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Bound eigenstates for the superposition of the Coulomb and the Yukawa potentials
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The eigenvalue problem for two particles interacting through the potential being the superposition
of the attractive Coulomb potential (—A /r) and the Yukawa potential Bexp( —Cr)/r of arbitriry
strength B and screening parameter C is solved by variational means. The energy levels E„I for the
states 1s through 7i are calculated as functions of B and C. It is shown that for a given principal
quantum number n the energy eigenvalues increase (decrease) with increasing azimuthal quantum
number l if the Yukawa potential is attractive (repulsive), i.e., for l & l': E„~&E„I if B &0, and

E„~&E„I if B & 0. It leads to the crossing of the energy levels with n & 2. For B & 0 the levels with
larger n and l become lower than those with smaller n and l, e.g., E3q&E2„E4f&E2„and
E4f & E3p For B & 0 and certain intervals of C the levels with larger n but smaller l lie below those
with smaller n and larger l, e.g., E4, &E3d, E5, &E4f-, and E5p&E4f The values of B and C for
which the lowest-energy levels cross over are estimated. Moreover, the splitting of the 2s and 2p
levels (the Lamb. shift) is discussed.

I. INTRODUCTION

The eigenvalue problem for the Yukawa (Debye-
Hiickel) potential was considered by many authors; for ex-
ample, see Refs. 1 and 2. This potential (called as well the
exponentially screened Coulomb potential) describes the
interaction between charge carriers in an ionized gas or in
a metal. The eigenvalues of the Schrodinger equation for
the Yukawa potential as well as for the exponential cosine
Coulomb potential are now well known (at least for the
lowest states). The superposition of the Coulomb and the
Yukawa potentials (SCYP) is an another example of the
two-particle potential having applications in the solid-
state physics. It was shown that the main properties
of the effective two-particle interaction for the charged
particles in polar crystals are described by the SCYP. To
the best of my knowledge no systematic study of the
bound eigenstates for this potential was undertaken. The
purpose of the present paper is therefore to calculate the
lowest-lying energy levels for the SCYP and to study their
properties.

11. SOI.UTION OF THE SCHRODINGER EQUATION

%e consider a two-particle system interacting through
the potential (SCYP) I

V(r)= — +—e Cr

r r
where r is the distance between the particles, A and B are
the strengths of the Coulomb and the Yukawa potentials,
respectively, and C is the screening parameter ( C =1!D,
where D is the screening length). We assume that A and
C are positive. The. radial Schrodigner equation has the
orm

pg
2 (3)

and'(ii) if C~O and 8&2, then E„i +E„,where—
E„=—BC-

4n
(4)

where the length has been expressed in units of
ao ——A' /pA, the energy in units of Eo=pA2/2A', and p is
the reduced mass of the two particles. In Eq. (2) all quan-
tities are dimensionless, in particular, the parameters of
the poteritial have been changed with respect to those in
Eq. (1) as follows: 8'=28/A and C'=Cao, and next the
primes have been omitted. The units Eo and ao will be
used throughout this paper.

The Schrodinger equation (2} is not solvable analytical-
ly. Nevertheless, some properties of its eigenvalues can be
guessed without solving it. The bound eigenstates exist
for all values of the parameters 8 and C. For 8 &2 the
bound eigenstates appear since the potential is attractive
for all r and has the long-range Coulomb tail. For 8=2
the potential takes on the finite value at r=0:
V(0) = —2C, and next increases to zero when r~ 00. For
8&2 the potential is repulsive for small r, but it goes
through zero for ra ———(1/C) ln(2/8) and has a
minimum for r & ro. At large distances the Coulomb part
also dominates. Such a potential provides the bound
states for all 8 and C only if C&0. The degeneracy of
the energy levels with the same principal quantum num-
ber n and with different azimuthal quantum numbers l,
peculiar to the purely Coulombic potential, vanishes.
Therefore, the energy eigenvalues depend on both the
quantum numbers n and /. They become hydrogenlike in
the limits: (i) if C~oo and/or 8~0, then E„i +E„, —
where

d 2 d l(I+1) 2 8 cr-
drz r dr r2 r r

=ER (r), (2)

Expressions (3}and (4} provide the upper or lower bounds
to the energy eigenvalues E„i of Eq. (2) if 8&0 or 8&0,
respectively. The bounds Eo are valid for 8 & 2.

