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The eigenvalue problem for two particles interacting through the potential being the superposition

of the attractive Coulomb potential (— 4 /r) and the Yukawa potential B exp(

—Cr)/r of arbitrary

strength B and screening parameter C is solved by variational means. The energy levels E,; for the
states 1s through 7i are calculated as functions of B and C. It is shown that for a given principal
quantum number n the energy eigenvalues increase (decrease) with increasing azimuthal quantum

number [/ if the Yukawa potential is attractive (repulsive), i.e., for I>1": '

E,>E, if B <0, and

E, <E, if B>0. It leads to the crossing of the energy levels with n >2. For B >0 the levels with
larger n and [ become lower than those with smaller n and I, e.g., E3g<Ey, Esr<Ey, and
E,s <E3,. For B <0 and certain intervals of C the levels with larger » but smaller / lie below those
with smaller n and larger J, e.g., Es <E3q4, Es;<Esp, and Esp < E4p. The values of B and C for
which the lowest-energy levels cross over are estimated. Moreover, the splitting of the 2s and 2p

levels (the Lamb shift) is discussed.

I. INTRODUCTION

The eigenvalue problem for the Yukawa (Debye-
Hiickel) potential was considered by many authors; for ex-
ample, see Refs. 1 and 2. This potential (called as well the
exponentially screened Coulomb potential) describes the
interaction between charge carriers in an ionized gas or in
a metal. The eigenvalues of the Schrédinger equation for
the Yukawa potentlal as well as for the exponential cosine
Coulomb potential®* are now well known (at least for the
lowest states). The superposition of the Coulomb and the
Yukawa potentials (SCYP) is an another example of the
two-particle potential having applications in the solid-
state physics. It was shown®~7 that the main properties
of the effective two-particle interaction for the charged
particles in polar crystals are described by the SCYP. To
the best of my knowledge no systematic study of the
bound eigenstates for this potential was undertaken. The
purpose of the present paper is therefore to calculate the
lowest-lying energy levels for the SCYP and to study their
properties.

II. SOLUTION OF THE SCHRODINGER EQUATION

We consider a two-particle system mteractmg through
the potential (SCYP)

vin=—4,1 8 -c , W
r 14

where r is the distance between the particles, A and B are
the strengths of the Coulomb and the Yukawa potentials,
respectively, and C is the screening parameter (C =1/D,
where D is the screening length). We assume that 4 and
C are positive. The radial Schrodigner equation has the
form

d*> 2d 1Ud+1) 2 B _o
"~ dr? rart r? re R

=ER(r), ((2)

where the length has been expressed in units of
ao=%?/1LA, the energy in units of Eq=uA?/2#%, and p is

- the reduced mass of the two particles. In Eq. (2) all quan-

tities are dimensionless, in particular, the parameters of
the potential have been changed with respect to those in
Eq. (1) as follows: B'=2B/A and C’'=Ca,, and next the
primes have been omitted. The units E, and ao will be
used throughout this paper.

The Schrodinger equation (2) is not solvable analytical-
ly. Nevertheless, some properties of its eigenvalues can be
guessed without solving it. The bound eigenstates exist
for all values of the parameters B and C. For B <2 the
bound eigenstates appear since the potential is attractive
for all r and has the long-range Coulomb tail. For B=2
the potential takes on the finite value at r=0:
V(0)= —2C, and next increases to zero when r— . For
B>2 the potential is repulsive for small r, but it goes
through zero for ro=—(1/C)In(2/B) and has a
minimum for 7 >r,. At large distances the Coulomb part
also dominates. Such a potential provides the bound
states for all B and C only if C>0. The degeneracy of
the energy levels with the same principal quantum num-
ber n and with different azimuthal quantum numbers /,
peculiar to the purely Coulombic potential, vanishes.
Therefore, the energy eigenvalues depend on both the
quantum numbers n and /. They become hydrogenlike i in

the limits: (i) if C— o and/or B—O0, then E a—EH,
where
n .

and (i) if C—0 and B <2, then E,;—E_, where
(B—2)

an?
Expressions (3) and (4) provide the upper or lower bounds
to the energy eigenvalues E,; of Eq. (2) if B<0 or B> 0,

respectively. The bounds E? are valid for B <2.
To solve the Schrédinger equation (2) the following

=—BC — “4)
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wave function has been used:

R(r)= % 5 (5)
S VN
where c¢; and y; are the varlatlonal parameters, and the
normalization constants N; —1/47/] I used the N=10
element basis with one nonlmear variational parameter 7,
where y;=jy. The parameters c; are obtained from the
diagonalization procedure. They take on such values that
for each state the wave function (5) is normalized and
orthogonal to the corresponding wave functions for the
states with the same / and different n. This enables us to
use the variational method for the discrete spectrum.?
Trial function (5) was examined for the eigenvalue prob-
lems for the Coulomb and the Yukawa potentials. The
eigenvalues calculated with the help of (5) reproduce the
analytical results for the Coulomb potential up to the level
n=7 and the numerical results’’? for the Yukawa poten-
tial up to the level 7i. Therefore, one can expect that the
trial wave function (5) provides the lowest eigenvalues of
Eq. (2) with a sufficient precision.

