear in the heat-bath normal coordinates P„

g A,„g„q. (2.3)
n=1

We also assume that the Poincare recurrence time of the
heat bath is much longer than any time scale of physical
interest. This is achieved by taking the number of normal
modes N to infinity.

The heat-bath coupling (2.3) introduces a negative shift
in the (squared) frequency of the oscillator

N
bco = —g A,„/Mm„co„

n=1

for frequencies co=coo which are much smaller than the
largest characteristic frequency of the heat bath co&. We
assume that b,to is finite, which corresponds to assuming
that the spectral density associated with the coupling to
the heat bath

g A,„/Mm„5(a) —co„)

i X~ q(t) = X q(t),. 8 l

Bt ~ m„

(2.7)

(2.8)

i X q(t) = i—m„co„Xp q(t) i A,„—X«q(t) . (2.9)

c0X«q(co) = Xpq(~) y (2.11)

coX~(co)=i iMr~—oX«q(t0) i g—A,„X~ «(co), (2.12)
n=1

cd~ «(to) = X q(~),
mn

cd~ q(c0) = —lltt~co~Xy q(co) —i A~X«q(co) .

(2.13)

(2.14)

From these, we find that the frequency-dependent suscep-
tibility is of the form

These equations form a closed set, and can be solved. We
define the frequency-dependent susceptibility by

00

X~ g(co) =f dt e' 'Xg ii(t) . (2.10)

Fourier transforming Eqs. (2.6)—(2.9) yield

n=1 X (a)) = — [co —F00 —II(co)] (2.15)

X„ii(t) =ie(t) ( [3(t),8(0)] )

from the equation of motion

(2.4)

i X~ ~(t) = —5(t)([A(t),8(0)] )
Bf

+et( )(t[[w(t),a(t)],B( )0] ) . (2.5)

Here and in the following we choose the units in which
%=1.

This represents the response function for the changes in
3 which occur when an external force I~, which couple
to B is introduced. The relationship between the change
in A, SA, and the driving force is'

5(A(t) ) =f X~ ~(t t')F&(t')dt' . —

The resulting set of coupled equations are

varies as a higher power of co, than co, for co~0. In con-
trast to Ref. 5, our model does not include a counter-term
canceling this induced frequency shift.

A general formula for the exact response function has
been given by Ullersma, in a series of four papers. We
firid it convenient to rederive his results, by recasting
them into the response function formalism, in order to
make direct comparison with the recent work (Refs.
5—11) easier.

%'e shall calculate the dynamic susceptibility' defined
by

in which the "self-energy" II(co) is given by
2

II(to) = g (co —co„)
1 Mmn

The imaginary part of II(co) is given by

N
Imll(co) = g Im2Mm„co„co—co

(2.16)

[5(co—to„)—5(co+to„)] .
1 2Mmn~n

(2.17)

5(~' —ro„)+5(co'+ co„)
CO

On taking the principal part integral (P) outside the sum-
mation, we find the Kramers-Kronig relation

ReII(co) = —f P, Imll(co'), (2.18)

The sign in Eq. (2.17) is determined by the causality con-
dition, i.e., that Xzz(~) is analytic in the upper half of the
complex co plane. We can express the real part of the
II(co) in terms of the imaginary part through the
Kramers-Kronig relation:

N
1Rell(co)= g P f d~'

1 2Mmn 6)—CO

i Xqq(t) = Xpq(t),Bt
(2.6)

Equations (2.15)—(2.18) represent the exact expression for
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the frequency-dependent response function in terms of the
microscopic parameters of the Hamiltonian. The above
results are also contained in the work of Ullersma, al-
though in a less transparent form. We note that ReII(co}
is finite at low values of co but vanishes at larger co, indi-
cating a different response occurring for low and high fre-
quencies.

The spontaneous fluctuations of the system are charac-
terized by the anticommutator correlation function

Sg g(t) = —,
' ( [A (t),8(0)]+) .

