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Noise-driven self-excited oscillators in their quasisinusoidal regime are treated within a
functional-integral approach. The zero modes are eliminated from the generating functional with a
change of variables to collective coordinates. The van der Fol oscillator is analyzed as a prototype
of such systems. The main generating functional is introduced, taking from the Lagrangian the
nonfluctuating terms and linearizing the resulting integral in the neighborhood of the limit-cycle
solution of the oscillator. By functional differentiation the response and correlation functions asso-
ciated with the problem are calculated from the main generating functional. Some well-established

properties of these noise-driven oscillators are easily recovered with this method.

I. INTRODUCTION

Self-excited oscillators were introduced in physics a
century ago by Lord Rayleigh, who first analyzed an au-
tonomous nonlinear oscillator possessing a limit-cycle
solution. ' Studies concerning the existence of periodic
solutions to nonlinear equations were pioneered by Poin-
care, I iapounov, and Bendixon. These equations regained
new attention after van der Pol's work on triode genera-
tors, where an equation closely related to Rayleigh's was
derived. Autonomous nonlinear systems driven by noise
have recently been used as models of many chemical, bio-
logical, and engineering systems. Also their value as toy
models in quantum-field theory has been stressed.

When the external noise source is a Gaussian whit@-

noise, one is faced with a Langevin equation defining a
continuous Markovian process. This stochastic process is
completely described by the transition probability density
P(x, t;xo, to) of finding the system at position x at time t
if it was known to be at xo at an earlier time to. This
transition probability density can be expressed as a path
integral over all possible trajectories which bring the sys-
tem from (xo, to) to (x, t). In the present paper the gen-
erating functional of correlation and response functions
for the statistical stationary state of such systems is inves-
tigated in some detail. Procedures to evaluate this gen-
erating functional for general Markovian systems involve
standard perturbation schemes. However, if one attempts
to use a naive perturbation approach, the presence of limit
cycles easily leads to problems, the origin of which is the
presence of a zero mode that arises because of the break-
down of time-translation invariance. In fact, the free-
oscillating system is invariant under time translations (ac-
tually this is the very definition of an autonomous sys-
tem), but when a limit cycle is present the solution is no
longer time-translation invariant. This is because the os-
cillating solution of the unperturbed oscillator is not
unique: There are infinitely many solutions differing in
the initial phase. Under the noise action the system can
freely pass from one solution to another without energy
expediture. This situation is analogous to that arising in

II. PATH-INTEGRAL REPRESENTATION
OF THE GENERATING FUNCTIONAL

Self-sustained oscillators are described by equations of
the form

x+g(x,x)+x =0, (2.1)

where the nonlinear function g (x,x) has the property that
in the absence of external sources stable vibrations occur.
Although the treatment of this section is general and can
be applied to any self-oscillating system obeying an equa-
tion of the type (2.1), in order to fix ideas we will concen-
trate on quasisinusoidal oscillators that when driven by
white noise are governed by the stochastic equation

x+ef (x,x)+x =g(t)

with

(2.2)

phase transitions, i.e., the symmetry is spontaneously bro-
ken and the system selects one of the admissible solutions.
Nevertheless there may exist a continuum of admissible
states to which the system may pass without doing work.
Any naive attempt to evaluate the Green's functions of
the theory does not properly handle such a zero mode and
leads to incorrect results in some order of the loop expan-
sion.

This zero mode must be extracted before developing the
perturbation expansion. Our purpose here is to show that
this goal can be achieved by generalizing a method previ-
ously developed for the treatment of the Poincare model 7.
The technique, which we present in Sec. II, consists of
performing an appropriate change of variables to a set of
"collective coordinates, " thus leading to a separation of
the zero mode from the other dynamical degrees of free-
dom. Details of the computation are outlined in Sec. III,
where it is shown that it is possible to carry out a sys-
tematic and consistent treatment of the generating func-
tional. By using this functional, earlier results are
recovered in a direct way, such as that described in Sec.
IV. Our results are summarized and commented upon in
Sec. V.
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(2.3)

f(x,x)=(x —1)x . (2.5)

It will undergo limit-cycle oscillations far e~ 0. The case
e &0, when the only stable stationary solution is the quies-

I

where o is a measure of the noise strength and

( e( ((1.
In particular, the van der Pol oscillator which we will use
as an example is obtained for

X= —g (2.6)

and to compute the transition probability function
P(x,y, t;xp,yp, tp) whose path-integral representation can
be found to be '

cent one (x =x=0), has already been studied with suc-'
cess, but when the same technique used for the quiescent
regime is applied to the oscillating case, divergences ap-
pear in the perturbation expansion terms. We wiB next
identify the origin of this divergence showing that it is a
comman feature of self-oscillating systems and also show
a way of eliminating them.