III. RESULTS

Tables I, II, and IIT show the calculated energy eigen-
values of the lowest-lying states (from 1s up to 4f) for
B =+1, +2, and *4 as functions of the screening param-
eter C. Tables IV and V contain the results for the
strongly repulsive (B=10) and strongly attractive
(B = —10) Yukawa potentials. The dependence of the en-
ergy levels on B is shown on Fig. 1 for the states 2s and
2p and in Tables VI—VIII for the states 1s—3d. The re-
sults for the higher excited states (from 5s up to 7i) are
presented in Table IX. The energy eigenvalues 1s—6h for
the attractive Yukawa potential with C=1 as functions of
B are shown in Table X.

" The present calculations show that the spectra of the
SCYP possess the following properties.

(i) For a given n the energy eigenvalues E,; increase

with increasing [/ if the Yukawa potential is attractive, and

E,; decrease with increasing [ if the Yukawa potential is"

repulsive; i.e., for [ >, E,;—E,; >0 or E,;—E,; <0 if
B <0 or B> 0, respectively. )

(ii) For the repulsive Yukawa potential there are some
values of the strength B and the screening parameter C
for which the energy eigenvalues for larger n and [ be-
come lower than those for smaller »n and |/, i.e., E,; <E,
ifn>n'>2and [ >1'.

(iii) For the attractive Yukawa potential there exist
some values of B and C for which the energy levels with
larger n and smaller ! become lower than the levels with
smaller n and larger [, ie., E,; <E,, if n>n'>3 and
1<l

Figure 2 is an illustration of property (i). It shows the
positions of the energy levels w1th respect to the corre-
sponding hydrogenlike levels EX [Eq. (3)] as functions of
the azimuthal quantum number ! for n=35, 6, and 7,
B =110, and C=0.1. For each n the absolute values of
the differences | E,;—E,'| are decreasmg functions of 1.
The s levels are mostly spht off from E,' (downwards for
B <0 and upwards for B>0). The energy eigenvalues E,;

o 2 486 &
or LI o o B i
-0.05 | ]2
: ]
=01 ,”\\\\ 415 R
[ 1 S~ ] wi
L ’ ~~ao 4 ~
-015 [ 4 e L
] ] ~
o £ ! ] ul_'
w o -02f / Jos @
hy ]

& /I ] bt
o025 ks 10 3
N -

SN 4-01
-0.5 S~ ]
-0.75 | B s

‘1:-'-1411-1“--'--4-0.5
0 -05 -1 E
B

FIG. 1. Energy of the 2s state (solid curves) and 2s-2p split-
ting (dashed curves) as functions of the strength B of the Yu-
kawa potential with the screening parameter C=0.1. Straight
line shows the results for the n=2 level of the purely Coulombic
potential (—2/r). The unit of energy is Eq=uA2/2#>.

approach EM' if n and [ increase. This property can be
understood 1f we consider the unperturbed wave function

,,I(r) i.e., the eigenfunction of Eq. (2) for B=0, which
varies like r’ for small r. The shift of the energy levels
with respect to Ey is due to an influence of the finite-
range Yukawa potential. Therefore, this shift is larger as
the larger values are taken on by R}(7) at small distances.
The wave function [Eq. (5)] obtained in the present calcu-
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FIG. 2. Positions of the energy levels E,; for the SCYP with
respect to the hydrogenlike levels Ef=—1/n? A,=E,—EL},
as functions of the azimuthal quantum number / for C=0.1 and
B =+10. Energy is expressed in units of Eq=uA4%/2#?, the re-
sults for n=>5 are labeled by + , for n=6 by @, and for n=7 by
X
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TABLE 1. Energy eigenvalues of states 1s—4f for the superposition of the Coulomb potential and the Yukawa potential as func-
tions of the screening parameter C for B =+1. Energy is expressed in units of Ey=pA42/2#, length in units of ao-—fiz/,uA and u is
the reduced mass of the interacting particles.

C 0.001 0.005 0.01 0.05 - 0.1 0.2 0.5 1 2 10

State "B=+1

1s —0.25100 —0.25496 —0.25985 —0.29650 —0.33694 —0.40424 —0.54243 —0.67482 —0.80566 —0.97424
2s —0.06349 —0.06735 —0.07193 —0.10071 —0.12436 —0.15254 —0.18781 —0.20888 —0.22581 —0.24578
2p —0.06350 —0.06738 —0.07202 —0.10242 —0.12931 —0.16429 —0.21203 —0.23665 —0.24711 —0.24998
3s —0.02876 —0.03246 —0.03656 —0.05717 —0.06952 —0.08083 —0.09214 —0.09869 —0.10387 —0.11015
3p —0.02877 —0.03248 —0.03664 —0.05368 —0.07242 —0.08633 —0.10052 -—-0.10700 -—0.11017 —0.11111
3d —0.02877 —0.03252 —-0.0368F —0.06052 —0.07705 —0.09373 —0.10770 —0.11067 —0.11108 —0.11111
4s —0.01660 —0.02008 —0.02364 —0.03786 —0.04431 —0.04940 —0.05428 —0.05726 —0.05936 —0.06209
4p —0.01660 —0.02010 —0.02371 —0.03869 —0.04604 —0.05213 —0.05801 —0.06080 —0.06209 —0.06250
4d —0.01660 —0.02014 —0.02386 —0.04014 —0.04869 —0.05566 —0.06098 —0.06227 —0.06248 —0.06250
4f —0.01661 —0.02021 —0.02407 —0.04200 —0.05171 —0.05900 —0.06227 —0.06249 —0.06250 —0.06250