The Fourier transform of this, the spectral density

S~ ~(co)=I dte' 'Sz &(t),

(2.19)

is related to the imaginary part of the dynamic suscepti-
bility through the fluctuation-dissipation theorem. This
relation takes the form'

S~ ~(co)=[N(co)+ —,
' ]21mX~ ~(co), (2.20)

Sqq(t) =J e '"'Sqq(co)

coth cos cot
1 ~ dco r Pco

o

ImII(co)

[co —coo —Rell(co)] + [ImII(co)]

(2.21)

where we have used the property

ImXqq (co)= —ImXqq ( co)

In Sec. III, we shall investigate the consequences of
various models for the heat bath. Our procedure will be
to find ReII(co) for a given ImII(co) via Eq. (2.18). Then
we may examine the effects on Sqq(t) as expressed by Eq.'

(2.21).

III. SPECTRAL DENSITY
AND DYNAMIC CORRELATION FUNCTIONS

We shall examine the consequences of various models
of the thermal-reservoir coupling. The imaginary part of
the "self-energy" II(co) is related to the spectral density
J(co) introduced in Ref. 5 as follows:

ImII(co )= —sgnco
J(co)

M
(3.1)

A. Ohmic dissipation

For the case of Ohmic dissipation we consider the spec-
tral function suggested by Caldeira and Leggett,
J(co)=MI co/(1.+co /co~). The frequency co~ represents
the largest characteristic frequency of the thermal reser-

where N (co) is the Bose-Einstein distribution function

N(co}=(e~—1)

Hence, knowing Xqq(co) we can obtain the dynamic corre-
lation function from an inverse Fourier transform

voir. This frequency usually corresponds to the time
scales of microscopic processes in the heat bath. In this
case we obtain

ImII(co) = —I'co

ReII(co) = —I co~

2
COg

CO +kg
2

COg

CO +COg

(3.2a)

(3.2b)

g + ( coo —I cog )cl + I g =0 . (3.3)

The conditions under which this approximation holds has
been discussed extensively in Refs. 2 and 3. With II(co)
given in (3.2), the dynamical susceptibility Xqq(co), (2.15),
assumes the form

' —1=1 2 E CO67g I
Xqq(co) = (coo —I co~ ) —co—

COg —l M
(3.4)

which is identical to the response function of the
phenomenological Drude-regularized classical equation

l'

q+(coo —I cog)q+ I J dt'co~e j(t') =0 . (3.5)

Thus, this equivalence justifies the phenomenological ap-
proach put forward in Ref. 6 in which the regularization
(3.5) was utilized. Note, that the inclusion of a counter-
term for the frequency shift, in the Hamiltonian,
——,

' M(waco), where

(b,co) =—lim ReII(co)
GO —+0

= —I cog (3.6)

would yield the renormalized frequency (coo —I co~)—+coo
as implied in Ref. 6.

For the frequencies of physical interest, we find a mass
renormalization, given by

M =M 1 — [ReII(co)]

(3.7)

where the real part of II(co) has been obtained from the
Kramers-Kronig relation (2.18).

The class of ImII(co) which vanishes as co~0 like co,
represents an idealization of an Ohmic heat bath. First
we note that the coupling term (2.3) induces transitions
where a phonon is created or destroyed in the harmonic
oscillator simultaneously with the creation or destruction
of one phonon in the normal modes of the thermal reser-
voir. Of all the possible processes, only those which con-
serve energy will persist as real dissipation processes.
Since our heat bath has a finite density of normal modes
spanning a wide range of frequencies, our harmonic oscil-
lator can dissipate arbitrarily small amounts of energy as
coo tends to zero. The linearity of ImII(co) in co is required
in order that the system approximately satisfies an Ehren-
fest equation similar to the classical equation of a damped
oscillator:
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when co/coll « 1. Likewise, we find that the frequency of
the oscillator is shifted to the renormalized value coo given
by

For (COQ/Cos ) & I'/Coll we find that the roots all lie in the
lower half of the complex co plane. The approximate
poles are given by

