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A new method is presented for solving the space-independent Boltzmann-Enskog equation
describing the motions of a heavy tagged particle (A) in the medium of light bath particles (B). It is
shown how in the case of inverse-power-law repulsive interactions the transport equation can be
transformed into a set of partial differential equations which are then solved successively to give the
conditional average of an arbitrary physical quantity as a power series in the mass ratio
0 =m~ l(mz +m&). The method is explicitly developed to first order in 0,which shows the ef-

fects of fluctuations, and in the linear noise approximation the time-dependent distribution function
itself is obtained. The velocity autocorrelation function of a tagged particle is evaluated to order
Q where one finds corrections to a single exponential decay.

I. INTRODUCTION
Fluctuations in a many-body system can be described

by transport equations of which the linearized
Boltzmann-Enskog equation is a well-known member. '
In such a description the effects of interparticle collisions
are treated in terms of a collision kernel whose explicit
form depends on the interaction potential specified for the
particles. The complexity of analyzing the transport
equation largely depends on the complexity of the kernel.

There has been considerable interest in using transport
equations to study equilibrium fluctuations. Time corre-
lation functions describing the dynam. ical properties of a
system in thermal equilibrium can be calculated as certain
initial-value solutions. Nonequilibrium fluctuations can
be studied even more naturally, since they are given by
solutions which are not averaged over an initial equilibri-
um distribution. In either problem the difficulty of ob-

taining solutions generally lies in the analysis of the col-
lision kernel, and approximations developed for one type
of calculation often are applicable as well to the other.

The use of the linearized Boltzmann-Enskog equation
to study equilibrium fluctuations has been carried out
most extensively in the case of a hard-sphere interac-
tion. ' With the possible exception of the Maxwell in-
teraction (repulsive force cc 1/r ), there exists little discus-
sion of direct solutions of the transport equation for con-
tinuous potentials. The method of kinetic models has
been found to be quite effective in calculating time corre-
lation functions; however, it does not appear to be suit-
able for the study of nonequilibrium fluctuations.

In this work we consider the Boltzmann-Enskog equa-
tion description of the motions of a heavy tagged particle
moving in a medium of light bath particles. We develop a
method of solving the transport equation in the spatially
uniform case for inverse power repulsive interactions be-
tween the tagged and bath particles. This method, which
involves an expansion in a mass ratio parameter, allows
one to investigate the explicit effects of an interaction po-
tential, in contrast to other methods of describing tagged-

particle motions, such as the Fokker-Planck or the
Langevin equation, which involve phenomenological con-
stants like the friction coefficients.

It is well known that the Boltzmann-Enskog equation,
regarded as a special case of a master equation, has two
equivalent forms, called the forward and backward forms
of the master equation. ' Van Kampen and later Kubo
et al. ' have used the forward form to derive a Fokker-
Planck equation with time-dependent mean and variance.
The backward form has been used to calculate arbitrary
conditional averages in powers of a mass ratio parame-
ter. '" This analysis is applicable whenever the transition
probability W(x —+x') is only a function of scalar quanti-
ties x and x'. In this paper we, generalize the method to
the case where the transition probability W(v~v') is

only a function of the tagged-particle speeds u, u' and the

angle between v and v'.
In Sec. II we begin with the backward form of the

Boltzmann-Enskog equation and derive a system of par-
tial differential equations whose solutions are the coeffi-
cients of expansion of an arbitrary conditional average in
powers of m~/(m~+m~), where m~ and m~ are the
masses of the tagged and bath particles, respectively. The
equations can be solved successively with each equation
depending on the solution to the preceding equation, and
in place of W the equations involve only certain moments
of W which are still velocity dependent. In Sec. III the
first two members of the system of equations are
analyzed. We show that the first equation describes only
the macroscopic motion with no fluctuations. The second
equation gives a correction to the macroscopic motion,
fluctuations are now expressed in terms of a covariance
matrix. We also show that in the linear noise approxima-
tion the distribution function can be explicitly determined.
Section IV presents an analysis of the transition probabili-

ty where for inverse-power-law repulsive interactions W is
shown to have the desired property mentioned above.
Another result is that all the moments of W appearing in
the system of differential equations can be expressed in
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terms of confluent hypergeometric functions. In Sec. V
we study the velocity autoeorrelation function as an exam-
ple of calculation of equilibrium fluctuations. It is found
that the correlation function does not follow a single ex-
ponential decay. A number of concluding remarks are
given in Sec. VI.

II. METHOD FOR SOLVING
THE BOLTZMANN-ENSKOG

TRANSPORT EQUATION

%'e consider a tagged particle mass m z and diameter
o z, moving in the field of bath particles, mass ms and di-
ameter o.z . The system is assumed to be spatially uni-
form. Let h(vt

~
vo) be the conditional probability that

particle 3 has velocity v at time t given that at t=0 its
velocity was vp. If the density of .bath particles 8 is not
too high, then h (vt

~
vp) satisfies the Boltzmann-Enskog

equation '

with (2.6) as the initial condition.
Our approach to the solution of (2.7) is to consider the

expansion of X( vo, t) in powers of the mass ratio

Q 1 mg
(2.8)

mg +Nip

Wn( vp —+ v i) =F(Q)Q W[ vp, Q( vp —v i)], (2.9)

where on the right-hand side (rhs) of (2.9) the dependence
on 0 appears explicitly. This will be shown in Sec. IV
where an expression for F(Q) is given.

If we now expand X(v i, t) in the integrand of (2.7} into a
Taylor series about v, = vp, the dependence of (2.7) on the
parameter 0 then appears explicitly,

We first make use of the fact that for all purely repulsive
interaction potentials the transition probability 8' can be
written in the form

dh(vt vp)
+Pn(v)h (vt

i vp)

~X volt ~ F(Q) 1 L(k)X( )
Bt Q" k! (2.10)

=fd u i Wn( v i~v )h ( v (t
~

vp) (2.1) where the Q-independent differential operator L'"' is de-
fined by

with initial condition

h(vt=Oi vo)=5(v —vp) .