To solve the Schrodinger equation (2) the following
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wave function has been used:
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where cj and yj are the variational parameters, and the
normalization constants NJ

——114'. I used the N=10
element basis with one nonlinear variational parameter y,
where yJ =jy. The parameters cj are obtained from the
diagonalization procedure. They take on such values that
for each state the wave function (5) is normalized and
orthogonal to the corresponding wave functions for the
states with the same l and different n. This enables us to
use the variational method for the discrete spectrum.
Trial function (5) was examined for the eigenvalue prob-
lems for the Coulomb and the Yukawa potentials. The
eigenvalues calculated with the help of (5) reproduce the
analytical results for the Coulomb potential up to the level
n=7 and the numerical results' for the Yukawa poten-
tial up to the level 7i Th.erefore, one can expect that the
trial wave function (5) provides the lowest eigenvalues of
Eq. (2) with a sufficient precision.

III. RESULTS

Tables I, II, and III show the calculated energy eigen-
values of the lowest-lying states (from ls up to 4f) for
B =+1, +2, and +4 as functions of the screening param-
eter C. Tables IV and V contain the results for the
strongly repulsive ( B= 10) and strongly attractive
(B= —10) Yukawa potentials. The dependence of the en-
ergy levels on B is shown on Fig. 1 for the states 2s and
2p and in Tables VI—VIII for the states ls —3d. The re-
sults for the higher excited states (from 5s up to 7i) are
presented in Table IX. The energy eigenvalues ls —6h for
the attractive Yukawa potential with C= 1 as functions of
8 are shown in Table X.

The present calculations show that the spectra of the
SCYP possess the following properties.

(i) For a given n the energy eigenvalues E„1 increase
with increasing l if the Yukawa potential is attractive, and
E„~ decrease with increasing I if the Yukawa potential is
repulsive; i.e., for l & l', E„~ E„1 &0 or E„I E„~ —&0if-
8&0 or B)0, respectively.

(ii) For the repulsive Yukawa potential there are some
values of the strength B and the screening parameter C
for which the energy eigenvalues for larger n and l be-
come lower than those for smaller n and l, i.e., E„~&E„~
if n &n')2 and l &l'.

(iii) For the attractive Yukawa potential there exist
some values of B and C for which the energy levels with
larger n and smaller l become lower than the levels with
smaller n and larger l, i.e., E„~ &E„I if n )n') 3 and
l &l'.

Figure 2 is an illustration of property (i). It shows the
positions of the energy levels with respect to the corre-
sponding hydrogenlike levels E„[Eq.(3)] as functions of
the azimuthal quantum number l for n=5, 6, and 7,
B =+10, and C=0.1. For each n the absolute values of
the differences

~
E„1 E„~ are decreasing functi—ons of l.

The s levels are mostly split off from E„(downwards for
B& 0 and upwards for B& 0). The energy eigenvalues E„I
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approach E„ if n and 1 increase. This property can be
understood if we consider the unperturbed wave function
R„&(r), i.e., the eigenfunction of Eq. (2) for B=O, which
varies like r for small r. The shift of the energy levels
with respect to E„ is due to an influence of the finite-
range Yukawa potential. Therefore, this shift is larger as
the larger values are taken on by R„I(r) at small distances.
The wave function [Eq. (5)] obtained in the present calcu-
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FIT&. 2. Positions of the energy levels E„I for the SCYP with
respect to the hydrogenlike levels E„=—1/n, A„I——E„I—E„,
as functions of the azimuthal quantum number I for C=0.1 and
B = +10. Energy is expressed in units of Eo ——IMA2/2', the re-
sults for n=5 arelabeledby +, for n=6by 0, and for n=7 by
X.
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8
FICx. 1. Energy of the 2s state (solid curves) and 2s-2p split-

ting (dashed curves) as functions of the strength B of the Yu-
kawa potential with the screening parameter C=0.1. Straight
line shows the results for the n =2 level of the purely Coulombic
potential ( —2/r). The unit of energy is Eo ——pA /2' .
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TABLE I. Energy eigenvalues of states I s 4f—for the superposition of the Coulomb potential and the Yukawa potential as func-
tions of the screening parameter C for B = 2 l. Energy is expressed in units of Eo =@A /2', length in units of ao Pi~I——pA, and p is
the reduced mass of the interacting particles.