The standard approach to this sort of stochastic prob-
lems is to set

t
P (x,y, t;xp,y p rp) = JDx Dy DP„DP~exP

to

2

py +ip„(x+y)+ipse {y ef (x, ——y) —x ) (2.7)

where the functional integral is taken between the limits x(tp)=xp. y(rp)=yp and x(i)=x, y(t)=y.
The generating functional for the response and correlation functions in the stationary state is defined as

Z(Q»Q»U»U&)= llill J dxpdypP&(xp~yp~r xp~~yp~rp)t~ aa
(2.8)

where P, is defined similar to P with the addition of nonrandom sources for coordinates and momenta so that the La-
grangian in Eq. (2.7) will now read

2

p +i/„(x+y)+ipy(y Eg (xy —y—)—x )+iu„x +iuyy +iv„p„+iUypy . (2.9)

As we already mentioned, a perturbation expansion
based on this approach fails since the individual terms in
the series diverge. It was already noted that these diver-
gences originate in the presence of a zero mode, which
was not made explicit by the previous analysis. ' The
source of this mode was traced back to the existence of an
arbitrary phase in quasisinusoidal self-sustained oscilla-
tions. We intend now to make a systematic analysis of
this problem, reconsidering the quasisinusoidal case for
simplicity, but at the same time pointing out the generali-
ty of the problem.

For small values of the nonlinearity parameter e, limit
cycles (LC) will be circlelike

steady-state solution reduces to a point in the phase plane
and P disappears in the limit t~ oo. In the oscillating re-
gime this integration constant defines a whole family of
solutions of the differential equation, each of them differ-
ing in its initial "phase. " The problem is now analogous
to that presented in quantum theory of collective
motions, the phase P being the collective variable. In or-
der to isolate this internal coordinate responsible far the
zero mode we give to the phase the status of a tiine-
dependent dynamical variable and aHow for fluctuations
about the cycle. Going back to the quasisinusoidal case
we fulfill these two requirements by defining new coordi-
nates r(t) and P(t) through

x«(r) =r cos(r+y)+O(e) . {2.10) x (r) =r {r)cos[r+P(&)] . (2.11)

The particular equation under consideration determines
the amplitude r (for the van der Pol case we will have
r =2). The phase P remains the only arbitrary integration
constant. The other constant disappears after the tran-
sient regime dies out. This feature is common to every
self-oscillating system. The simple geometrical meaning
that can be assigned to this constant explains by itself why
this must be so: Different points on the limit cycle can be
labeled by a single variable, but since the cycle is a closed
continuous curve this variable must appear as an argu-
ment of a periodic function in order to ensure that after
traversing the whole cycle one returns to the starting
point, closing the curve. The remaining constant fixes the
departure point for traversing the cycle. In the quiescent
regime this constant is meaningless since the only stable

This duplicates the number of degrees of freedom In or-.
der to restore them to 1 a fixing condition must be im-
posed. We chase for this purpose the condition that is ob-
tained by taking the time derivative of the limit-cycle
solution and then replacing t and P by r (t) and P(t)

x(t)= —r(t)sin[i+/(t)] . (2.12)

r'(t)cos[t +P(t)]+r (t)P(t)sin[t +P(t)]=0 . (2.13)

Equations (2.11) and (2.12) are similar to those used in the
Bogoliubov-Krilov method for treating quasisinusoidal os-
ciHations, but this similitude is circumstantial and may

Equations (2.11) and (2.12) implicitly define a constraint
equation between r (t) and P(t)
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be misleading. It is not a mere change from rectangular
(x,y) to polar (r,P) coordinates. We could have chosen
another way to account for fluctuations about the cycle,
for instance,

x(t)=r cos[t+P(t)]+ri(t), (2.14)

with constant r, and g(t) measuring the fluctuations about

the cycle. In this case the similitude disappears. If the
oscillator limit cycle is not circle1ike, polar coordinates
may not even be well suited for describing it in the phase
plane as it is the case for strong relaxing oscillators.