B=-—1

1s —2.24900 —2.24501 —2.24005 —2.20122 —2.15479 —2.06840 —1.85302 —1.60149 —1.32871 —1.03013
2s —0.56150 —0.55755 —0.55270 —0.51714 —0.47984 —0.42373 —0.34092 —0.30213 —0.28122 —0.25367
2p —0.56150 —0.55754 —0.55266 —0.51641 —0.47727 —0.41569 —0.31664 —0.26879 —0.25332 —0.25002
3s —0.24900 —0.24511 —0.24044 —0.20963 —0.18360 —0.15579 —0.13347 —0.12531 —0.11991 -—-0.11219
3p —0.24900 —0.24510 —0.24040 —0.20900 —0.18172 —0.15144 —0.12596 -—0.11635 —0.11219 —0.11112
3d —0.24900 —0.24509 —0.24034 —0.20775 —0.11794 —0.14288 —0.11561 -—0.11158 -—0.11114 —-0.11111
4s —0.13963 —0.13582 —0.13138 —0.10602 —0.09015 —0.07869 —0.07139 —0.06830 —0.06613 —0.06295
4p —0.13963 —0.13581 —0.13135 —0.10552 —0.08893 —0.07661 —0.06834 —0.06468 —0.06297 —0.06250
4d —0.13963 —0.13580 —0.13129 —0.10452 —0.08650 —0.07272 —0.06445 —0.06275 —0.06252 —0.06250
4f —0.13963 —0.13577 —0.13120 —0.10301 —0.08288 —0.06781 —0.06276 —0.06251 —0.06250 —0.06250

TABLE II. Energy eigenvalues for B =12. Symbols have the same meaning as in Table I.

(o] 0.001 0.005 0.01 0.05 0.1 0.2 0.5 1 2 10
State B= +2

1s —0.00178 —0.00814 —0.01540 —0.06325 —0.11130 —0.18847 —0.34891 —0.51246 —0.68856 —0.95197
2s —0.00162 —0.00693 —0.01251 —0.04340 —0.06826 —0.10013 —0.14697 —0.18006 —0.20814 —0.24393
2p —0.00168 —0.00739 —0.01360 —0.05019 —0.08188 —0.12486 —0.18915 —0.22668 —0.24458 —0.24997
3s —0.00150 —0.00604 —0.01048 —0.03137 —0.04493 —0.05960 —0.07769 —0.08916 —0.09830 —0.10930
3p —0.00155 —0.00641 —0.01131 —-0.03579 —0.05281 —0.07159 —0.09312 —0.10398 —0.10934 —0.11110
3d —0.00160 —0.00678 —0.01215 —0.04039 —0.06100 —0.08360 —0.10502 —0.11027 —0.11106 —0.11111
4s —0.00140 —0.00532 —0.00891 —0.02341 —0.03132 -—0.03894 —0.04767 —0.05287 —0.05693 —0.06173
4p —0.00144 —0.00563 —0.00957 —0.02642 —0.03604 —0.04521 —0.05474 —0.05944 —0.06173 —0.06249
4d —0.00150 —0.00594 —0.01024 —0.02951 —0.04085 —0.05111 —0.05974 —0.06206 —0.06247 —0.06250
Af —0.00154 —0.00626 —0.01092 —0.03270 —0.04569 —0.05645 —0.06205 —0.06248 —0.06250 —0.06250
B=-2
1s —3.99800 —3.99002 —3.98007 —3.90184 —3.80726 —3.62817 —3.16202 —2.57423 —1.86904 —1.06578
2s —0.99800 —0.99007 —0.98030 —0.90709 —0.82695 —0.69809 —0.48018 —0.36665 —0.31809 —0.25789
2p —0.99800 —0.99006 —0.98025 —0.90596 —0.82283 —0.68445 —0.43274 —0.29674 —0.25721 —0.25003
3s —0.44245 —0.43461 —0.42510 —0.35945 —0.29861 —0.22489 —0.16031 —0.14075 —0.12967 —0.11341
3p —0.44245 —0.43460 —0.42505 —0.35845 —0.29538 —0.21662 —0.14572 —0.12338 —0.11344 —0.11112
3d —0.44245 —0.43457 —0.42496 —0.35644 —0.28885 —0.19975 —-0.12189 -0.11211 —-0.11117 -0.11111
4s —0.24801 —0.24029 —0.23115 —0.17464 —0.13351 —0.10003 —0.08111 —0.07430 —0.07003 —0.06345
4p —0.24801 —0.24028 —0.231 —0.17379 —0.13123 —0.09594 —0.07554 —0.06750 —0.06350 —0.06251
4d —0.24801 —0.24026 —0.23101 —0.17209 —0.12663 —0.08790 —0.06702 —0.06302 —0.06253 —0.06250

Af —0.24801 —0.24022 —0.23087 —0.16952 —0.11960 —0.07653 —0.06304 —0.06252 —0.06250 —0.06250
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TABLE III. Energy eigenvélues for B =+4. Symbols have the same meaning as in Table I.