0;001 O.OOS 0.01 0.05 0.1 0.2 0.5 10

1$
2$
2p
3$
3p
3d
4s
4p
4d
4f

—0.251 00
—0.063 49
—0.063 50

' —0.028 76
—0.028 77
—0.028 77
—0.01660
—0.01660
—0.01660
—0.01661

—0.254 96
—0.067 35
—0.067 38
—0.032 46
—0.03248
—0.032 52
—0.02008
—0.020 10
—0.020 14
—0.02021

—0.259 85
—0.071 93
—0.07202
—0.036 56
—0.036 64
—0.036 8 1-

—0.023 64
—0.023 71
—0.023 86
—0.02407

—0.296 50
—0.10071
—0.102 42
—0.057 17
—0.053 68
—0.060 52
—0.037 86
—0.038 69
—0.040 14
—0.042 00

—0.336 94
—0.124 36
—0.129 31
—0.069 52
—0.072 42
—0.077 05
—0.044-31
—0.04604
—0.048 69
—0.051 71

—0.404 24
—0.152 54
—0.16429
—0.080 83
—0.086 33
—0.093 73
—0.04940
—0.052 13
—0.055 66
—0.059 00

—0.542 43
—0.187 81
—0.212 03
—0.092 14
—0.10052
—0.10770
—0.054 28
—0.058 01
—0.06098
—0.062 27

—0.674 82
—0.208 88
—0.236 65
—0.098 69
—0.10700
—0.11067
—0.057 26
—0.060 80
—0.062 27
—0.062 49

—0.805 66
—0.225 81
—0.247 11
—0.103 87
—0.11017
—0.11108
—0.059 36
—0.062 09
—0.062 48
—0.062 50

—0.97424
—0.245 78
—0.249 98
—.0.11015
—0.111 11
—0.111 11
—0.062 09
—0.062 50
—0.062 50
—0.062 50

1s
2s
2p
3$
3p
3d
4s
4p
4d
4f

—2.249 00
—0.561 50
—0.561 50
—0.249 00
—0.249 00
—0.249 00
—0.13963
—0.13963
—0.13963
—0.13963

—2.245 01
—0.557 55
—0.557 54
—0.245 11
—0.245 10
—0.245 09
—0.135 82
—0.135 81
—0.135 80
—0.13577

—2.24005
—0.552 70
—0;552 66
—0.240 44
—0.24040
—0.240 34
—0.131 38
—0.131 35
—0.13129
—0.13120

—2.201 22
—0.517 14
—0.51641
—0.209 63
—0.209 00
—.0.207 75
—.0.10602
—0.105 52
—0.104 52
—0.10301

—2.154 79
—0.479 84
—0.477 27
—0.18360
—0.18172
—0.11794
—0.090 15
—0.088 93
—0.086 50
—0.082 88

—2.068 40
—0.423 73
—0.415 69
—0.155 79
—0.15144
—0.142 88
—0.078 69
—0.076 61
—0.072 72
—0.067 81

—1.853 02
—0.340 92
—0.31664
—0.13347
—0.125 96
—0.11561
—0.071 39
—0.068 34
—0.06445
—0.062 76

—1.601 49
—0.302 13
—0.268 79
—0.125 31

0.11635
—0.11158
—0.068 30
—0.064 68
—0.062 75
—0.062 51

—1.328 71
—0.281 22
—0.253 32
—0.11991
—0.112 19
—0.11114
—0.066 13
—0.062 97
—0.062 S2
—0.062 50

—1.030 13
—0.253 67
—0.25002
—0.112 19
—0.111 12
—0.111 11
—0.062 95
—0.062 50
—0.062 50
—0.062 50

TABLE II. Energy eigenvalues for B =+2. Symbols have the same meaning as in Table I.