Shifting now from the original coordinates to the new
set of collective coordinates, the transition probability
function becomes

P(r, g, r;rp, Pp, tp)= f Dr DJDp„Dp~exp i f, dr[p(r)r'(r)+p&(r)P(r) h(p„—(w),p&(w), r(w), P(r), r)]

where the limits of the path integral are now r (tp) = rp P(tp) =Pp and r (t) =r, P(t) =P, and with

2 2 2

h (p„p&,r, P, t) =i p„sin /+i cos g+io p„cosg sing
.O 2. 2 .O- Py 2 . 2 Py

2 2 r r

(2.15)

o cos pt 2 eos sill+p„ef(r cosg, rsinlt —)sing+ + Ef(r cosg, rsinp)co—sg —o.2
I 2 r r r

(2.16)

g(t) =t +p(t) (2.17)

Z(j,J,k„,k~)= g lim f rpdrpdppP, (rp, pp+2n~, t;rp, pp, tp)
n= —co to~ —ce

(2.18)

with

h, (p„,p~, r, p, t) =h (p„p&,r, p, t)+jr+ Jp+k„p, +k~ Py
r

(2.19)

Since P is a cyclic variable, the condition of returning to the starting point contained in the definition of the generating
functional can be achieved, ending not only at Pp but also at Pp+2n~, where n =0,+1,+2, . . . .

I

III. MAIN GENERATING FUNCTIONAL
FOR SELF-SUSTAINED OSCILLATORS
IN THE QUASISINUSQIDAL REGIME

t7I, =Ip+el. ,+ --I.
20' (3.1)

with

Lp p„r +p~p+j r +Jp+——k„p„+k~
Py

L,= p,f (r cosP, rsing)—sin@—

f(r cosP, —r sing)cosf,Py
r

(3.2)

L & i p, si Pn+—— cosP p, —Py cos f
CT r r

2 py cosg sing
r r

The Lagrangian in Eqs. (2.15)—(2.19) can be separated
into three groups,

where I.o corresponds to the harmonic oscillator part,
Lp+eL, to the self-sustained oscillator, and L 2 to the
corrections introduced by the external noise source.

It would be desirable to compute a nonperturbed gen-
erating functional for the self-sustained oscillator
( Lp+eL, ) and to obtain perturbatively the corrections in-
troduced by the noise terms. This however is not possible
because the presence of sine and cosine terms precludes a
closed computation of such a functional. Since we are
treating here the particular case of quasisinusoidal oscilla-
tions (small e), we try another arrangement of the terms in
Eq. (3.1) and for this purpose we write

L =Lp+L
& cosP+L & sing

+L zcos2$+L zsin2$+ (3.3)

where we have grouped the terms according to their angu-
lar contributions. This grouping is suggested by analyti-
cal mechanics perturbation theory, ~here techniques have
been devised for eliminating in a systematic way the oscil-
lating terms through the use of successive canonical
transformations. ' Our first task will be to rewrite the
generating functional as
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Z(j,J,k„,k~) = g f Dr DQDp„Dp~exp f — p„— +ip&p4 ' 4 p2

+ lP» f' — I'—
2 4

+ij r +iJp+i k„p„+ikg e
4r r

(3.4)

where V contains the oscillating part of expansion (3.3). We shall call Eq. (3.4) with V=0 the "main generating func-
tional Zo."

Once the main generating functional has been found, higher orders in V can be computed, for instance,

Z(j,J,k„,k&) = Zo(j, J, k„k~)(exp V)o

=Z p[( V)o ——,
' (( V')o —( V)'o)+ ], (3.5)

where the mean values are computed with respect to Zo. Examples of computation with this sort of nonpolynomial La-
grangians will be given in Sec. IV. In this way higher-order corrections to Z can be found systematically. Although the
convergence of the cumulant expansion (3.5) is not guaranteed, no troubles such as divergences of secular terms will ap-
pear in the expansion.