2
0—rm8

CO 0=
1 —I /coll

(3.8)
CO1~ —l COg 1—

These results are similar to those found by Ullersma as
well as those implied in Refs. 5 and 7, apart from the
mass renormalization factors. Since our basic premise is
that of I /coll « 1 and coo/coll « 1, the mass renormaliza-
tion is a relatively unimportant effect at low frequencies.
However, the frequency shift can be of major conse-
quence. One implication is that I /Coll and (coo/Coll)
must be regarded as being of the same order of smallness.
At microscopic time scales, where co~co~, the real part
II(co) vanishes, and the system responds at the bare fre-
quency coo. The poles of Xqq(co) are most readily found
from consideration of (3.2). The analytic structure is
determined from the solutions of the cubic equation

CO3 —COg

COp

COp

2 1/2

1/2

i I
2 COg

i I
2 COg

(3.10b)

up to order (coo/Coll) and I /coll. As can be inferred from
Eqs. (3.3), (3.8), or (3.10), when (Coo/coll) & I'/coll the sys-
tem is unstable.

The static correlation functions Sqq(0) and Szz(0) can
be evaluated from integrals of the form (2.21), with the
aid of the identity'

F(co)=co ~icollco coo i—coll(c—oo I coll)—=0 .3 ~ 2 2 ~ 2

The roots co&, coz, and co3 must satisfy the equations

(3.9)

coth + . $1+
pco 7rl 277

l PCO

2'
CO1 +CO2+ CO3 = —l COg

2
CO1CO2+ CO1CO3+ CO2CO3 COO &

Colco2CO3 = l coll(coo —I Coll ) .

(3.10a)
(3.11)

in which g is the digamma function. Further, ImXqq(co)
can be expressed as partial fractions as

c)F(co)

i c)coo
2

2M „~, aF(~)
COn

c)F'(co )

BCO0
2

c)F*(co)

BCOn

CO —CO n

(3.12)

where F(co) is defined in Eq. (3.9) and co„and co*„are the roots and complex conjugate roots, respectively. Since
p(1+ipco/2') and p(1 i pco/2m ) —are, .respectively, analytic in the lower and upper half of the complex co plane, the in-
tegrals can be deformed to yield a contribution from the contours at infinity plus contributions from the poles at co„and
co„. The contours at infinity do not contribute to the integral, since Xqq(co) vanishes faster than co . Thus we find the
exact result

aF(~)
1 2 BCOO

Sqq(0) = +
2M P(coo —I"co~) mi „ l c)F(co)

COn

l PCon1+ 2' (3.13)

In deriving this expression, we have utilized the properties
of the roots con, namely,

1 ' 2 2 l pcoo
Sqq(0)= +—Imp 1+

2M~o ~o ~ 2~

CO1 = —CO1

CO2 = —CO3, (3.14)

1
coth

2MCO0
(3.15)

CO3 = —CO2 . as is expected for a simple Harmonic oscillator. Likewise,
we find Szz(0), since the equations of motion yield

The expression (3.13) is an exact result. In the limit
I ~0, we find that (3.13) simplifies to Xpp(0)=M co Xqq(0) . (3.16)
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The contours at infinity vanish again since ImII(co) decays as co ', hence, ImXqq(co) vanishes as co for larger co. The
net result is

BF(co)

M 2 c}coo

Bet)~

BF(co)

Bcoo

mi „," BF(co)
.Peon1+i (3.17)

which is a well-defined, real quantity. The first term in
the square brackets is just 2/P. We note that at high tem-
peratures, (3.13) and (3.17) simplify to give

tan-'[(~,'—I ~~)'"]
Sqq(0) = T +0 —(3.20)

Mm' (coo—I co~ )

Sqq(0) = AT
M (coo —I'co~ )

(3.18)
and

Szz(0) = (coo I cori—)' tan '[(coo—I co~)' ]
Sqq(0) =Mkti T . (3.19)