C 0.001 0.005 0.01 0.05 0.1 0.2 0.5 1 2 10
State B=+4

1s —0.000727 —0.00359 —0.00700 —0.03235 —0.06088 —0.11160 —0.23359 —0.37984 —0.56407 —0.91540‘

2s —0.000676 —0.00323 —0.00615 —0.02465 —0.04173 —0.06684 —0.11124 —0.14935 —0.18598 —0.239 14
2p —0.000726 —0.00355 —0.00694 —0.03090 —0.05570 —0.09451 —0.16380 —0.21270 —0.24029 —0.24993
3s —0.000603 —0.00283 —0.00532 —0.01880 —0.02970 —0.04309 —0.06315 —0.07805 —0.09094 —0.10783
3p —0.000676 —0.00321 —0.00610 —0.02357 —0.03844 —0.05749 —0.08392 —0.09940 —0.10792 —0.11109
3d  —0.000725 —0.00351 —0.00681 —0.02840 —0.04782 —0.07260 —0.10098 —0.10954 —0.11101 —0.11111
4s —0.000508 —0.00239 —0.00444 —0.01488 —0.02189 —0.02977 —0.04046 —0.04775 —0.05364 —0.06109
ap —0.000602 —0.00281 —0.00526 —0.01825 —0.02749 —0.03787 —0.05055 —0.05737 —0.06111 —0.06249
4d  —0.000674 —0.00318 —0.00598 —0.02173 —0.03332 —0.04568 —0.05786 —0.06168 —0.06244 —0.062 50
4f  —0.000723 —0.00346 —0.00663 —0.02536 —0.03935 —0.05301 —0.06166 —0.06246 —0.06250 —0.06250
B=—4
1s —8.99600 —8.98003 —8.96010 —8.80147 -—8.60979 —8.23834 —7.22633 —5.83264 —3.88787 —1.16058
2s —224600 —2.23010 —2.21040 —2.05963 —1.88720 —1.58949 —0.98745 —0.56851 —0.40201 —0.26848
2p —2.24600 —2.23008 —2.21033 —2.05804 —1.88135 —1.56887 —0.90050 —0.41174 —0.26779 —0.25007
3s —0.99601 —0.98022 —0.96089 —0.82079 —0.67749 —0.47353 —0.23767 —0.17678 —0.14980 —0.11641
3p —0.99601 —0.98021 —0.96082 —0.81935 —0.67252 —0.45883 —0.20627 —0.14465 —0.11669 —0.11114
3d  —099601 —0.98017 —0.96069 —0.81646 —0.66248 —0.42861 —0.14650 —0.11334 —0.11122 —0.11111
4s —0.55852 —0.54289 —0.52405 —0.39749 —0.28749 —0.17211 —0.10406 —0.08717 —0.07769 —0.06462
4p —0.55852 —0.54288 —0.52399 —0.39621 —0.28356 —0.16353 —0.09369 —0.07550 —0.06488 —0.06251
4d  —055851 —0.54285 —0.52386 —0.39364 —0.27562 —0.14608 —0.07539 —0.06367 —0.06256 —0.06250
4f  —0.55851 —0.54280 —0.52367 —0.38975 —0.26343 —0.11898 —0.06370 —0.06254 —0.06250 —0.06250

TABLE IV. Energy eigenvalues for B=10. Symbols have the same meaning as in Table I.

C 0.001 0.005 0.01 0.05 0.1 0.2 0.5 1 2 10
State ‘

1s —0.000481 —0.00238 —0.00470 —0.02198 —0.04166 —0.07717 —0.16561 —0.27879 —0.43754 —0.84395
2s —0.000428 —0.00209 —0.00406 —0.01714 —0.02963 —0.04864 —0.08527 —0.12066 —0.15919 —0.22928
2p —0.000481 —0.00237 —0.00468 —0.02150 —0.03987 —0.07077 —0.13473 —0.19081 —0.23126 —0.24984
3s —0.000339 —0.00166 —0.00335 —0.01340 —0.02181 —0.03291 -—0.05128 —0.06659 —0.08139 —0.10477
3p —0.000427 —0.00208 —0.00404 —0.01677 —0.02843 —0.04498 —0.07220 —0.09182 —0.10492 —0.11105
3d —0.000481 —0.00236 —0.00464  —0.02058 —0.03660 —0.06003 —0.09388 —0.10782 —0.11086 —0.11111
4s —0.000274 —0.00134 —0.00260 —0.01007 —0.01614 —0.02364 —0.03413 —0.04210 —0.04926 —0.05974
4p —0.000339 —0.00165 —0.00334 —0.01311 —0.02070 —0.03074 —0.04483 —0.05392 —0.05978 —0.06247
4d —0.000427 —0.00207 —0.00397 —0.01607 —0.02623 —0.03887 —0.05446 —0.06080 —0.06236 —0.06250
4f —0.000480 —0.00235 —0.00458 —0.01930 —0.03234 —0.04774 —0.06370 —0.06241 —0.06250 —0.06250

TABLE V. Energy eigenvalues for B = —10. Symbols have the same meaning as in Table I.