We shall carry out the computation of the main generating functional in several stages. First we shall compute the in-
tegral over P and p~ since they can be carried out exactly using the discretized expression for the path integral. After a
straightforward calculation we find

r

Z(j J,k„,k&)=5 f J g f DrDp exp f — p +ik~" — "+z
n =—0O

r
+i@» r ——r—» +ijr+ik,p, ~,

4r
(3 6)

where

(3.8)

IC(t)= f J(r)dr . (3.7)

The generating functional Zo will be zero unless the sources J satisfy the condition fJ=0. Since we will need only
point sources the sum of their intensities must vanish.

The remaining integral is not Gaussian. For small o the main contribution to the integral comes from trajectories
close to the equilibrium solution ro of

r 0r= —r — +
2 4 4r'

which is found to be

ro ——4+ +O(o ) .
26'

(3.9)

Furthermore in the limit cycle only the term n =0 survives in Eq. (3.6). We shall follow the usual technique and develop
the integrand around the equilibrium solution ro. Setting

P= r —ro

and retaining only linear terms in the expansion, we obtain

(3.10)

00 O2
Zoj(,J,k„k~)=5 f J exp f k~K exp —

z f K exp iro f j00 TO
—oo 4p 2 —oo 00

X Dp Dp»exp
2 2

p, +ip, (p+bp)+tp, k„+p tj —
z k&K+ ~

K
~o 2To

(3.1 1)
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where

2
E 3rp ob=—
2 4 4r02

(3.12)

The functional integral in Eq (3..1) is Gaussian in char-
acter and therefore its dependence on the sources can easi-
ly be worked out. Thus we write it as

P=P+P0 ~

Pr =Br+8,o ~

(3.16)

the values of po and p, are obtained by solving the system
of equations which result from equating to zero the func-
tional derivatives of the terms in the exponent with
respect to p and p„,

Dp Dp, exp
2

PP +'P I'LL(P)+k j
iL (po)+ik, ,—cr—p,=O,

(3.17)

r

2

+P ij —
2 k~E+ 3 Kl 0'

4rp

(3.13)

2
tLt(p 0)+ ij+ 3K — 2k~K =0,

2rp rp

where Lt is the adjoint of L. Equations (3.17) are easily
solved and finally we obtain for po and p 0 the following
expressions in terms of the sources:

The linear operator L (p) defined by,

L(p) =p+bp
with

lim p(t)=0 when o =0,
fence

has the following Green's function

(3.14)

2

p o= j+
2rp r0

2 ~

po
———G(k, )+ —,o GG ij+ 3K 2k~K-

2r0 rp

where G is the adjoint of G and

(3.18)

G (t —t') =exp[ b(t —t') ]—B(t t'), — (3.15) GGt= f G(t, ~)G(~, t')d~=b(t, t')

where B is the Heaviside's unit step function. Now the
procedure to follow is standard and consists in making a
shift of variables so as to cancel the linear terms in the ex-
ponential. function. Setting

exp( b~ t t'
~

—)—
2b

The resulting expression is then

(3.19)

2 r

Zo(j,J,k„k~)=5 f J exp —
2 f K exp

' f k~K exp iro f j
OO 4rp rp —co 00

Q exp
Oc2 QQ

Q(t )iG(t it )zk(t )ztditd iexp f Q(ti)b(ti, t2)Q(t2)dtidtz (3.20)

where

2

Q(t) =ij(t)+, K'(t) —,k&(t)K(t) .
2rp rp

(3.21)

I

generating functional.
We will first calculate the response function of the sys-

tem. In terms of the quantities defined in Sec. III we can
write

This is one of our principal results. This main generat-
ing functional can be used to obtain rather general proper-
ties of quasisinusoidal self-sustained oscillators in the vi-
cinities of their limit-cycle solution. We worked out the
van der Pol case, but for any other quasisinusoidal oscilla-
tor described by Eq. (2.2) we should obtain the same re-
sult, just replacing the constants b and rp by their ap-
propriate values. In Sec. IV we shall use Eq. (3.21) to
compute mean values and probability functions of the
relevant parameters of the problem.