' k
L' '—:fd y W[v, y] y.

Bvp
(2.1 1)

In (2.1) Wn(vp~vi) is the transition probability per
unit time that particle A will change in velocity vp to v ~

upon collision with particle B, and

P„(v,) =fd'u, W„(v, v, ) (2.3)

is the collision frequency. Here Wn and Pn are space
and time independent; the subscript 0 denotes an explicit
dependence on the mass ratio (see Sec. IV).

In the terminology of Markov processes, ' ' (2.1) can
be regarded as the forward master equation for the time
distribution function h(vt

~
vp). It is well known that

there exists a corresponding backward master equation of
the form

Bh(vt
i

vp)
+Pn(vp)h(vt

~
vo)

F(Q)
0 (2.12)

X(Vp t)=X(vp ~) ~ (2.13)

We will henceforth suppress the tilde. With the aid of Eq.
(A7) we then obtain instead of (2.10)

aX(-., } (}
~(,o(uo) a' X(vp &)

Bvp

It should be noted that the integration with respect to y
can be carried out analytically if one introduces the jump
moments a„,k(up) [see (A7}—(A9)]. Equation (2.10) can
be simplified further by introducing a new time scale

X(vp, t)=(f(v)
~

vp&,

—=fd u f(v)h(vt
i
vp),

where

(2.5)

X(vp, t=O)=f(vp) . (2.6)

Using (2.4) one can therefore calculate X( vo, t) by solving

BX(Vp, t)
+Pn(vo)X(vo, t)

Bt

=fd3u, Wn(vp +vi)X(vi, t) —(2.7)

=fd'u, Wn( vp~ v ()h ( vt (
v i) . (2.4)

Notice that the loss term is written as Pn(vo)h(vt
~

vo).
One is usually interested in the time-dependent condition-
al average

,
L "()(Xv ~o), (2.14)~k —1 kt

BX(vp, r)
O'T

a—A( p(up) a X( vp T)=0
Bvp

(2.15)

where a is the unit vector of vo and ai o(uo) is the jumP
moment defined in (A5).

The reason for the particular time scaling (2.12) be-
comes more clear if we interpret (2.14) as follows. The
time evolution of an arbitrary conditional average X (e.g.,
the mean velocity or the mean energy of a tagged particle)
has been separated into two parts, namely, the left-hand
side (lhs) of (2.14) which is independent of Q and contains
only first-order derivatives with respect to s and vp, and
the rhs of (2.14) which depends on Q and contains only
second- and higher-order derivatives with respect to vp.

In the limit Q~ oo (2.14) reduces to
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with

BXp( vp T) BXp( vp 7 )—ai p(uo)a =0,
8& gvp

BXi( vp, ~)—ai,p(up) a =Hi(vo, T)
8Vp

(2.17)

I+1
Hi(vo, ~)= g, I.'"'Xi+.] k(Vp, ~), l ) 1 . (2.19)

The initial conditions, which are independent of Q, are

Xp(Vp, ~——0)=f(vp),

Xi( vp, ~—0)=0, l & 1 .

(2.20)

(2.21)

We see that HI depends on XI„k& l; therefore, the equa-
tions can be solved successively, starting at the lowest or-
der.

To solve the partial differential equations (2.17) and
(2.18) we can either use the standard methods of charac-
teristics' or more simply apply a theorem which is dis-
cussed in detail in~Appendix C. In our particular case this

theorem can be stated as follows. Let V (vp, r) be a sol.u-
tion of

which describes the deterministic motion of the particle
since it is a homogeneous first-order partial differential
equation (see also Appendix C). For finite values of Q
one has to include the rhs of (2.14) which is responsible
for fluctuations (see Sec. III).

In order to solve (2.14) we separate the conditional aver-
age X into a nonfluctuating part Xp and fluctuating parts
Xi (l & 1) and write

OO ]X=Xp+ g IX/)Q
Inserting this into (2.14) and collecting terms of the same
order in Q ' we obtain a system of partial differential
equations for Xi(v p 7),

III. THE LINEAR NOISE APPROXIMATION

In this section we will derive an explicit expression for
Xi( v p 1 } and show how in the linear noise approximation
one can obtain h(vt j vp} as a Gaussian distribution with
time-dependent mean and variance.

We first observe that (2.22) can be simplified on ac-

count of ai p being only a function of the magnitude of V.
We can set V = V a, so it is only necessary to solve

V
d7 =ai, p( V) (3.1)

with V(~=0) =vo. Also, (2.24) becomes

dV dV—ai p(uo) =0 ~dr duo
(3.2)

for V(vp, ~) and then obtain Xp by replacing vp by

V( vp v) ln the argument of the known function f. For Xi
one has to evaluate the integral of Hi, as defined in (2.19)
with vp replaced by V ( v p, 7 s).—

At this point we already see the significance of the
macroscopic equation (2.22). In the limit Q —+Op the
motion of the tagged particle is completely determined by
Xp which only involves the solution of (2.22). Fluctua-
tions which are described by Xi (l & 1) are of order Q
(see also Sec. III} and vanish for Q~ao. We therefore
can regard (2.22) as the macroscopic, deterministic equa-
tion of the system describing the motion of the tagged
particle when fluctuations become negligible. The jump
moment ai p(u) is completely determined by the micro-
scopic binary interaction potential (see Sec. IV and Ap-
pendix A) and gives rise to a nonlinear, macroscopic
damping. Only in the case for a Maxwell-interaction po-
tential the friction coefficient ai p(V)/V is a velocity-
independent constant and can be calculated with the aid
of (4.15) and (4.17).