C 0.01 0.05 0.1 0.2 0.5 0.85 1.25 1.55 2 10
State

1s —35.9001 —35.5031 —35.0124 —34.0489 - —31.2967 —28.3300 —25.2339 —23.1021 —20.1860 —1.9577
2s —8.9005 —8.5122 —8.0482 —7.1862 —5.0617 —3.2972 —2.0004 —1.4049 —0.9167 —0.3336
2p —8.9004  —8.5102 —8.0404 —7.1569 —4.9105 —2.9522 —1.4597 —0.7972 —0.3821 —0.2502
3s —3.9011 —3.5270 —3.1040 —2.3887 —1.0452 —04542 —0.2968 —0.2595 —0.2259 —0.1335
3p —3.9010 —3.5251 —3.0968 —2.3638 —0.9507 —0.3367 —0.2111 —0.1833  —0.1454 —0.1112
3d —3.9009 —3.5212  —3.0824 —2.3136 —0.7516 —0.1413 —0:.1140 —0.1121 —0.1114 —0.1111
4s —2.1520 —1.7966 —1.4254 —0.8800 —0.2431 —0.1503  —0.1227 —0.1130 —0.1032 —0.0712
4p —2.1519 —1.7948 —1.4190 —0.8606 —0.2063 —0.1233 —0.0979 —0.0890 —0.0762 —0.0625
4d —2.1517 —1.7912  —1.4061 —0.8210 —-0.1384 —-0.0767 —0.0641 —0.0631 —0.0627 —0.0625

4f —2.1515 —1.7856 —1.3866 —0.7598 —0.0681 —0.0628 —0.0625 —0.0625 —0.0625 —0.0625
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TABLE VI. Energy cigenvalues of states 15s—3d as functions of the strength B of the Yukawa potential for C=0.25. Symbols
have the same meaning as in Table I.

wte 1s 2s 2p 3s 3p 3d
B

100 —0.05597 —0.03615 —0.05327 —0.02533 —0.03460 —0.048 19
20 —0.07727 —0.04770 —0.07138 —0.03205 —0.044 56 —0.06109
10 —0.093 52 —0.05627 —0.08003 —0.03691 - —0.05117 —0.068 67

5 —0.12092 . —0.07006 —0.102 36 —0.044 45 —0.06048 —0.077 62
2 —0.22105 —0.11141 —0.14049 —0.064 27 —0.07739 —0.09022
1 —0.43275 —0.16172 —0.17643 —0.08396 —0.09035 —0.098 28
0.5 —0.66222 —0.199 81 —0.20670 —0.096 59 —0.09957 —0.103 89
0.2 —0.85125 —0.22821 —0.23085 —0.10504 —0.106 19 —0.10799

—0.2 —1.16740 —0.274 38 —0.27190 —0.11757 —0.11648 —0.11459

—0.5 —1.45407 —0.31639 —0.31043 —0.12811 —0.12544 —0.12059

-1 —2.02820 —0.40277 —0.391 66 —0.14849 —0.14324 —0.13320

-2 —3.54338 —0.646 66 —0.62729 —0.203 59 —0.19332 —0.17251

-5 —11.0640 —2.04420 —2.01028 —0.562 80 —0.53939 —0.49098

—10 —33.5761 —6.786 15 —6.74184 —2.08853 —2.05253 —1.97922
—20 —116.084 —25.5743 —25.5223 —9.13622 —9.08973 —8.99611

TABLE VII. Energy eigenvalues for C=0.75. Symbols have the same meaning as in Tables I and VI.

Vate 1s  2s 2p 3s 3p 3d
B

100 —0.13928 —0.07228 —0.12048 —0.044 82 —0.06502 —0.09026
20 —0.18909 —0.09203 —0.15077 —0.05412 —0.07746 —0.10017
10 —0.22623 —0.10535 —0.168 13 —0.06019 —0.084 19 —0.10379

5 —0.28578 —0.12498 —0.18779 —0.068 59 —0.09143 —0.106 61
2 —0.44123 —0.166 82 —0.21333 —0.08467 . —0.100 14 —0.10900
1 —0.61837 —0.20071 —0.22823 —0.096 16 —0.104 82 —0.10999
0.5 —0.77511 —0.22350 —0.23801 —0.103 30 —0.10772 —0.11053
0.2 —0.90079 —0.23896 —0.244 89 —0.10792 —0.109 69 —0.11087
. =02 —1.11127 —0.26163 - —0.25558 —0.11438 -0.11262 —0.11136
- —0.5 —1.308 72 —0.28026 —0.264 95 —0.11943 —0.11507 —0.11174

-1 —1.71343 —0.31496 —0.283 87 —0.12821 —0.11970 —0.11242

-2 —2.84240 —0.403 52 —0.33940 —0.14744 —0.13123 —0.11396

-5 —9.03247 —0.97475 —0.80643 —0.22451 —0.18390 —0.12123

—10 —29.1520 —3.73355 —3.44536 —0.55340 —0.43262 —0.198 11
—-20 —106.735 —17.9288 —17.5354 —3.74119 —3.47008 —2.90189