0.001 0.005 0.01 O.OS 0.1 0.2 0.5 10

1s
2$
2p
3$
3p
3d
4s
4p
4d
4f

—0.001 78
—0.001 62
—0.001 68
—0.001 50
—0.001 SS
—0.001 60
—0.001 40
—0.001 44
—0.001 50
—0.001 54

—0.008 14
—0.006 93
—0.007 39
—0.006 04
—0.006 41
—0.006 78
—0.005 32
—0.005 63
—0.005 94
—0.006 26

—0.01540
—0.012 51
—0.01360
—0.01048
—0.011 31
—0.012 15
—0.008 91
—0.009 57
—0.01024
—0.01092

—0.063 25
—0.043 40
—0.050 19
—0.031 37
—0.035 79
—0.040 39
—0.023 41

0.02642
—0.029 51
—0.032 70

—0.11130
—0.068 26
—0.081 88
—0.044 93
—0.052 81
—0.061 00
—0.031 32
—0.03604
—0.040 85
—0.045 69

—0.18847
—0.100 13
—0.124 86
—0.059 60
—0.071 59
—0.08360
—0.038 94
—0.045 21
—0.051 11
—0.05645

—0.348 91
—0.14697
—0.189 15
—0.077 69
—0.093 12
—0.105 02
—0.047 67
—0.054 74
—0.059 74
—0.06205

—0.51246
—0.18006
—0.226 68
—0.089 16
—0.10398
—0.11027
—0.052 87
—0.059 44
—0.062 06
—0.06248

—0.688 56
—0.208 14
—0.244 58
—0.098 30
—0.10934
—0.11106
—0.056 93
—0.061 73
—0.062 47
—0.062 50

—0.951 97
—0.243 93
—0.249 97
—0.109 30
—0.111 10
—0.111 11
—0.061 73
—0.062 49
—0.062 50
—0.062 50

B=—2

1s
2$
2p
3$
3p
jd
4s
4p
4d
4f

—3.998 00
—0.99800
—0.99800
—0.442 45
—0.44245

- —0.442 45
—0.248 01
—0.248 01
—0.248 01
—0.248 01

—3.99002
—0.99007
—0.99006
—0.434 61
—0.434 60
—0.434 57
—0.240 29
—0.240 28
—0.24026
—0.240 22

—3.98007
—0.980 30
—0.980 25
—0.425 10
—0.425 05
—0.424 96
—0.231 15
—0.2 31
—0.231 01
—0.230 87

—3.901 84
—0.907 09
—0.905 96
—0.359 45
—0.358 45
—0.35644
—0.174 64
—0.173 79
—0.17209
—0.169 52

—3.80726
—0.826 95
—0.822 83
—0.298 61
—0.295 38
—0.288 85
—0.13351
—0.13123
—0.126 63
—0.11960

—3.628 17
—0.698 09
—0.68445
—0.224 89
—0.216 62
—0.19975
—0.10003
—0.095 94
—0.087 90
—0.076 53

—3.16202
—0.480 18
—0.432 74
—0.160 31
—0.145 72
—0.121 89
—0.081 11
—0.075 54
—0.067 02
—0.063 04

—2.57423
—0.366 65
—0.296 74
—0.14075
—0.123 38
—0.112 11
—0.074 30
—0.067 50
—0.063 02
—0.062 52

—1.869 04
—0.31809
—0.257 21
—0.129 67
—0.11344
—0.111 17
—0.07003
—0.063 50
—0.062 53
—0.062 50

—1.065 78
—0.257 89
—0.25003
—0.11341
—0.111 12
—0.111 11
—0.063 45
—0.062 51
—0.062 50
—0.062 50
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TABLE III. Energy eigenvalues for B =+4. Symbols have the same meaning as in Table I.
0.001 0.005 0.01 D.OS 0.1 0.2 0.5 10

1s
2$
2p
3$
3p
3d
4s
4p
4d
4f

—0.000727
—0.000 676
—0.000726
—0.000603
—0.000676
—0.000 725
—0.000 508
—0.000 602
—0.000 674
—0.000 723

—0.003 59
—0.003 23
—0.003 55
—0.002 83
—0.003 21
—0.003 51
—0.002 39
—0.002 81
—0.003 18
—0.003 46

—0.00700
—0.006 15
—0.006 94
—0.005 32
—0.006 10
—0.006 81
—0.00444
—0.005 26
—0.005 98
—0.006 63

—0.032 35
—0.02465
—0.030 90
—0.018 80
—0.023 57
—0.028 40
—0.014 88
—0.018 25
—0.021 73
—0.025 36

—0.06D 88
—0.041 73
—0.055 70
—0.029 70
—0.038 44
—0.047 82
—0.021 89
—0.027 49
—0.033 32
—0.039 35

—0.11160
—0.066 84
—0.094 51
—0.043 09
—0.057 49
—0.072 60
—0.029-77
—0.037 87
—0.045 68
—0.053 01

