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We present a method for estimating line broadening in the framework of a general average-atom
model. This method is an extension of our previous work [Phys. Rev. A 29, 2789 (1984)]. It can
reproduce the overall shapes of the “hilly features” present in spectra of hot dense plasmas in local
thermodynamic equilibrium. Calculations are presented for a hafnium plasma, and the results are

compared with experimental ones.

I. INTRODUCTION

The problem of the complex line spectrum of an atom
in a hot dense plasma has been discussed in the past.!~>
We present new modifications and extensions to these
treatments. Our previous paper® (which we denote I) ap-
plied only to a Thomas-Fermi (TF) model. In Sec. II we
describe our method which can be applied to any
average-atom (AA) model. As in I this method starts
with considering the fluctuations in occupation numbers,
which in turn cause line broadening. We then proceed in
either of two different modes: the ‘“continuous mode”
and the “discrete mode.”

In the continuous mode we assume that the occupation
numbers of electrons are continuously distributed around
their nonintegral average values. These averages are the
corrected AA values which are discussed in Sec. ITA 1.
From this point on we follow the method used in I. The
lines between pairs of single-electron states which this
procedure yields are broad and each of them represents a
cluster of all lines between two single-electron levels.
Then we discuss the similarities and differences of the two
methods, namely, the TF model described in I and the
present continuous mode. The discrete mode, which al-
lows only integral occupation numbers, is very similar to
the method which is described in the extensive review of
Huebner.* We introduced it mainly for the purpose of
checking our continuous-mode calculations. .

In Sec. III we present results for a hafnium plasma at
various densities and temperatures. We compare these
new results with those of our previous TF method and
with experiment.®

II. DESCRIPTION OF THE METHOD

Our starting point is the AA picture where we assume a
fictitious atom having every atomic level populated by an
average number (not necessarily integral) of electrons
which agrees with the properties of the plasma (tempera-
ture, density, etc.). It gives an average spherically sym-
metric electrostatic potential V“%(r) which can be con-
sidered as a zeroth-order approximation to the potential
of the most probable configurations. We also have a set
of single-electron wave functions ¥;(r), and to each corre-
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sponds an energy Ef (where i denotes a level). The wave
functions and energy levels are obtained by solving the
Schrodinger (or, as we do, the Dirac) equation. We also
assume that the plasma is in local thermodynamic equi-
librium (LTE) so that we have a temperature 7, and a
chemical potential (Fermi energy) u, of the electrons.
Then we can use the Fermi-Dirac distribution function to
get the probability #; that any particular state belonging

~ to the ith level is occupied:

1
e(E;‘-—y)/kT+ 1
We assume that the populations of different states are un-
correlated, therefore the probability P;(N) for an atomic
level i to be populated by N electrons is given by the bino-
mial distribution:

(1)

n;i=

&i -
PiN)= | [N =57, @)

where g; is the degeneracy of the level. The average pop-
ulation of level i is, therefore,

N,-a= ENP,-(N):nigi . (3)
N

Before proceeding to describe two modes of our method
of line shift and broadening, we define the notation to be
used in the following in order to distinguish different
averaging schemes used in this section. Each average
value has a superscript which identifies the scheme: a
denotes average over all the atoms; e denotes average over
all the electrons in a given level of all the atoms; 4 denotes
average over all the holes in a given level of all the atoms;
and 7 denotes average over all the transitions between two
levels.

A. The continuous mode

1. Average level and line energies

The average-atom potential V*(r) is the average over all
the atoms in the plasma of the atomic potential as seen by
a test charge. This potential, in which the energy levels
E{ and populations N are computed, is due to the aver-
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age populations of the bound and free states.” When deal-
ing with various types of transitions, like bound-free or
bound-bound, different averages should be considered,
yielding different populations—and hence different poten-
tials and energy levels.

For the bound-free transitions we are interested in the
probability Q;(N) that an electron in level i will have ex-
actly N —1 neighbors in the same level of the same atom.
The number of electrons having this property is naturally
proportional to Np;(N) so that

Q/(N)=NP,(N)/ S, NP,(N)
N

gi—1 g—D—(N—1
N—-1 :

AN = (1—n,) @

Under these conditions, the average number of electrons
N{ as seen by an electron in level i (including itself) is

Nf=3 NQ;(N)=n;(gi—1)+1. (5)
N

[The average number of neighbors in level i is n;(g; —1).]
. The average number of electrons in level j4i as seen by
an electron in level i is unchanged and equal to n;g;.