TABLE VIIIL. Energy eigenvalues for C =1.5. Symbols have the same meaning as in Tables I and VI.

wte 1s 2s 2p 3s 3p 3d
B

100 —0.23286 —0.104 67 —0.176 65 —0.05956 —0.08608 —0.106 94
20 —0.31061 —0.12802 —0.20505 —0.069 42 —0.09621 —0.109 69
10 —0.366 53 —0.14343 - —0.21761 —0.07543 —0.10052 —0.11031

5 —0.44990 —0.16350 —0.22875 —0.08310 - —0.10426 —0.11068
2 —0.61631 —0.19722 —0.23940 —0.094 81 —0.10774 —0.11093
1 —0.75352 —0.21925 —0.24421 —0.101 88 —0.10928 —0.11102
0.5 —0.85858 —0.23349 —0.24696 —0.10624 - —0.11015 —0.11106
0.2 —0.93837 —0.24313 —0.24875 —0.10910 —0.11072 —0.11109

—0.2 —1.069 24 —0.25721 —0.25131 —0.11319 —0.11152 —0.11113

—0.5 —1.18907 '—0.268 61 —0.25338 —0.11641 —0.11216 —0.11116

-1 —1.43788 —0.28902 —0.25716 —0.12200 —0.11333 —0.11121

-2 —2.16040 —0.33424 —0.26629 —0.133 66 —0.11607 —0.11131

-5 —6.67643 —0.52176 —0.31941 —0.17248 —0.13020 —0.11163

—10 —23.4466 —1.48601 —0.88280 —0.264 35 —0.18749 —0.11231

—20 —93.8292 —9.87058 —8.67643 —0.79076 —0.44377 —0.11519
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TABLE IX. Energy eigenvalues of states 55—7i for C =0.1. Symbols have the same meaning as in Table I.

B +1 —1 +2 -2 + 4 —4
State

Ss —0.03049 —0.05252 —0.022 82 —0.07036 —0.01656 —0.13421
Sp —0.03155 —0.05179 —0.025 80 —0.068 92 —0.02012 —0.13139
5d —0.03313 —0.05030 —0.028 74 —0.066 04 —0.024 15 —0.12568
5f —0.034 87 —0.04825 —0.03161 —0.06172 —0.027 86 —0.11692
Sg —0.03659 —0.04570 —0.034 32 —0.05597 —0.03152 —0.104 81
6s —0.02218 —0.03446 —0.01725 —0.04293 —0.01275 —0.07008
6p —0.022 84 —0.03402 —0.01893 —0.04207 —0.015 60 —0.06826
6d —0.023 83 —0.03316 —0.02116 —0.04039 —0.01815 —0.064 62
6f —0.02490 —0.03197 —0.02293 —0.03792 —0.02056 —0.05913
6g —0.025 89 —0.03057 —0.024 56 —0.034 80 —0.022 81 —0.05174
6h —0.02676 —0.02922 —0.02598 —0.03143 —0.024 86 —0.04238
Ts —0.01676 —0.024 41 —0.01328 —0.028 94 —0.009 36 —0.04211
p —0.01724 —0.02413 —0.01477 —0.02843 —0.01193 —0.04103
7d —0.01790 —0.023 60 —0.01612 —0.027 59 —0.01400 —0.03891
f —0.01861 —0.022 88 —0.017 32 —0.026 12 —0.01571 —0.03578
78 —0.01923 —0.02206 —0.01837 —0.024 37 —0.01720 '—0.03176
Th —0.01975 —0.02129 —0.01924 —0.022 55 —0.01848 —0.02709
7i —0.02013 —0.02075 —0.019 89 —0.02118 —0.01951 —0.022 60

lations has a similar shape to that of R}j(r) if the Yukawa  cross over, increases. An interesting feature of the spectra

contribution is not large.

Table XI shows the critical values C,, C;, and C,, for
which the levels 2s—4f (for B> 0) and 3d—5p (for B <0)
cross over. For positive B and for C < C, the state with
the larger principal quantum number »n has lower energy
than that with smaller n. For higher excited states the
level crossing takes place at smaller B, e.g., E7; <Eg up
to B=1.25. For 0<B<1.25 no level crossing between
the levels 25—7i has been obtained. With increasing B the

for the positive strength B is that the energy eigenvalues
of the states 2p, 3d, 4f, etc. tend to E;, with increasing B
and decreasing C and in the limit they become degenerate
with the state 1s (see Table IV). It should be noted that
the states 1s,2p,3d,4f , ... are the lowest eigenstates with
the orbital momentum quantum numbers /=0,1,2,3, ...,
respectively.

For negative B one can observe an opposite tendency.
The levels E4, Esg, etc. lie below the E;g, E,y, etc.,

number of energy levels with different n and I, which  respectively, if the values of the screening parameter be-

TABLE X. Energy eigenvalues of states 1s—6h for C =1. Symbols have the same meaning as in Table 1.