—0.233 59
—0.11124
—0.163 80
—0.063 15
—0.083 92
—0.10098
—0.04046
—0.050 55
—0.057 86
—0.061 66

—0.379 84
—0.149 35
—0.212 70
—0.078 05
—0.09940
—0.10954
—0.047 75
—0.057 37

—0.56407
—0.185 98
—0.24029
—0.09094
—0.107 92
—0.11101
—0.053 64
—0.06) 11

—0.061 68 —0.062 44
—0.062 46 —0.062 50

—0.91540
—0.239 14
—0.249 93
—0.10783
—0.11109
—0.111 11
—0.061 09
—0.06249
—0.062 50
—0.062 50

1s
2$
2p
3$
3p
3d
4s
4p
4d
4j'

—8.99600
—2.24600
—2.24600
—0.99601
—0.99601
—0.99601
—0.558 52
—0.558 52
—0.5S8 51
—0.558 51

—8.98003
—2.230 10
—2.23008
—0.98022
—0.98021
—0.980 17
—0.542 89
—0.542 88
—0.542 85
—0.542 80

—8.960 10
—2.21040
—2.21033
—0.960 89
—0.960 82
—0.96069
—0.52405
—0.523 99
—0.523 86
—0.523 67

—8.801 47
—2.059 63
—2.058 04
—0.820 79
—0.81935
—0.81646
—0.39749
—0.396 21
—0.393 64
—0.389 75

.—8.609 79
—1.887 20
—1.881 35
—0.677 49
—0.672 52
—0.662 48
—0.287 49
—0.283 56
—0.275 62
—0.263 43

—8.238 34
—1.589 49
—1.568 87
—0.473 53
—0.458 83
—0.428 61
—0.172 11
—0.163 53
—0.146 08
—0.11898

—7.226 33
—0.987 45
—0.900 50
—0.237 67
—0.20627
—0.146 50
—0.10406
—0.093 69
—0.075 39
—0.063 70

—5.832 64
—0.568 51
—0.411 74
—0.17678
—0.144 65
—0.11334
—0.087 17
—0.075 50

' —0.063 67
—0.062 54

—3.887 87
—0.402 01
—0.267 79
—0.149 80
—0.11669
—0.11122
—0.077 69
—0.064 88
—0.062 56
—0.062 SO

—1.16058
—0.268 48
—0.250 07
—0.11641
—0.111 14
—0.111 11
—0.064 62
—0.062 51
—0.062 50
—0.062 50

TABLE IV. Energy eigenvalues for B=10. Symbols have the same meaning as in Table I.

0.001 0.005 0.01 0.05 0.1 0.2 0.5 10

Is
2$
2p
3$
3p
3d
4s
4p
4d
4f

—0.000481
—O.ODD 428
—0.000481
—0.000 339
—0.000427
—0.000481
—0.000274
—0.000 339
—0.000427
—0.000480

—0.002 38
—0.002 09
—0.002 37
—0.001 66
—0.00208
—0.002 36
—0.001 34
—0.00165
—0.002 07
—0.002 35

—0.004 70
—0.00406
—0.004 68
—0.003 35
—0.00404
—0.004 64
—0.002 60
—0.003 34
—0.003 97
—0.004 58

—0.021 98
—0.017 14
—0.021 50
—0.01340
—0.01677
—0.020 58
—0.01007
—0.013 11
—0.01607
—0.01930

—0.041 66
—0.029 63
—0.039 87
—0.021 81
—0.028 43
—0.036 60
—0.016 14
—0.020 70
—0.02623
—0.032 34

—0.077 17
—0.048 64
—0.070 77
—0.032 91
—0.044 98
—0.06003
—0.023 64
—0.03074
—0.038 87
—0.047 74

—0.165 61
—O.D85 27
—0.13473
—0.051 28
—0.072 20
—0.093 88
—0.034 13
—0.044 83
—0.05446
—0.063 70

—0.278 79
—0.12066
—0.19081
—0.066 59
—0.091 82
—0.107 82
—0.042 10
—0.053 92
—0.060 80
—0.06241

—0.437 S4
—0.159 19
—0.231 26
—0.081 39
—0.10492
—0'. 11086
—0.049 26
—0.059 78
—0.062 36
—0.062 50

—0.843 95
—0.229 28
—0.249 84
—0.10477
—0.11105
—0.111 11
—0.059 74
—0.06247
—0.062 50
—0.062 50