The potential, as seen by an electron in level i, is caused
by its n;(g; —1) neighbors, the n;g; electrons in the other
levels, and by the nucleus and the free electrons. It differs
from the AA potential. To first order (ignoring exchange)
this potential is

VHT)=Vr)+8N{v(T), (6)
where N = —n; and
1 —e
vy (F)=— (o T7) | 2———d%" . ()
' gigf’lp“ | |F—7|

Here ;. are all the wave functions of the states of level i.
As in I we approximate v;(T) by its spherical average
v;(r), ie, 1/|T—T"] is replaced by 1/max(r,r’), and Eq.
(7) becomes

— w_—g_____ Ar' 2(.1\2 ' ’
win= [y oy | RO 2 (7)

where R; is the radial part of ¢;.. The corrected average
energy level becomes

Ef=Ef—n,E} ®
where
Ei=—¢ fow | Ri(r) | 2v;(r)r*dr )

is the first-order change in E; due to addition of one elec-
tron in level j. '

When considering transition probabilities from level i
to level j, we are interested in the average populations of
levels i and j as seen by the simultaneous pair of an elec-
tron. in level i and a hole in level j. The average popula-
tion of level i is given by Eq. (5). The average hole popu-
lation in level j can be obtained in the same way Eq. (5)

was obtained. Remembering that the probability of find-
ing a hole in a state of level j is 1 —n;, the average number
of holes in this level, as seen by the hole (including itself),
is

NP=(1—n;)g—1+1. (10)

The average population Cf of the core (i.e., all the other
electrons) during a transition is therefore

CIZ',:Nl?:nkgk’ k:#i’j
C,~'=N,~e—1=n;(g;—l), k=i (11)
Ci=g;—N}=n;(g;—1), k=j .

(Note that the core is the same for emission and absorp-
tion.) The correction to the energy levels will be

E{=E{—nE[—n;E{,

. . (12)
E;=E]a—n,E; —nJEj[
and the average transition energy
Eitj ZE;—'E}
=Ef—E}—n,El—E})—nj(E]—EJ) . (13)

2. Level and line broadening

This is just a refinement of our treatment described in I.
From Eq. (4) we get the mean square deviation (AN ;)* of
the population of the kth level as seen by an electron in
the ith level:

(ANE ) )*= 3, (N —N§)*Pp(N)
N

=grni(l—ny), ki
(14)

(AN$; =3 (N—N{)?Q,(N)
N

=(g—Dny(1—n,), k=i .
The change 8E; of the energy of level i due to the fluctua-
tions 8N}, in levels k is by Eq. (9)
8E;= 3 8N, E}. (15)
k

The average [(8E;)*]¢ over all the electrons in level i is
[(BE; 1= % (8N 8N, °EFE] . (16)
If the fluctuations are uncorrelated then
(8N 8N} )°* =8, (AN ;
=08(8x — O )Inx(1—ny) , 17)
therefore, the average width AE; of level i satisfies

(AESP=[(BEF?)*= 3 (AN{ YHEF)?
: k

=3 m(1—np)ge — 8 NEF? . (18)
k
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In an analogous way we receive for the average transi-
tion width AEj;

(AEf=[(8EX)*)'=[(SEF—8E}Y"
=3 mp(1—mg )(gx — 8 —Si; N EF—EP? .  (19)
k

Equations (18) and (19) are the analogs of Egs. (22) and
(24) of I. AE]; of Eq. (19) represents the width of the ar-
ray distribution within the cluster of all transitions from
level i to level j. As in I we assume that the shape of the
cluster is Gaussian, but centered around E,; rather than
around Ej.

Although derived by a similar method to the one used
in I, and in spite of their similarity, the equations here
and those analogous in I differ. There we used the whole
available phase space whereas here we use only bound lev-
els of relatively long lifetimes.