B -5 —8 —10 —20 —30 —50
State
1s —8.1637 —18.0693 —27.1336 —102.2894 —227.3520 —627.4070
2s —0.7334 —1.6570 —2.7323 —14.8343 —38.9624 —124.3203
2p —0.5265 —1.3061 —2.3053 —14.1939 —38.2253 —123.4919
3s —0.1981 —0.2800 —0.3652 —2.2297 —8.3499 —36.1419
3p —0.1588 —0.2099 —0.2605 —1.8634 —7.8233 —35.4589
3d —0.1141 —0.1171 —0.1207 —1.0866 —6.7237 —34.0663
4s —0.0942 —0.1178 —0.1368 —0.3142 —1.2721 —10.0259
4p —0.0805 —0.0971 —0.1105 —0.2274 —1.0059 —9.5239
4d —0.0641 —0.0657 —0.0677 —0.1161 —0.4802 —8.1119
4f —0.0625 —0.0626 —0.0626 —0.0627 —0.0630 —6.8572
5s —0.0550 —0.0649 —0.0723 —0.1230 —0.2234 —1.9100
5p —0.0487 —0.0561 —0.0617 —0.0997 —0.1711 —1.6225
5d —0.0409 —0.0418 —0.0429 —0.0646 —0.1032 —1.0472
5f —0.0400 —0.0401 —0.0401 —0.0402 —0.0404 —0.2035
5g —0.0400 —0.0400 —0.0400 —0.0400 —0.0400 —0.0400
6s —0.0359 —0.0409 —0.0443 ' —0.0639 —0.0944 —0.2673
6p —0.0324 —0.0365 —0.0392 - —0.0552 —0.0786 —0.1287
6d —0.0283 —0.0288 —0.0295 —0.0410 —0.0583 —0.1106
6f —0.0278 —0.0278 —0.0278 —0.0279 —0.0281 —0.0601
6g —0.0278 —0.0278 —0.0278 —0.0278 —0.0278 —0.0278
6h —0.0278 —0.0278 —0.0278 —0.0278 —0.0278 —0.0278
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TABLE XI. Estimated critical values of the screening parameter C-for the crossing of the energy
levels n1-n'l’ as functions of the strength B. For positive B the level n'l’ is located below the level nl
if C<Cy. Cy is listed in the upper part of the table. For negative B the level n’l’ lies below the level n/
if C; <C<C,. Cj is the first number, and C, the second quoted for each pair nl-n‘l’ in the lower part

of the table.

B 2s-4f 3p-4f 3s-4d 2s-3d 3s-4f
2 0.12
4 0.07 0.12 0.30 0.33 0.46

10 0.18 0.27 0.68 0.71 0.82
B 3d-4s 4f-5s 4f-5p
—8 0.83 1.02 0.36 1.14 0.37 0.74

—10 0.82 1.58 040 1.56 0.41 0.97
—20 1.21 3.92 0.63 3.38 0.64 1.88
—50 2.57 8.84 1.37 - 6.51 1.39 4.22

long to the interval C;<C<C, and if |B| is large
enough. The values C; and C, for the crossing of the en- .
ergy levels 3d-4s, 4f-5s, and 4f-5p are given in Table XI
for several values of B. The crossing between the levels
3d-4s and 4f-5s has been obtained for B < —7.78 and
—4.58, respectively. The calculations of the lowest ener-
gy levels were performed for —100<B < 100000 and
0.001 <C <100 and in these limits the properties (i)—(iii)
were confirmed.

The splitting of the 2s and 2p levels, which corresponds
to the Lamb shift in the hydrogen atom,’ is shown on Fig.
1. The Lamb shift E,;— E,, is positive if the Yukawa po-
tential is repulsive and for C=0.1 takes a maximum if
B=2.65. For B negative the Lamb shift is negative, too,
and changes monotonically with B. It seems that this
property, that the Lamb shift has the same sign as the po-
tential superposed with the Coulomb one, holds true for a
much broader class of potentials.  One can show by the
first-order perturbation theory that this is valid for the &-
like potential A8(r)/r? and for the potentials of the form
ArYif v>0 or —2<v< —1. These potentials superposed
with the attractive Coulomb potential lead to the Lamb
shift of the same sign as the sign of their strength A (at
least for small A). It agrees with the theorems!®!! stating
that for A>0 and v>0, Ey, <E) <E3;. For —1<v<0
and small A the Lamb shift has a sign opposite to A.

Approximate analytical expressions for the energy
eigenvalues of the SCYP can be found with the help the
hydrogenic wave functions R}(r). They are, for the 2s
state,

1

g _
E5y'= 2

(6a)

|_B@C*+1)
(c+1* |’

and for the states with / =n —1, i.e., the states with the
lowest energy for each '/,

B

—_— (6b)
(nC+1)*"

(1)
En,n—l =—-n—2 [1

Formulas (6) provide the upper bounds to the energy lev-
els of the SCYP for all values of B and C, but are useful
for C>>1or | B| <<1. If C— « the bounds (6) go over
into E\V=EX=_1/n? [Eq. (3)]. On the other hand, us-
ing the wave functions for the potential (B —2)/2r we ob-
tain the following upper bounds, which are valid only for
B<2:
go_B=2 |, p_2BQ2—B’[8C’+(2—B)]
16 (2C+2—B)*

(7a)

and, for the states with / =n —1,

TABLE XII. Comparison of analytical estimates E" [Egs. (6)] and E® [Egs. (7)] with numerical results calculated with the help
of wave function (5) for several energy levels and given values of the Yukawa parameters B and C. Energy is expressed in units E,.