IV. RESPONSE, CORRELATION, AND
PROBABILITY DENSITY FUNCTIONS

Let us now show how several statistical properties of
the system can be computed with the help of the main

I

tt(t t')=t(tccstt p,'sictp+, c—cstY ).r' (4.1)

This is a common example of computation with this kind
of nonpolynomial Lagrangians. Mean values of expres-
sions containing trigonometric functions are to be evaluat-
ed. In order to obtain a meaningful result the whole series
defining this function must be summed. This infinite
series evaluation, which is cha'racteristic of nonpolynomial
Lagrangians, " can be done with the help of a pointlike
source J. This simple example will be indicative of the
way the cumulant expansion (3.5), where similar mean
values are involved, must be undertaken. One can expand
Eq. (4.1) and simplify it using the restriction fJ=0.
The resulting expression is



468 EPELE, FANCHIOTTI, SPINA, AND VUCETICH 31

R(r —r ) '=——' irp'e'e'e '&)e'" ''+ '&rp'—e '&e'&)e '" ''+ —
(r e'&e '&le'"r'

—ip ip' —i(,t —t')r, e e e
4 r'

The mean values can be computed using the main generating functional

5'Z,'(J =5(t r) —5(t—' r))—.„,,
5'Z,'(J = 5(—t —r)+5(t' —~))

4 5j (t)5k„(t') 5j (t)5k„(t')

(4.2)

5 Zo(J =5(t r) —5(t—' ~))—,.(, , )

5j(t) 5k&(t')

5 Zo(J = —5(t r)+—5(t' r))—,.i, , )-i(t -r')
5j (t)5k&(t') j=k =k~ ——0

(4.3)

The computations are straightforward and keeping terms up to order cr one obtains for the derivatives

5'Z,'(J=+5(t —~)+5(t' —~) )

5j (t)5k, (t ') j=k =k~ ——0

2

i G—(t t')+ —
z I 1 —exp[ b(t ——t')]IB(t t') Z—o(J=+5(t r)+5(t' —r)j =k, =—k~ 0),——

2ro2&

(4 4)

5'Zo(J =+5(t r)+5(t' r)—)—
5j(t) 5k~(t') j=k =kg ——0

2

g (t') 1 — b( , t't) Zo(J =+5(t g)+5(t' w)j—=k, =k—
~

——0),
2ro

(4.5)

with

2

Zo(J=+5(t r)+5(t' r—)j =k„=—k~ ——o)=exp
4ro

(4.6)

In the prepoint discretization we find,

(4.7)

putting together all these results we obtain for the response function the following expression:

2 2

&0(t —t')= —,'sin(t —t')exp —
~ (t —t') B(t t') &+exp[ —b(t ——t')]+

~ I 1 —
& exp[ —b(t —t')]I

4r2 2r2ob
(4.8)

I.et us calculate now the correlation function of the oscillator. In polar coordinates and in terms of the generating
functional previously defined, the correlation function takes the form

C (t, t') = (r cosg r' cosf')

4
((rrrei4'p —iP')ei (i t')+ (rrrp iPiriP'—)p i(—t t ))— —'

j=k„=k~——0

Using the main generating functional for the evaluation of the derivatives we obtain,

5 Z(J =5(t —r) —5(t' r));(, , ) 5 Z(J= 5—(t r)+5(t—' r));(, , )— —
e —l t —f

5j (t)5j (t') 5j (t)5j (t') (4.9)

Co(t, t')= —,
' ra+ b(t, t') e'" ' 'exp

2

2

, ~t t'~ + ra+ b, (t, t') —e '"-''exp

O
2

1+ z exp( b( t —t'
(
)—

4ro2b

2= —,rocos(t —t')exp —
z ~

t t'~—
4r0

(4.10)
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This result shows the well-known phenomenon of line broadening in nonlinear oscillators in the presence of noise. '

As a final check let us calculate some of the probability densities associated with our problem. According to the defi-
nition of generating functional, we have

Zo(j,J)= f DrDpexp i f (jr+Jp) p(r(t), p(t))

g2 00 00 g~ 00

=exp iro f j exp — f j(ti)6(ti, t2)j(t2) 5 f J exp —
2 f E2

—00 4 00 4P 02
—oo

(4.11)

where we wrote the generating functional as the functional Fourier transform of the density functional. For the main
generating functional Eq. (4.11) can be factored into

00 0O g~ 00

Dr exp i jr P I' t =exp ir0 j exp — j t& 6 t&, tz j t2 (4.12)

and

2

D exp i J P t = J exp —
2 E (4.13)

The functional densities are obtained inverting the preceding transformations,

p(r(t))= f Dj exp i f—jr exp iro f j exp
g 00 j tI ti &2 j &2 (4.14)

P($(t))= f DJexp i f JP 5—f J
2

Xexp —, K2
4~02

(4.15)