B. The discrete mode

The continuous mode, which has been described in Sec.
II A has the advantage of simplicity. It depends, however,
on a crucial assumption: the lines should merge to form
the above-mentioned “hilly features.” In order to estimate
whether this assumption is fulfilled for the given tempera-
ture and density, we have to go beyond the single-particle
model. Then we can estimate the amount of overlap be-
tween the lines and get a spectrum which has some
“noise” and, therefore, is more similar to the experimental
results.

In the discrete mode, which is similar to the one dis-
cussed in Ref. 4, Sec. III A, we treat the occupation num-
bers as integers.. Therefore, instead of the continuous
smearing of the lines we have each single-electron transi-
tion split into a cluster of lines, where each line represents
an array of all the transitions between two configurations.
By attributing a finite width to each line (array) we can
then estimate the amount of overlap.

In order to split the single-electron lines we use first-
order perturbation theory, i.e., Egs. (6)—(9). We reduce
the enormous number of configurations which is thus ob-
tained by taking into account only those configurations
having an occurrence probability which is not less than ¢,
of that of the most probable one. Still we were left with a
quite large number (hundreds of thousands for €, between
10~ and 10~7) of configurations and a larger number of
lines.

The spectrum achieved this way consists of discrete
lines. The emission intensity I,-‘}B from level i of configu-
ration a to level j of configuration S is
N

IP=I,;P(a)N} .
J

, (20)

where I; is the single-electron emission intensity for one
electron in level i to all states of level j (assuming that
they are empty). At this stage each array of lines is
represented by a single transition. There are various
models for treating these arrays. We shall mention two of
them. '

In the model which we denote the “dense-array” model

one assumes that the lines of an array merge together to
form a broad line but the arrays themselves may be
separate. The width of the line and a discussion of the
physical conditions which are suitable for the application
of this method are given by Bauche-Arnoult et al.® The
other model, which we denote the “sparse-array” model,.
is far simpler. It assumes that each array has a given
number, say K, of nonoverlapping lines, each having

-about the same intensity and width (e.g., Doppler width).

Without increasing the overlap probability we can replace
these K lines by a single one having K times the width of
a single line. K is a small number, usually 1 <X <10, and
represents the typical number of strong lines in an array.
This assumption is justified for the case of high-density
high-temperature plasmas (although not too high). We
used the latter model.

III. RESULTS AND DISCUSSION

We have applied the TF, the continuous mode, and the
discrete mode to a hafnium (z=72) plasma. We present
calculations for temperatures of 300 and 400 eV, and ion
densities 5% 10'° and 5 10% ions/cm?. Since the num-
ber of free electrons per atom was about 40—50, depend-
ing on the particular case considered, the electron densi-
ties were approximately 2X10%! and 2Xx10% elec-
trons/cm>. We tried this range of temperatures and densi-
ties® in order to. match the experimental data (see Fig. 1).°
In our demonstration of the discrete mode we used the
sparse-array model for broadening, and ignored all but
Doppler broadening of the individual lines. The AA data
were,the same as in I, i.e., relativistic wave functions with
nonrelativistic finite-temperature TF potential and Fermi
energy.

The comparison between the TF and the continuous
mode are shown in Figs. 2—5. The TF levels were shifted
[by using Eq. (13) for the line center rather than E/—E/]
to make the comparison easier. The energy shifts are al-
ways positive and are of the order of a few tens of eV.

In two graphs the TF “hills” are much broader than
those of the continuous mode. This difference is due to
the discrete nature of the quantum levels as opposed to
the continuous nature of the TF phase space. In the cases
considered here one can divide the energy levels into two
groups: the upper levels n >4 are much higher than the
Fermi energy. They are almost empty and the fluctua-

Intensity (arb. units)

5.23 7.82
Wavelength (A)

FIG. 1. The experimental spectrum of a hafnium plasma ob-
tained by Zigler et al. (Ref. 6).
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FIG. 2. The calculated emission spectrum of a hafnium plas-
ma of density p=>5 10'° atoms/cm® and temperature kT =300
eV according to the continuous mode and the TF model. The
TF lines were shifted (see Sec. I A 1) so that the comparison is
made easier.