This result is somewhat unexpected since, at high tern-
peratures, a fair amount of thermal excitation should
occur in the microscopic models of the heat bath
(k~T &&cori). Since, the oscillator responds at these large
frequencies exactly as an undamped oscillator at frequen-
cy coo, one might expect that the spontaneous fluctuations
in Sqq(0) should occur at the unrenormalized microscopic
frequency instead of the renormalized frequency
co 0—cop I Q)g It is also surprising, in that at high tem-
peratures, the energy is not partitioned equally between
the momentum and. position degrees of freedom of the mi-
croscopic Hamiltonian (2.1). Of course, the discrepancy is
resolved after examining the energies of the coupling term
(2.3}and reapportioning its high-temperature contribution
between the bath and the oscillator. It is interesting to
note that the unrenormalized mass M appears in the
above expressions for Sqq(0} and S~~(0). In the expression
for Sqq(0), this can be understood as being due to the can-
cellation of the factor in (3.7) (the effective mass) with the
denominator of (3.8) (the renormalized frequency). In the
zero temperature limit we find

2
COg

0—I~a2 I COg (Q)p .2 (3.21)

B. Non-Ohmic dissipation

Thus far we have considered the behavior of the har-
monic oscillator which is coupled to a heat bath which
has several idealized features. Namely, that the spectral

The result for Sqq(0) is similar to that obtained in Refs. S,
6, and 9. The authors of Ref. 5 have shown that in the
absence of a finite co~, Szz(0) should diverge logarithmic-
ally. This divergence was regularized in Ref. 6 by use of a
phenomenological Drude model for the frequency-
dependent damping [see (3.5)].

We shall now address the long-time behavior of Sqq(t)
at T =0. Since the integrals are dominated by the low-
frequency behavior we find the asymptotic behavior

Sqq
(t)— r

m.M(coo —I co)i'

This is similar to the result of Grabert et al. In Figs. 1

and 2 we depict ImXqq(co) and the normalized Sqq(t), at
T =0.

cT o
CT

CO

CP

C3

CT

CT

FIG. 1. The imaginary part -of the frequency-dependent sus-

ceptibility for choice of ImH(co) given by Eq. (3.2a). We express
a11 quantities in terms of the dimensionless units co/co~, coo/co&,

and I /cog. We exhibit the case where coo/co~ ——0.5 and

I /co~ ——0. 1.

50
e&t

100

FIG. 2. Time dependence of Sqq(t). We have normalized it
to the initial value S«(0). Parameters are the same as in Fig. 1.
Temperature T is taken to be zero.
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density of the heat bath spans an extremely large frequen-
cy range which extends all the way down to co=0. This
has the consequence that no matter how small the charac-
teristic frequency of the oscillator cop is, energy can be dis-
sipated into the heat bath. This can be seen by examining
the transitions that are induced by the coupling term (2.3).
The transitions involve a change in the state of the har-
monic oscillator by one quantum number, and there is a
concomitant change in the quantum number of one nor-
mal mode of the heat bath .Those transitions which do
not conserve energy are only virtual transitions while
those that do conserve the energy of the entire system per-
sist as real processes that dissipate energy. The require-
ment that energy is conserved means that a single transi-
tion can only represent a real dissipative process if the
normal inodes of the thermal reservoir have a finite spec-
tral weight at the frequency cop.

We shall now examine the consequences when this ener-

gy matching condition is not met. This perhaps could

0, 02 Q cog +coD

A(CO COtt—), COD & ~CO CO&—
~

I
~B ~D

I
& I

~
I

—A (CO+CO~ ), COD &
~

CO+ COti )

0 ~
—( COg +COD ) )CO

(3.22)

where A (co) =(coD —co )' . The intrinsically new situa-
tion occurs when

~
cop —co&

~
&coD. We can evaluate the

real part of the self-energy from the Kramers-Kronig re-
lation (2.18) as

occur in some physical systems where the heat bath is
mainly comprised of optical phonons. ' The thermal
reservoir will be characterized by its average frequency coti
and its dispersion coD. The imaginary part of the self-
energy is given by

8 (CO+ COg ) —8 (CO —COg ), CO )COg +COD

8(cO+COti),
~

CO —CO~ ( &COD

R II( )+21 =1 8( + )+8( — ),
~ ~

(
~

8 (CO CO~ ), ),C—O+ COti [&COD'
8 (CO —COg ) —8 (CO+ COg ), CO+ COg (—COp

(3.23)

where 8(co)=(co —coD)'~. We note that ReII(co) van-
ishes as co~Do, which indicates that at such large fre-
quencies, the system will respond as an undamped oscilla-
tor of frequency cop. On the other hand as co~0, the os-.
cillator responds as an undamped oscillator of frequency
co, where