dV —V=ai, o( V)
d~ '

V
(2.22)

Comparing (3.1) and (3.2) allows us to express the vo
derivative of V in terms of the moment a, p,

subject to the initial condition

V( v„~=o)=v,

then V (vo, ~) also satisfies

(2.23)

av(vp T} -. a—ai,o(uo)
Bvp

V(v p, r) =0 . (2.24)

Xp( p, &v)=f(V( , v)o)r, (2.25)

Xi(vp 1r)= dsHi(V(Uo 7 s) s) I)1—
0

(2.26)

Thus, one can first solve the macroscopic equation (2.22)

Comparing (2.24) with (2.17) and (2.18) one can verify
that the solutions of these equations subject to the initial
conditions (2.20) and (2.21) are given by

dV aio(V)
du, ai, o(uo)

(3.3)

We will sqe in the following that such a relation is very
useful.

According to the method just developed the evaluation
of Xp( v p, ~) requires the solution of (3.1) which, in general,
can be carried out by quadrature. Once V is known, +0 is
obtained from (2.25). Since Xp is the leading term in the
series expression of X(vp, ~), we see that in the limit of
large mass ratio Q, X(vp '7) is essentially determined by
(3.1) involving only the first moment ai p of Wn. In or-
der to study the motion of the particle for finite Q we
have to include higher-order terms Xi (l & 1) of our series
expansion (2.16).

To evaluate X,(vo, ~) using (2.26) we need to find H,
from (2.19). This gives
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Hi(vo, r) = , L—' 'Xp(vo, r)

= —,
' Jd y W[ v 0, y ]y;yj a; ajXp( v p r ) (3.4)

where we have introduced index notation, I y; I = y,
a;=a/avo;, and the Einstein summation convention. In
the differentiation of Xo one has

a,x,=a,f(v) af av
auoi'

(3.S)

so we can replace the vo derivation of V by the moments
ai 0 as given in (3.3). Carrying out the indicated opera-
tion in (3 4) we obtain (see Appendix A)

1 a f(V}H, ( vo, v )= — aka,
2 aVkaV)

rr i, p( V) 1 V
P2, 1(VO)+ P2, 2(UO) 3 5kl

&i,o(vo)

'2
V

P2, 2(VO)
Uo

af(V), ~i,o( v}, —, &2,2(VO) ~1,0( v}
+ — ak 2i P2, 1(UO } 2 [r21,0( V} rr 1,0(UO }]—

a vk
'

&1,0(UO } 3V11 CK1 p(Up ) Vp
(3.6)

v Hi [V,y]
Xi( vp, 7 ) = dy"0 ai(y)

(3.7)

which shows that in general g& can be evaluated by quad-

rature once V(r} is known. Using (3.7) and (3.6) one ob-
tains

a f(v) — af(v)
Xi[»vo]= ' ~kr[V vo] —:+4[V"olak

8VkBV( 8 VI,

where

~kr [v»0]= akar&v [v»o] (akai —
3 &k—r )I'[ v vol

(3.8)

(3.9)

a'„[V,vo]= I dy 3' p2, (y) ——2 A, 2(y) v
&1,0(y } 3 ~1,0(y)

I'[ V»o l = —f„dy

4[v vol= J„dy

(3.10)
2

P22(y} V

~1,00»

~i,o( V)P2, 1(y}
[rri, o( V}—~i,o(y}]

~1,0(y)

(3.11)

P2, 2(y) ~1,0( V}

3y~1,o(y) ~1,0(y}
(3.12)

where the prime denotes derivative with respect to the ar-
gument and the various moments are defined in (A5) and
(A10).

It can be seen from (3.6) that the r dependence enters
only through the solution V(Up, r) to (3.1). This means

that we can write Hi(v01) =H1[V .—vp] uslllg sqllai'e
brackets if Hi or any other function is expressed by the

independent variable V and vo instead of vo and r. It is
then easy to show that the general expression for Xi as
given in (2.26) can be replaced by

(f( ) i,&,=—X[V, ]

=f(V )+—Xi[V,UO]+0
1 1

(3.13)

we find the mean square deviation to be

(f'(V)
i vo&,—(f(V)

i vp&,
'

Akr +0 . (3.14)
1 af af 1

& av„av, 0
This shows that fluctuations enter at order 0 ' and they
depend on Akr. The trace of Aki, given by cr„, describes
the mean square velocity deviation, while P gives a correc-

tion to the macroscopic motion V (r) of the tagged parti-
cle which has its origin in the nonlinearity of the moment
ai p [see (3.12}].

An interesting property of the covariance matrix Aki
can be derived by considering the limit ~—+00. From
(3.10) and (3.11) we obtain using the explicit expressions
for the moments a„k (see Sec. IV)

lim I (r) = lim o, (z)=—&0,2(o}

2ai, o(0)
(3.1S)

Inserting (3.1S) into (3.9) we find that the covariance ma-
becomes diagonal for long times. It is

worthwhile to compare this result with the analysis of
Brownian motion based on either the I.angevin equation
or the Fokker-Planck equation. There one assumes

Notice that in (3.8) the dependence on f is explicit, and
the quantities Aki and p only need be evaluated once for a
given interaction potential.

Applying the same procedure successively, this method

of reduction can be carried out to higher order Xr [V,UO]

so that the entire calculation then involves solving (3.1)
for V( vp, r} and using the explicit expressions for

Xk [V, v p] with k ( / in order to obtain Xr [V, vp].
We now show that Xi is needed to describe fluctuations.

Since the average off is
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ai p ———PV and ap z
——y and all other moments vanish.