TABLE V. Energy eigenvalues for 8 = —10. Symbols have the same meaning as in Table I.
0.01 0.05 0.1 0.2 0.5 0.85 1.25 1.55

1s
2$
2p
3$
3p
3d
4s
4p
41
4f'

—35.9001
—8.9005
—8.9004
—3.9011
—3.9010
—3.9009
—2.1520
—2;1519
—2.1517
—2.1515

—35.5031
—8.5122
—8.5102
—3.S270
—3.S251
—3.5212
—1.7966
—1.7948
—1.7912
—1.7856

—35.0124
—8.0482
—8.0404
—3.1040
—3.0968
—3.0824
—1.4254
—1.4190
—1.4061
—1.3866

—34.0489
—7.1862
—7.1569
—2.3887
—2.3638
—2.3136
—0.8800
—0.8606
—0.8210
—0.7598

—31.2967
—5.0617
—4.9105
—1.0452
—0.9507
—0.7516
—0.2431
—0.2063
—0.1384
—0.0681

—28.3300
—3.2972
—2.9522
—0.4542
—0.3367
—0.1413
—0.1503
—0.1233
—0.0767
—0.0628

—25.2339
—2.0004
—1.4597
—0.2968
—0.2111
—0;1140
—0.1227
—0.0979
—0.0641
—0.0625

—23.1021
—1.4049
—0.7972
—0.2595
—0.1833
—0.1121
—0.1130
—0.0890
—0.0631
—0.0625

—20.1860
—0.9167
—0.3821
—0.2259
—0.1454
—0.1114
—0.1032
—0.0762
—0.0627
—0.0625

—1.9577
—0.3336
—. 0.2502
—0.1335
—0.1112

0.1111
—0.0712
—0.0625
—0.0625
—0.0625
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1$ 3$ 3d3p

TABLE VI. Energy eigenvalues of states 1$—3d as functions of the strength 8 of the Yukawa potential for C=0.25. Symbols
have the same meaning as in Table I.

2 2

100
20
10
5
2
1

0.5
0.2

—0.2
—0.5
—1
—2
—5

—10
—20

—0.055 97
—0.077 27
—0.093 52
—0.12092
—0.221 05
—0.432 75
—0.662 22
—0.851 25
—1.16740
—1.45407
—2.028 20
—3.543 38

—11.0640
—33.5761

—116.084

—0.036 15
—0.047 70
—0.05627
—0.07006
—0.11141
—0.16172
—0.19981
—0.228 21

0.274 38
—0.31639
—0.402 77
—0.646 66
—2.044 20
—6.786 15

—25.5743

—0.053 27
—0.071 38
—0.08003
—0.102 36
—0.14049
—0.17643
—0.206 70
—0.230 85
—0.271 90
—0.31043
—0.391 66
—0.627 29
—2.01028
—6.741 84

—25.5223

—0.025 33
—0.03205
—0.03691
—0.04445
—0.064 27
—0.083 96
—0.096 59
—0.10504
—0.11757
—0.128 11
—0.14849
—0.203 59
—0.562 80
—2.088 53
—9.13622

—0.03460
—0.044 56
—0.051 17
—0.06048
—0.077 39
—0.090 35
—0.099 57
—0.106 19
—0.11648
—0.125 44
—0.143 24
—0.19332
—0.539 39
—2.052 53
—9.089 73

—0.048 19
—0.061 09
—0.068 67
—0.077 62
—0.09022
—0.098 28
—0.103 89
—0.10799
—0.11459
—0.120 59
—0.13320
—0.172 51
—0.49098
—1.979 22
—8.996 11

TABLE VII. Energy eigenvalues for C=0.75. Symbols have the same meaning as in Tables I and VI.

te 2$ 2p 3$ 3p 3d

100
20
10
5
2
1

0.5
0.2

—0.2
—0.5
—1
—2
—5

—10
—20

—0.13928
—0.18909
—0.226 23
—0.285 78
—0.441 23
—0.618 37
—0.775 11
—0.90079
—1.11127
—1.308 72
—1.71343
—2.842 40
—9.032 47

—29.1520
—106.735

—0.072 28
—0.09203
—0.105 35
—0.124 98
—0.16682
—0.200 71
—0.223 50
—0.238 96
—0.261 63
—0.280 26
—0.31496
—0.403 52
—0.974 75
—3.733 55