2 1/2

~~ —coa whenever

2 2 cOD
COp —(COg —COD ) (21 COg 1 — 1—

' 1/2

The spectrum will have a delta function at a frequency
gr'eater than coti+coD if the criterion

—2 — 2
co =cop —2I cog ' 1 — 1— (3.24) 2 2 COD

(COg+COD) —COp(2I COti 1+
COg

1/2

The magnitude of the frequency shift is of the same order
of magnitude as that of (3.8) considered previously. We
shall only consider the cases corresponding to a positive
value of co . A simple evaluation of ImX&q(co) yields con-
tinuous spectrum in the frequency ranges

~

CO —COg
~

(COD

and

is satisfied.
For a range of parameters, corresponding to large I

ICO+COa
I

&COD ~

In addition to these continua, there exists the possibility
of having discrete poles of frequencies outside this range,
given by the solutions of

co' —cop' ——ReII(co)

C3

CJ
&C

ImII(co) =0 . (3.25)
'

When co given by (3.24) is a positive quantity we find
that the spectrum has delta functions at frequencies less

FIG. 3. The imaginary part of the frequency-dependence sus-
ceptibility, for a non-Ohmic heat bath. We exhibit the case
where coo/co~ ——0.9, I /co~ ——9, and era/co~ ——0.2.
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$00 ZOO

FIG. 4. The time dependence of Sqq(t) for the non-Ohmic
heat bath coupling of Sec. IIIB. The correlation function is
normalized to its initial value Sqq(t =0). Parameters are
co0/co~ ——0.98, I /~& ——15, and ~D/~~ ——0.01. The zero tem-
perature limit is taken.

and small ctPD lt ls possible 'to sa'tlsfy both criteria leading
to a response function with poles both above and below
the band which corresponds to the spectral density of the
thermal reservoirs. This is depicted in Fig. 3. This limit
corresponds to the mixing of the various normal modes.
Since the dispersion of the heat-bath modes coD is small
we may consider this as an approximate form of a two-
oscillator system. The strong coupling between these two
oscillators causes the modes to hybridize and lift the near
degeneracy as in mode-crossing systems. The dynamics,
depicted in Fig. 4, therefore is representative of two un-
coupled harmonic oscillators.

IV. SUMMARY AND CONCLUSIONS

We have examined the exactly soluble model of a har-
monic oscillator coupled to a thermal reservoir. We have
calculated the response function in terms of the micro-
scopic parameters of the Hamiltonian. The characteristic
frequency of the oscillator is renormalized by the coupling
to the heat bath. The system responds to perturbations of
high frequencies in a manner similar to that of an un-
damped harmonic oscillator. While for external perturba-
tions of low frequency the. characteristic frequency is re-
normalized by the damping.

We have examined two archetypical models of heat
baths; one which resembles a thermal reservoir composed
of acoustic phonons. The other model bears more resem-
blance to a system of optic phonons.

In the case of a heat bath which has a spectral. density
which extends from co=0 up to a cutoff coll, we find that
the oscillator's frequency is renormalized from co0 to
co=(ai0 —I coll )' . Since coll is assumed to be greater than
co0, this reduction together with the restriction that 9 be
positive leads to the conclusion that I be small. This pro-
duces a very restrictive criterion required for the existence
of an overdamped limit. In the limit co~ —. +~, the over-
damped limit does not exist. The spontaneous fluctua-

tions in the position and momentum have been calculated.
At low temperatures, the zero-point fluctuations in the
displacement are smaller than the corresponding fluctua-
tions in the momentum, due to the presence of a term pro-
portional to the damping which is also logarithmically
dependent on the cutoff. This asymmetry is expected
simply because we have broken the symmetry of momen-
turn and displacement by introducing a coupling linear in
the displacement. At high temperatures, when one ex-
pects thermal fluctuations of high frequencies co-coll to
be present with considerable weight one might expect that,
since II(co) vanishes for these frequencies, the equiparti-
tion would involve the unrenormalized frequency coa. We
find that this is not the case. This implies that the
thermal average of the energy associated with the cou-
pling terms is exactly canceled by the counterterms con-
sidered by Caldeira and Leggett. ' '