For large Q these assumptions are equivalent to assuming
u/uz «1 and expanding the moments ai

~
and ap2,

cf. (4.15) and (4.17), in a Taylor series in u/ur. In doing
this we obtain explicit expressions for P and y, namely,
P= —a'i p(0) aild y = —3(UT) ai o(0).

In either case (3.1), (3.10), and (3.11) give

qp(n, vp, r)=i(n V),
qi(n, vo, r)= ——,

' nA n+i(a. n)Q,

(3.25)

(3.26)

tain the effect of operating with the L' ' operator by in-
spection of (3.8), which holds for any arbitrary function f.
With either approach one obtains the same results:

V=voe

2 y (1 e 2P—r)

and Akl is diagonal for all times,

(3.16)

(3.17)

where V is again the solution of the macroscopic equation
(3.1), and the covariance matrix A and function P have
been given previously in (3.9) and (3.12). Inserting these
results into (3.21) gives

Akl =
6

(3.18)
X(n, vp, r) =exp — nA n+i(n 8)

where

(3.27)

In contrast we have shown here that when the details of
interatomic interactions are considered the covariance ma-
trix is diagonal only at long times.

Thus far we have been concerned with a physical prop-
erty f ( v ), averaged over the distribution function
h (v t

~
vp). We now show that in the linear noise approxi-

mation h(vt I vp) can be determinai. We begin by con-
sidering the characteristic function defined as the Fourier
transforin

I8=V+ —aP0 (3.28)

h(vri vp)= (detA)-'"

is the mean velocity of the tagged particle correct to order
Q '. The inverse transform can be carried out,

' 3/2

X(n, vo, t)= Jd3ue'" "h(vt
~

vp)

with

(3.19)

with

&(exp ——( v —8)A '( v —8)
2

(3.29)

X(n, vp, t =0)=e (3.20) 1(ak+I 3 ~kl }

=exp g k ql, (n, vp, t)
o0

(3.21)

The coefficients qk can be found as follows. Divide (2.14}
by X to obtain an equation for Bq/Bt. Then expanding q
in a power series in 0 and using the time scaling rela-
tion (2.12) we arrive at the same set of equations for qk as
given in (2.17) and (2.18), with the only differences being
the functions Hl now replaced by more involved functions
Hl", and the initial conditions (2.20) and (2.21) replaced by

One can imagine that this quantity also can be given a
power-series expression in Q . However, in view of
(3.20) it would be more natural to write'

q(n, vo, t)

lim ( v
~ vo), = lim

+~ 00 0
y AT

2PQ mg
(3.31)

(3.30)

So the distribution function is a multivariate Cxaussian in
the linear noise approximation.

The corresponding result based on the Langevin equa-
tion or Fokker-Planck equation is well known. We have
already shown that Akl, and therefore also Aki i, is diago-
nal for all times [cf. (3.18)]. If we now relate the con-
stants y and P to the thermal speed according to the
fluctuation-dissipation theorem,

qp(n, vp, ~——0)=i(n. vp),

qi(n, vp, v=0)=0, l&1.
(3.22)

then using (3.16) and (3.18) we find
(3.23) ' 3/2

In the linear noise approximation only qp and qi are re-
tained in (3.21). For H"i one has

H", (vo ~}= 41-"'qo(n, vp, ~)

+ i [1—qo(n~ vo &)]L "'qo(n, v„r) .

h ( vq
I

vo) =
2qrke T(1—e ~)

mA( v —vpe ~)
Q exp

2k' T(1—e ~) (3.32)

(3.24)

To proceed to find qi one can follow the procedure out-
lined in Secs. II and III. However, one can take advan-
tage of the common structure of (3.24) and (3.4), and ob-

a result originally derived by Chandrasekhar. Thus
(3.29} is a generalization of (3.32) in the sense of taking
into account details of interatomic collisions and
velocity-dependent friction effects. According to (3.29)
the surface of constant probability in the coordinate sys-
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tern fixed on the macroscopic velocity, x=v —B, is in
general an ellipsoid. One can show using (3.30) that a is
an eigenvector of A ' with eigenvalue A, i ——3(3cr„
—2I') '&0, and two eigenvectors perpendicular to a
with degenerate eigenvalues A,2

——A,3
——3/I. By compar-

ison the surface according to (3.32) is a sphere. One can
point out still another generalization. That is, (3.29) is the
three-dimensional analog of the Green's-function solution
to the one-dimensional Fokker-Planck equation with
time-dependent coefficients. ' Finally, we want to men-
tion that averaging (3.32) . over the angle
O=cos '[(vp. v, )/vpu, ] yields the distribution function
for the energy relaxation of a heavy particle, a result that
is identical to that obtained by Anderson and Shuler' us-
ing a different derivation. One can perform the same
average on (3.29) and thus obtain a more general expres-
sion for the distribution function describing energy relaxa-
tion.

(2.8) and d is an arbitrary vector. Equation (4.1) then
reads

f d v pWn(vp~v p)f(v p
—vp) d]"

' —2/v

ns fd'g gG.'f o (
~
g+ vp

~
) (4.4)

with

G —=f [(g —g') d]"bdbd e
' —2/v

(4.5)

The functions G„" do not depend on 0 (see Appendix B).
Inserting (2.9) into the Ihs of (4.4) and then comparing
both sides we can identify E(Q) as

—0/v

IV. JUMP MOMENTS FOR 1/r" POTENTIALS
F(Q) = (4.6)

In Sec. II we made use of a particular dependence of
the transition probability Wn(vp~ vi) on the mass ratio
parameter 0 [cf. (2.9)] in order to cast the transport equa-
tion into a set of partial differential equations of first or-
der. In this section we will prove that for all purely repu1-
sive 1/r' potentials this dependence appears naturally if
one chooses 0 ' to be ms/(mal+ms). Furthermore, we
will show that all the jump moments a„k can be ex-
pressed in terms of a confluent hypergeometric function.