Rather than in the density functional, we are interested
in the density function, namely that r (t) takes the value r
at a given arbitrary time t. This density function is given
by

p (r) = f Dr 5(r (t) r)P(r (t) ) . — (4.16)

2b
g' m'

2b (r —ro)
g 2

(4.17)p(r)= exp

The calculation is done using the Fourier decomposition
of the 5 function. All the integrals are Gaussian and can
be computed easily leading us to the result

1/2

We find here a well-known characteristic of the probabili-
ty density for the radial coordinate: The shift towards in-
creasing values of the radius of the distribution maximum
with increasing noise strength and the simultaneous
spreading of the distribution curve. '~

In an analogous way we obtain

p(P)= f D$5(P(t) —P)P(P(t))=(2~) ' (4.18)

P(P(t),P(0))=2(2~) '"(~'t) '"

Xexp —,[p(t) —p(0)]'
g. t

(4.19)

for the'density function of the phase. This result shows
another well-known phenomenon: the Brownian phase
diffusion. ' '

As a more complicated example, the density function
for the x coordinate is found from our previous results as

p (x)= f dr d P 5(r cosg —x)p (r,P)
' 1/2

2b
z

(2m') f dr dg(dA j2m )exp[i'(r cosg —x)]exp —
z (r ro)—2b

g & 0
(4.20)

Using the Bessel function expansion'

exp(iver cosf)= g ikJk(gr)e'"&

(only the term k =0 will survive when integrating over
the phase), Eq. (4.20) can be put in the form

p(x)=n ' f dr(r x)—00

g S' (xl

2b
Xexp — (r —ro)

gI 2

(4.22)
Since the density function of an harmonic oscillator is
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proportional to (rc x—) '~, we see that Eq. (4.22) can
be interpreted as a Gaussian fluctuation around the har-
monic motion.

V. CONCLUSIONS

As we have pointed out, naive attempts to evaluate the
Green s functions of self-sustained oscillating systems fail
in the loop expansion due to the presence of a zero mode
which must be extracted. We focused our attention on os-
cillators governed by an equation of the form (2.2), but as
we already mentioned this is not a major restriction. A
complication arises from the fact that limit-cycle solu-
tions are not generally known in closed form but as an ex-
pansion in the nonlinearity parameter e and so a two-
parameter expansion must be undertaken. As far as the
zero mode is concerned its appearance does not depend on
whether one has a closed expression for the cycle or a
series expansion. Self-sustained oscillators, being
described by a second-order differential equation, possess
in their solution two integration constants. What charac-
terizes this type of oscillators is that when the steady-state
regime is reached one of these constants still remains (as a
phaselike term in periodic functions), regardless of the
analytical expression for the limit cycle. The other con-
stant vanishes. It is precisely the former one (that which
fixes the departure point for traversing the cycle), the col-
lective variable that generates a whole family of steady-
state solutions and that is responsible for the zero mode.
The technique we employed for isolating this mode is
quite general and can be applied to any self-sustained os-
cillator. We restore the possibility of transversal displace-
ments to the cycle, make the remaining constant a new
coordinate in the problem, and impose a fixing condition
in order to restore to one the number of degrees of free-

dom. Although the remaining developments are not im-
mediate they will be free from divergences originating in
this zero mode.

The resulting generating functional Z has a complicat-
ed structure because the Lagrangian is nonpolynomic. In
order to extract an unperturbed generating functional we
take the nonoscillating part of the Lagrangian and form
with it the main generating functional Zo whose angular
part can be computed exactly. The resulting integral for
the radial part cannot be computed in closed form. Since
for small oz the main contribution to this integral comes
from the stable solution of the nonoscillating radial equa-
tion, we expand the integrand around this solution and re-
tain only the linear terms.

As we have seen, simple first-order calculations em-
ploying this technique reveal that we can regain an
amount of well established results that characterize this
type of oscillators in the quasiharmonic regime. For the
radial probability distribution is obtained a Gaussian ap-
proximation which shows the outstanding characteristics
of the exact one corresponding to the nonoscillating equa-
tions. A more precise approximation to this probability
distribution would require an expansion of the nonlinear
terms contained in the Lagrangian of Zc. For corrections
introduced at higher frequencies the fluctuating terms
contained in V will have to be taken into account.
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