tions of their populations are small. The lower levels.

n <3 are much lower than the Fermi energy, they are al-
most full, and, again, the fluctuations of their populations
are small. In the TF model the energy “levels” are con-
tinuous and there are always some states near the Fermi
level with large fluctuations. In Fig. 3, the Fermi energy
is lower than in the other cases and is near to the 3d levels
of the lower group. This causes large fluctuations in the
populations of these levels and results in hills which are
even slightly broader than the TF hills. The curves of the
continuous mode in Figs. 2 and 4 are very similar to the

o

p =5x10" atoms/cm?
kT = 400eV

— —TF
continuous mode

log,, [Intensity (keV atom™ s~ A“.)}

o
5.23 7.82

Wavelength (&)

FIG. 3. Same as Fig. 2 but for p=5x10"° atoms/cm’ and
kT =400 eV.
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16
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10
5.23

. 7.82
Wavelength (A)

FIG. 4. Same as Fig. 2 but for p=5x%10% atoms/cm’® and
kT=300eV.

experimental spectrum. The resemblance is naturally
better than with the TF curves. A good fit to the experi-
ment would be, for p=5X 10" atoms/cm? and tempera-
ture kT~280 eV, or for p=5x 10%° atoms/cm’ and tem-
perature kT~300 eV. The central peak in Figs. 2—5 is
due to the three 4f— 3d transitions, the right (long wave)
peak is due to the three 4p—3d transitions and the left
peak (where shown) is due to the two 4d —3p transitions.
The central and left peaks have also some small contribu-
tions from 4s — 3p transitions.

The results of the discrete mode are shown in Fig. 6, for
density 5% 10'° atoms/cm?® and temperature 300 eV. K,
the number of lines per array, is 5. We changed the scale

16
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® — — TF
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5.23 7.82
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FIG. 5. Same as Fig. 2 but for p=5X10® atoms/cm® and
kT =400 eV.
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p=5x% 10'® atoms/cm3
kT = 300eV
K=15

continuous mode

discrete mode

log,, [Intensity (keV atom™ s™ A]

7
5.23

. 7.82
Wavelength (A)

FIG. 6. Emission spectrum of a hafnium plasma at a tem-
perature of 300 eV and density of 5 10" atoms/cm? calculated
according to the discrete mode (thin wiggly line) and the con-
tinuous mode (solid heavy line). Each line in the discrete spec-
trum has a  Gaussian shape and a width which is K=5 times
the Doppler width. The scale differs from that of the former
figures in order to reveal the hills in the discrete spectrum.

of this graph to reveal its overall shape. We tried also
K =2,10 and the differences were hardly noticeable, so
that we feel confident that the lines do merge.'® In all
cases the curve of the continuous model looks like a
smooth average of the discrete mode. In Fig. 7 we com-
pare the curve of the continuous mode with a curve of the
discrete mode smoothed by setting K =200 (array width
of 30—40 eV).

A very detailed comparison of the calculated and mea-
sured spectra is, of course, meaningless. The experimental
measurements do not represent a homogeneous, LTE plas-
ma with constant density and temperature. The scale of
the experimental graph is not only arbitrary but not neces-

Wavelength (A)

5.23 7.82

—_
o]

p=5x IOIg atoms /cm?
kT =300eV
K= 200

continuous mode

— — — discrete mode

log,, [intensity (keV atom™" s A™]

o

1 1 1 1
4d->3p 4f—>3d 4p—~3d

43—~:’>p|/2 45-’3p3/2

FIG. 7. Same as Fig. 6 but for K=200. Thus we compare
the continuous mode with the averaged results of the discrete
mode which assumed a width of 30—40 eV. The averaged-
discrete-mode curve shows the two 4s —3p transitions on both
slopes of the main peak.

sarily constant throughout the wavelength range.
Nevertheless the resemblance is remarkable. It should be
mentioned here that the temperature in our calculations
was chosen, out of a range between 200 and 1000 eV, by
mere comparison of shapes. Only after choosing these
temperatures did we find out that the identified lines fit
our hills very nicely. Since bulky shapes are easier to
measure and identify then individual lines, this method
might become an interesting diagnostic tool.
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