We first observe that the transition probability can be
written in the following way:

f d'y ~[vo, y](y d)"=fd'ggG.'fo(
~
g+vp

~
) .

(4.7)

B„(uo,g)=2ng f dgP„(g)fo(
~
g+vp~ )

with g=(vo g)/upg, and the moments

(4.8)

To evaluate (4.7) we introduce the Legendre coefficients
of the Maxwell-Boltzmann distribution (see also Appen-
dix A)

f I t
d uo8'ti(volvo)p(vp)

I=fns
~
vi —vp~ fp(vi)y(vp)bdbded'vi, (4.1)

y„k =—,g gk+NB„Uo, g (4.9)

where qr(v) is an arbitrary function, b and e denote the
collision variables, (vp, vi) are the velocities of the collid-
ing particles before the collision, and primed quantities
are the post-collision velocities. Furthermore, ns is the
nuinber density of bath particles 8 and

2

fp(u)=(v ~T) exp (4.2)
(v )'

with (ui ) =2k' T/ms, is the Maxwell-Boltzmann veloci-
ty distribution. In the rhs of (4.1) one calculates the aver-
age of y with the aid of Boltzmann's Stosszahlenansatz
where vo has to be expressed in terms of vp vi and the
collision variables ( b, e), while in the lhs of (4.1) a variable
transformation has been performed so that vp now serves
as an integration variable. Since the explicit expression
for 8'n(vo~v p) is rather involved, ' ' we will proceed
with the rhs of (4.1) in calculating the jump moments.

Let us choose for y( v p) in (4.1)

Using the expression for G„* given in (B14) and the corre-
sponding relation to (A6)

f d'gfo(
I g+vol)g'P. (g d/gd)

we find

f d'g gG.'fo(
I g+vo()

(vp)P ( vp d/upd ) (4.10)

p—= 1 —4/v . (4.12)

Now we want to relate y„k to the jump moments a„k.
Expand ( y d)" in (4.7) in Legendre polynomials,

=d" g ak,.r k,. k+,Pk(vo d/vod). , (411)
k=0

where the index p depends on the potential index v
through

qr(v p)=[(v p
—vp). d]"

„[(g—g ').dl",

8 y'd= + bk,.Pk
O

(4.13)

where g = v ~
—vo is the relative velocity and Q is given in

with bzq 2, +i ——bzk+i 2, ——0. Inserting this into the lhs of
(4.7) and using (A6) we obtain
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Id y W[v, y](y d)"

N vo d=d" gbk, .ak,. krak
k=0

If we compare (4.14) and (4.11) we find

&n, k
n, k —n ~ Vn, k —n+p, .

~n, k

(4.14)

(4.15)

and define

P(vp, ~):(—v
~
vo) (5.1)

OO

4'(vo 'r) = g i W&(vp, r)
1=0 &'

as the time-dependent velocity af the tagged particle. Re-
placing in our general expression (3.13) the function f(v )
by v we immediately obtain for the Q expansion of P up
to order 0

It remains to show that all the moments y„, can be ex-
pressed in terms of a confluen hypergeometric function.
We begin by noting that

= a V+ —!!}[V, uo] +01 — l
(S.2)

B„(vp,g)= s ( —1)"n 3'

Uy Xo

' 1/2

(~2+y2)
&« In+ixz(2xpy) (4.16)

X iFi( —Ts,n + z, —xp ),3 (4.17)

where, F,(a,b,x) is the confluent hypergeometric func-
tion. %rhen this is combined with (4.15) we see that all
the moments a„k(xp) are proportional to
xp[iFi( —(k+p)/2, n + —,',,

—xp)]. Note that for evaluat-

ing (4.14) we need only the moments a„k far k even. In
this case the a„k moments for a Maxwell potential (p =0)
reduce to a polynomial in xp, while for a hard-sphere po-
tential (p, = 1) they can be expressed in the form

QA„xpe ++B„xperf(xo). For all other cases
(0 &p ( I) integral representations and recurrence rela-
tions' ' can be used to evaluate the confluent hyper-
geometric function.

V. EQUILIBRIUM FLUCTUATIONS

In Sec. II we have developed a method of calculating an
arbitrary conditianal average X(vo, r) in powers of Q
The method is applicable to time correlation functions
which describe the various fluctuations occurring in an
equilibrium system. Such a quantity could be the auto-
correlation function (X(vo,r=0)X(v p, r) )~, where the
brackets ( ),q denote an average over the equilibrium dis-
tribution function of (2.1), the Maxwell-Boltzmann distri-
bution fo ( vp). In this section we will confine our discus-
sion to the calculation of the velocity autocorrelation
function. This is a central quantity in any study of dif-
fusion processes; it also appears in.the determination of
the intermediate scattering function F,(Q, t) for neutron
and laser scattering within the Gaussian approximation.

We choose the initial condition (2.6) to be f(vp)= vp

where xo ——vp/vT, y =gluz, and use has been made of the
integral expression' of the modified Bessel function
I„+i&z(x). Putting this into (4.9) and using an integral
formula derived by Kummer we get

r(n+ —,
'

(s +3))
y„,(vo) = (vr)"+'( —1)"xo

r(n+ —,')

where again a is the unit vector of vo, V is the solution of
(3.1), and P is given in (3.12). In order to calculate
the velocity autocorrelation function (VAF)
( qV( vp, v) P( vp, 0) ),q we have to keep in mind that the
equilibrium distribution of (2.1) is given by

1 (Q —1) uf,q(u) = s exp — s (Q —1) (5.3)3jz
( B)3 VT

and contains the parameter 0 explicitly. For arriving at a
systematic expansion of the VAF in powers of Q ' we
therefore have to expand in (5.2) V and P[ V up] in a Tay-
lor series in up, performing the average (uo ),q and then
collecting terms in 0 . Since this procedure is some-
what tedious we want to sketch a more direct method
which is in particular suited for calculating equilibrium
correlation functions. We write for P~(vp, r), the salu-
tions of (2.17)—(2.21) for the initial condition f(v)= v,
the following ansatz:

4~(vo, r) =a@(uo,r)
2@+1

= a g Ai z„+i(r) 2n+1! (SA)

OO

B„(r),
n=o O" (5.5)

where the Q-independent coefficients B„(r)are given by

B ( )
i ~ ( zi)z, (2s+3)
s=o 4'& t

(5.6)

Inserting (SA) into (2.17) and (2.18) and comparing equal
powers in uo yields ordinary differential equations for
Ai z~+i(~) which can be solved successively.