B C 1s 28 2p 3d Af 5g 6h 7i
1.5 10 EW —0.9583 —0.2449 —0.2500  —0.1111 —0.0625 —0.0400  —0.0278 —0.0204
E —0.9627 —0.2453 —025000 —0.1111 —0.0625 —0.0400 —0.0278 —0.0204
—1.5 0.2 EWM —2.2397  —0.4453 —0.4308 —0.1456  —0.0689 —0.0410 = —0.0279  —0.0204
E® —2.7864 —0.5462 —0.5351 —0.1615 —0.0590 —0.0260 —0.0143 —0.0094
E —2.7864  —0.5474 —0.5363  —0.1675 —0.0716  —0.0412 —0.0279  —0.0204
—1.5 0.1 EW —2.3661 —0.5113 —0.5061 —0.1832  —0.0843 —0.0464  —0.0296 —0.0209
E® —2.9187 —0.6383 —0.6348 —0.2267 —0.0964  —0.0451 —0.0231 —0.0131
E —29187 —0.6384  —0.6349  —0.2274  —0.0988 —0.0501 —0.0302  —0.0210
1 0.01 E® —0.2599 —0.0719 —0.0720  —0.0368 —0.0240 —0.0177 —0.0139 —0.0114
—0.0719 —0.0720 —0.0368 —0.0241 —0.0178 —0.0141 —0.0116

E —0.2599
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B—-2 2B
B— 2n
[nC/(2—B)+1]

E® (7b)

nn—1=
4n?

Expressions (7) are useful for C<<1 and B<2. If C—0
they go over into the hydrogenlike levels E.*
= —(2—B)?/4n? [cf. Eq. (4)]. The upper bounds given
by Egs. (6) and (7) are in general worse than those ob-
tained with the use of the trial function (5) (see Table
XII), although they provide accurate energy eigenvalues in
the case when the potential is almost Coulombic, i.e., for
very small or very large C, small | B | or B << —1, and
large n.

IV. CONCLUSIONS

In the present work the discrete energy eigenvalues for
the superposition of the Coulomb and the Yukawa poten-
tials have been calculated as functions of the strength B
and the screening parameter C of the Yukawa potential.
For B=0 the spectrum is given by E,'= —1/n2 The en-
ergy eigenvalues E,; for the SCYP are shifted upwards or

“downwards with respect to the hydrogenlike levels E if
B>0 or B<O, respectively. The absolute values of the
deviations of E,; from E., i.e., | Eq—ER|, decrease
with the increasing azimuthal quantum number I/, which
results in the corresponding ordering of the energy levels
for a given n. This is due to the influence of the finite-
range Yukawa potential, which decreases with increasing
1. For certain values of B and C it yields the level cross-
ing. For positive B and for C < Cy(B) the levels E,,, E 3
etc., lie above E3,, E,p, etc., respectively. On the con-
trary, for negative B and for C:from the intervals
C1(B)<C < C,(B) the levels E4, Es,, etc., are located
below E3y, Ey4y, etc., respectively. .

The energy eigenvalues considered as functions of
vary almost linearly if | B | <<1 [cf. Egs. (6)] and are ap-
proximately quadratic functions of B if B << —1 [cf. Eq.
(4)]. The dependence of E,; on C shows two hydrogenlike
limits for C—0 and C— «. The difference between the
spectra for the SCYP and for the purely Coulombic po-
tential is largest for the intermediate values of the screen-
ing parameter 0.1 <C<2, ie., for the screening length

10> D /ag > 0.5, provided that B> —10. In this case the
splittings of the energy levels with the same » and various
I take also the largest values. If B— — « this interval
shifts towards larger values of C.

The properties of the energy spectrum for the SCYP
obtained in the present work have many analogies in
atomic, solid-state, and quark physics. Property (i), giv-
ing the order of the energy levels E,; with the same n,
dependent on / and on the sign of the Yukawa potential,
has an application to such systems as an exciton and a
bound polaron in polar semiconductors and ionic crystals.
These systems consist of two oppositely charged particles
interacting with themselves through a polarizable medi-
um. The energy levels of both the systems exhibit proper-
ty (i),>7 although the total effective potential is even more
complicated than the SCYP, being a linear combination of
the Coulomb potential and an additional potential, which
is a sum of two Yukawa potentials with different
strengths and screening parameters, and an exponential
potential. However, the net contribution of the additional
potential is negative for the exciton>® and positive for the
bound polaron,” and one of the Yukawa potentials dom-
inates at small distances. ‘

Another system, having the energy levels ordered simi-
larly to those for the SCYP with B> 0, is the charmoni-
um (the bound state of heavy charmed quark-antiquark
pair). For each n the energy levels of charmonium in-
crease with decreasing 1.'?> This can be explained in the
frames of the simple model,'* assuming that the quark in-
teract via the potential being the superposition of the at-
tractive Coulomb potential and the positive linear poten-
tial.
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