In the case of a thermal reservoir which has a spectral
density similar to that of a system of optical phonons, the
response is drastically different. In particular the system
responds only to perturbations with frequencies which
occur in a narrow frequency range, that corresponds to
the spectrum of the thermal reservoir, together with iso-
lated frequencies. The maximum number of these discrete
frequencies is two. This extreme limit is that of a very
small dispersion in the modes of the thermal reservoir and
a large coupling (damping) constant. These two frequen-
cies occur as a result of the mode repulsion of the oscilla-
tor and the thermal reservoir, often found in quantum sys-'

tems. '6 The physics of this system essentially decouples
into that of two independent oscillators.

Previous work on this particular subject has used the
starting point of an Ehrenfest equation. Clearly the
Ehrenfest equation does exist for the total system. How-
ever, this equation, when contracted onto the single
relevant oscillator variable, is not of simple form, The
Ehrenfest equation (3.3) for the damped dynamics is not
exact, but only holds approximately in restricted regimes
of frequencies. In particular, the parameters that enter
the Ehrenfest equation should be regarded as being fre-
quency dependent, e.g., as in (3.5). A frequency-
dependent mass M and frequency boa should be used [cf.
Eqs. (3.7) and (3.8) for low frequencies].

During the final stage of preparation of our manuscript
we received a copy of unpublished work from'Haake and
Reibold' on a similar topic. They address the model ap-
propriate for a coupling to a bath of acoustic phonons.
Some of our formulas are identical in content with theirs.
In particular, they independently come to the same con-
clusion that an overdamped limit is precluded in this
model.

ACKNOW'LEDG MENT

The authors would like to thank H. Grabert, P.
Talkner, and A. Zangwill for many valuable discussions.
One of us (U.W. ) acknowledges the support of the
Deutsche Forschungsgemeinschaft.



RISEBOROUGH, HANGGI, AND WEISS 31

'On leave of absence from Institut fur Theoretische Physik,
Universitat Stuttgart, D-7000 Stuttgart 80, West Germany.

R. P. Feynman and F. L. Vernon, Ann. Phys. (N.Y.) 24, 118
(1963).

P. Ullersma, Physica (Utrecht) 32, 27 (1966); 32, 56 (1966); 32,
74 (1966); 32, 90 (1966).

G. W. Ford, M. Kac, and P. Mazur, J. Math. Phys. 6, 504
(1965).

4J. Schwinger, J. Math. Phys. 2, 407 (1961).
5A. O. Caldeira and A. J. Leggett, Ann. Phys. (N.Y.) 149, 374

(1983).
H. Grabert, U. Weiss, and P. Talkner, Z. Phys. B 55, 87 (1984).

7A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211
(1981).

A. Widorn and T. D. Clarke, Phys. Rev. Lett. 48, 63 (1982).

9A. Schmid, J. Low-Temp. Phys. 49, 609 (1982).
A. J. Bray and M. A. Moore, Phys. Rev. Lett. 49, 1545 (1982).
U. Weiss, P. Riseborough, P. Hanggi, and H. Grabert, Phys.
Lett. 104A, 10 (1984); U. Weiss, P. Hanggi, and P. S. Risebor-
ough (unpublished).

I~R. Kubo, Rep. Prog. Phys. 29, 255 (1966).
~~H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).
~~Handbook of Mathematical Functions, edited by M.

Abramowitz and I. A. Stegun (Dover, New York, 1972), p.
259.

~5P. S. Riseborough, Phys. Status Solidi B 117, 381 (1983).
~~P. S. Riseborough and G. F. Reiter, Phys. Rev. B 27, 1844

(1983).
F. Haake and R. Reibold (unpublished).