It should be noted that the Taylor expansion for the
jump moments a„i, can be found with the aid of (4.1S)
and (4.17). Since for all r " potentials a„k(up) is even
(odd) if n is even (odd) one can prove that Pi(up, r) is al-
ways an odd function af uo which justifies the ansatz
(SA). Once the functions Ai z„+i(~) are determined it is
straightforward to obtain the VAF. We obtain for the
normalized VAF after some minor manipulations

y(~) =—& y(v„r)4(V„0))~/&u'p)~
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2Z2
+

8
+0, (5.7)

I

Q

Since the detailed calculations for 2~2, +1 are rather in-
valved and do not provide further insight, we only present
the result for g(~) up to order 0

T

2

f(z)=e ' 1— + (e '—1)— +1Z 8 + e
mq/mz

1000
100
10

1

Numerical results
(Ref. 22)

1.000 000033
1.000 003 316
1.000 316 138
1.018 953 785

0 expansion
Eq. (5.15)

1.000000033
1.000 003 345
1.000 341 167
1.028 251 117

TABLE I. Comparison of diffusion coefficient ratios
DAB/[DAB]' for various mass ratios.

77lg +my

where p—:1 —4/v and z is a scaled time variable,
'

1 —2/v
ma mAZ- QA, B t /tE

3 PBg
[DAa]'= 3 UT 1

8

8ttatJAB 2~ +A, B

' 1/2
NZg +7?lg

2ftl g
(5.14)

Oe(1, 1)
A, B

and tE is the Enskog collision time

Here Q~'~" is the 0 integral'
2/v

A i (v)1 (3—2/v)

(5.8)

(5.9)

and P is a correction,

P(pQ )= 1 ——1

Q
p 1 19

~2 120

0 1

Q3
(5.15)

=2v 21TllaO Aavr
—1 2 8 (5.10)

pz 1

2Q g2
PZ Pz

8 4 2

+0 1

0 (5.11)

The deviation of g'"~ from the exact result is therefore

P(z}—P'"~(z) = e '(e —1+2z}+0
40Q 0

(5.12)

%'hile the absolute error may be small, the relative error is
seen to increase linearly with z for long times. This holds
for all repulsive inverse-power potentials except for the
Maxwell interaction (p=0) where the single exponential
decay agrees with (5.7).

In order to have a feeling for the convergence of our 0
expansion, we next calculate the diffusion coefficient DAB
through the Green-Kubo relation,

DAa= 3 &Uo&.q J, «4«)
=[DABA(P & (5.13)

where [DAB] is the first Chapman-Enskog approximation
corresponding to the use of (5.11),

Equation (5.7) has been obtained from the Boltzmann-
Enskog equation without any approximation. It shows
that to order 0 the velocity autocorrelation function
has the same structure for all repulsive inverse power-law
potentials, the specific properties of the potential enter ex-
plicitly through the index p and implicitly through the
scaled time variable z. We can compare (5.7) with a com-
monly used ' single exponential decay of g(z),

g'""(z)=exp[ —z(1—1/Q) "~ ]
r

For the special case of a hard-sphere gas (@=1)we have
solved the Boltzmann-Hilbert integral equation numerical-
ly and calculated the ratio DAB/[DAB] for a set of mass
ratios mA/ma. These results are compared with the
values obtained from (5.15) in Table I. One sees that even
for a mass ratio mA/ma —1 the 0 expansion is within
1% of the numerical solutions.

VI. DISCUSSION

We have presented a method for solving the
Boltzmann-Enskog equation describing tagged-particle
motions where the conditional average 7( vo, t) is evaluated
as a power series in the mass ratio parameter
0 '=ma/(mA +ma). The method is worked out in de-
tail for inverse-power-law repulsive interactions between
the tagged particle (mA) and a bath particle (ma), but
more generally it is applicable to any master equation in
which the transition probability 8'( x—+ x ') depends only
on the magnitudes of x and x ', and the angle .between
them, where the stochastic variables x and x ' need not be
velocities. This latter property, in the case of transport in
velocity space, should hold for any central force scattering
in the absence of an external field. In the present study, it
was used explicitly in Appendix A to show that the ten-
sorial character of the moments of 8' appears only
through unit vectors a [cf. (A7)] and that the jump mo-
ments a„ t, are functions only of vo. This has the impor-
tant consequence that all the differential equations (2.17)
and (2.18) can now be integrated by quadrature, as indi-
cated in Sec. III [cf. (3.7)].

Our explicit results are restricted to inverse-power-law
potentials because we are only able to show that in this
case one can have the property (2.9) which is, of course,
essential for transforming the master equation (2.7) to the
system of differential equations (2.17) and (2.18). In Ap-
pendix B, where we want to determine explicitly the mass
dependence of the quantity QAB, this is possible for
inverse-power-law potentials [see (88)]; otherwise, one
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would have to resort to additional assumptions. '

Using the present method, both equilibrium and non-
equilibrium fluctuations can be studied. In the linear
noise approximation we find that a multivariate Cxaussian
distribution function (3.29) is obtained which differs from
the Fokker-Planck or Langevin-equation approach in two
respects. First, the covariance matrix Akl takes into ac-
count the effects of an actual collision process by virtue of
its dependence on the first and second moments of the
transition probability. Second, (3.29) gives an ellipsoid for
the surface of constant probability. Although no explicit
calculations have been carried out thus far, we anticipate
that results such as cr and I, (3.10) and (3.11), will show
significant dependence on the interaction potential index v
and the initial velocity vo. Also, we believe that non-
equilibrium fluctuations can give more insight into intera-
tomic interactions than equilibrium fluctuations. In the
case of the velocity autocorrelation, our result to order0, (5.7), shows only a weak dependence on the potential
index v.

In the case of the Fokker-Planck equation, the width of
the time-dependent distribution h (v, t

~
vp) is a monotoni-

cally increasing function. In our result (3.29) one can
transform to a set of principal axes and consider the
growth of h(vt

~
vp) along a particular direction. We ex-

pect, on the basis of exp[icit calculations in the one-
dimensional case, that the width of the distribution can
have a nonmonotonic behavior, a more rapid increase
with time initially followed by a slower decrease to the
equilibrium value. This behavior depends on the value of
vo. %%en vp ——0, the result reduces to the Fokker-Planck
description. For vp exceeding the thermal speed of the
bath particles, the width can have maximum values much
greater than the equilibrium value. 23

The Boltzmann-Enskog equation we have analyzed is
the spatially uniform version of the transport equation.
The analysis can be extended to include spatial depen-
dence provided there are no external fields acting on the
system. This means that we can study the van Hove den-
sity fluctuation or the intermediate scattering function
E,(q, t) in the manner described here.

ACKNOWLEDGMENTS

One of us (T.L.) would like to acknowledge a grant by
the Max-Kade Foundation for his stay at the Mas-
sachusetts Institute of Technology. He would like to ex-
press his appreciation of the hospitality provided by Pro-
fessor Sow-Hsin Chen and by the Department of Nuclear
Engineering at MIT. The other (S.Y.) would like to ac-
knowledge support by the National Science Foundation.

1

%[up y]=2~y' f dg Pl(g)R [vp, y],
I

Pl(g)= g &P(&-)&@*(&-„),21+ &

(A3)

and g=(vo y)/vpy. Using orthogonality of the spherical
harmonics we obtain

f d y ~[vo~ y ]Pa

d' vo e)=I'„' y 8'„uo,y, A4
duo

where d denotes an arbitrary vector. Now define

a. k(vo)= f dy ~.[uo,yly"'".
Then instead of (A4) one has

(A5)

vp d=a„k „(up)P„
uod

(A6)

f d y W[vp, y]y;=a;ai 0(up),

'y~ vo y

(A7)

a aka2, 0(uo) '[a2, 0(vp) 0,2(uo)]~;k

f d y ~["o y]yy'kyl

= a;akala3 p(vp) —
5 [a3,o(uo) —a1,2(vo)]

+ ('bl, kal +~;lak +~k, I (A9)

where we have introduced index notation and a = vp/vp.
In the derivation of (3.6) we have introduced the mo-

ments p2 1 and p2 2 which are defined by

Since any power of p=(d y)/dy can be expressed as a
linear combination of Legendre polynomials P„(p), we
can relate any integral of the form

f d y W[v, y](y. d)"

to the jump moments. In particular, the first three mo-
ments are

APPENDIX A

Here we want to define the jump moments a„k(up)
which appear in Sec. II. The transition probability is first
expanded in spherical harmonics

ao I
W[vo yl= 2 P P ~i[up yl&i (& „)~t

I=pm= —&

(A1)

2 1

~2, 1(vo) Ta2, 0(up)+ Tao, 2(vp)

P2, 2(vp) a2,0(vp) a0, 2(uo)

APPENDIX 8

We will evaluate the function

6„=fb db de[( g —g ') d]"

(A10)

with defined in (4.5). Let us introduce an orthonormal refer-
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(82)
(83)

ence frame with the unit vectors e„, er, e„where e, lies
in the direction of g,

g=ge
g

' =g( e„sinX cose+ e„sinX sine+ e,cosX ),

and X and e denote the polar and azimuthal angles of g '.
Notice that for potential scattering

I g I

=
I g

'
I
=g. The

quantity [(g —g') d]" is now expanded in a binomial
series

n n
G„=fb db de" g k ( —1) sin X(1—cosX)" " d," (d„cose+d~sine)

k=o . .
(84)

With the aid of the formula

2~ (2 )'(d'+d')' =2kde(d„cose+d~sine)"=, 22R (k()2

0, n =2k+1
we can perform the e integration to obtain

(BS)

2k
t~/2] I n 2k

2k kk=0 22k

2 -k

g'd
gd f b db(1+cosX)"(1—cosX)"

For a repulsive potential 1/r" one has'
—2/v ' 4/v

(I) mg Ptg g J (()
QAB QAB

mg +my

with

(88)

~(I) 2
QAB =2~a AB 2v

' —2/v

At(v),

where At(v) are pure numbers. In (88) the mass depen-
dence of QAB appears explicitly, one can write

—2/v

GnG„= 7P2g Pfg g

Nlg +my (810)

where [n/2]=n/2 for n even and (n —1)/2 for n odd.
Since (1+cosX) (1—cosX)" ", for n)k, always can be
written as a polynomial in I —cosX, I =1, . . . , n, we can
express G„ in terms of the functions

QAB =2m f b db(1 —cos'X) . (87)

APPENDIX C

There exists a basic equivalence between the initia-
value solution to a first-order ordinary differential equa--
tion and the solution to a corresponding partial differen-
tial equation. Since this property seems not to be widely
recognized, we give here a detailed proof and consider its
implications concerning the Liouville equation.

Lemma I. Let g(t I xp tp) be the solution to the dif-
ferential equation

dt
= f(x, t) (Cl)

where gs
——(g.d)/gd. Note. .that according to (86) and

(810) the general structure of G„' is given by
4/v

n

g ak,.PR(k, ) (814)
I =o

with azk+, 2, ——a2R 2, +i ——0 and the coefficients ak „are
linear combinations of QAB'.

where G„, now mass independent, can be determined
uniquely using (86)—(89). In particular, one has

' 4/v

Pi(kg )QAB" (811)
' 4/v

[ 3 Po(ks)QAB"

+ Pz(kg )(4QAB ' —3QAB")], (812)

subject to the initial condition

g(to I xo, to)=xo.
Then g(t I xp, tp) also satisfies

Bqr(t
I xp, tp) BPp(t

I xp, tp)
k(xo,'to) =0

k Bxok

and

(C2)

(C3)

' 4/v

G3 ——(gd) — [ —,Pi(g' )(2QAB
' —QAB ')

+ ,
'
P3(gs )( 3QAB"—9Q—AB

'

+SQAB (813)

BÃ(t I xo to) Bg(t I xp, tp)
R(xp, t) =0, (C4)

xok

where a subscript k denotes a vector component.
Proof. We first note that (Cl) has a unique solution

once the initial value is chosen. This means that two



BOLTZMANN-ENSKOG EQUATION ANALYSIS OF TAGGED-. . . 461

g7(t
~

xp tp) = g7(t ( g)(ti
~

xp tp) ti ) (C5)

which is just an identity at t =t, . Notice that since the
lhs of (C5} is independent of t„ it must be true also for
the rhs. Therefore, the total derivative of g(t

~
a, t, ) with

respect to t~ must vanish, or

Bq&(t
~
a, ti) BPp(t

~
a, ti) Bak =0

Bti . k Bak Bti

with a—:g(ti
~

xp, tp}. Making use of (Cl) we have

dg(t,
~

xp, tp) = f(a, t, )
Bt dt

and so (C6) becomes

Bg(t )
a ti) Bg(t

~
a, ti)

fk(a, ti) =0 .
Bti ak

(C6)

(C7)

(C8)

Since (C5) holds for any tp we can set tp ti in——a, which
means a then becomes xp. Now (C8) is an equation in
the variable t, with no dependence on tp anywhere. If we
furthermore write tp in place of ti everywhere, this equa-
tion becomes identical to (C3).

To show the equivalence between (C3) and (C4) we in-
troduce the time-dependent operator

L (t)= —igfk( xp, t)
Bxpk

functions, gi(t
~
x„t, ) and y2(t ~7x2, tz), w»ch satisfy

(Cl) will be identical for all t if they are identical at any
one instant, say t = t &. For the solution to (Cl) subject to
(C2) we can write

00 0fdxop(xp) 'i f d7L(7.) A(xo) .
Onf 0

(C18)

Integrating by parts and assuming the surface integrals
vanish, one finds

(C13). Substituting (C14) into (C12) and using the fact
that g(t

~
xp, tp) satisfies (C4), we see that (C14) is indeed

a solution of (C12).
A useful property of the operator L (t) can be establish-

ed by comparing the formal solution of (C12}
r t

P(xp, t)=exp i f drL(r) A(xp) (C15)
0

with (C14). One obtains the relation
t

exp i, rL v Axo
0

t
=A exp i vI. w xo, C16

where use is made of (Cl 1). This shows that the action
t

of the operator exp[i dr L (~)] on an arbitrary function
'0

A ( xp) is given by its action on the argument xp.
We suppose that an X-particle system can be described

by (Cl) and we are interested in calculating the time-
dependent average of a physical property A ( xp),

(A(t)), =fdxop(xp)A(g(t i xp, tp)), (Cl'7)

where g is the solution of (Cl) and p(xp) denotes a given
probability density. Using (C16) we get

(A(t)),,
t=fd x~(xp) exp i f drL (7) A(xp)

i f{xo t) Vo—

and rewrite (C3) in the form

(C9) ( A (t) ), =f1xoA (xp)exp i f, drL(r) p(xo),

where

(C19)

Bp(t
~

xp, to)
iL(t)tp(t

~

x—,,t, )
Bto

with the formal solution
t

{t
I xp to}——exp i drL(r) xo .

to

(C10)

(Cl 1)

L =i Vo f(xo t} (C20)

Equation (C19) shows that the time-dependent average
can be expressed as an integral over a time-dependent
probability density p( xp, t}

( A (t) ), =fd xoA (Xo)p(xo, t) (C21)
Differentiating (Cl 1) with respect to t gives (C4). With
the aid of lemma I we can now prove the following.

Lemma II. Let Pp(t
~

xp tp) again denote the solution of
(Cl) subject to (C2}. Then the solution of the partial dif-
ferential equation

Bp(x„t)
=iL(t)p(xo, t)

t
(C22)

which is the solution of the "generalized'* Liouville equa-
tion

BP(xo, t) BP(xp, t)
fk(xp, t) =0

Bt k BXop
(C12) with initial condition p( xp tp }=p( xp). For a Hamiltonian

system one can readily show that Vp f ( xp, t) =0 and so

subject to the initial condition

P(xp, t =to)=A(xp),

where A is an arbitrary function, is given by

P(xp t)=A(ip(t
~

xp tp))

(C13)

(C14)

Proof. According to (C2) we see that (C14) satisfies

L(t) = —L(t) . (C23)

Common derivations of the Liouville equation make use
of the Hamiltonian equations of motion and therefore ar-
rive only at (C23), whereas (C22) describes the probability
density also for non-Hamiltonian systems, including, for
example, dissipative forces.
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