—17.9288

—0.12048
—0.15077
—0.168 13
—0.18779
—0.213 33
—0.228 23
—0.23801
—0.244 89
—0.255 58
—0.26495
—0.283 87
—0.33940
—0.80643
—3.44S 36

—17.5354

—0.044 82
—0.054 12
—0.060 19
—0.068 59
—0.084 67
—0.096 16
—O. 103 30
—0.10792
—0.11438
—0.11943
—0.128 21
—0.147 44
—0.224 51
—0.553 40
—3.741 19

—0.065 02
—0.077 46
—0.084 19
—0.091 43
—0.100 14
—0.104 82
—0.&07 72
—0.10969
—'0.11262
—0.11507
—0.11970
—0.13123
—0.18390
—0.43262
—3.47008

—0.09026
—0.100 17
—0.10379
—0.10661
—0.10900
—0.10999
—0.110S3
—0.11087
—0.11136
—0.11174
—0.11242
—0.11396
—0.121 23
—0.198 11
—2.901 89

TABLE VIII. Energy eigenvalues for C = 1.5. Symbols have the same meaning as in Tables I and VI.

1$ 2$ 2p 3p 3d

100
20
10
5
2
1

0.5
0.2

—0.2
—0.5
—1
—2
—5

—10
—20

—0.232 86
—0.31061
—0.366 53
—0.449 90
—0.61631
—0.753 52
—0.858 58
—0.938 37
—1.069 24
—1.18907
—1.437 88
—2.16040
—6.67643

—23.4466
—93.8292

—0.104 67
—0.12802
—0.143 43
—0.163 50
—0.19722
—0.21925
—0.233 49
—0.243 13
—0.257 21

'—0.268 61
—0.289 02
—0.33424
—0.521 76
—1.48601
—9.870 58

—0.17665
—0.205 05

- —0.217 61
—0.228 75
—0.239 40
—0.24421
—0.246 96
—0.248 75
—0.251 31
—0.2S3 38
—0.257 16
—0.26629
—0.31941
—0.882 80
—8.67643

—0.059 56
—0.069 42
—0.075 43
—0.083 10
—0.094 81
—0.101 88
—0.10624
—0.109 10
—0.113 19
—0.11641
—0.12200
—0.13366
—0.172 48
—0.264 35
—0.790 76

. —0.08608
—0.096 21
—0.10052
—0.10426
—0.10774
—0.10928
—0.11015
—0.11072
—0.11152
—0.112 16
—0.11333
—0.11607
—0.13020
—0.18749
—0.443 77

—0.10694
—0.10969
—0.11031
—0.11068
—0.11093
—0.11102
—0.11106
—0.11109
—0.111 13
—0.11116
—0.11121
—0.11131
—0.11163
—0.11231
—0.115 19



JANUSZ ADAMOWSKI 31

TABLE IX. Energy eigenvalues of states 5$—7i for C =0.1. Symbols have the same meaning as in Table I.

5$
Sp
Sd
5f
5g
6$
6p
6d
6f
6g
6h
7$
7p
7d
7f
7g
7h
7l

—0.03049
—0.031 55

0.033 13
—0.034 87
—0.036 59
—0.022 18
—0.022 84
—0.023 83
—0.024 90
—0.025 89
—0.026 76
—0.01676
—0.01724
—0.01790
—0.01861
—0.01923
—0.01975
—0.020 13

—0.052 52
—0.051 79-
—0.050 30
—0.048 25
—0.045 70
—0.03446
—0.03402
—0.033 16
—0.031 97
—0.030 57
—0.029 22
—0.02441
—0.024 13
—0.023 60
—0.022 88
—0.022 06
—0.021 29
—0.020 75

—0.022 82
—0.025 80
—0.028 74
—0.031 61
—0.034 32
—0.01725
—0.018 93
—0.021 16
—0.022 93
—0.024 S6
—0.025 98
—0.01328
—0.01477
—0.016 12
—0.01732
—0.018 37
—0.01924
—0.01989

—0.070 36
—0.068 92
—0.06604
—0.061 72
—0.055 97
—0.042 93
—0.042 07
—0.040 39
—0.037 92
—0.034 80
—0.031 43
—0.028 94
—0.028 43
—0.027 59
—0.026 12
—0.024 37
—0.022 55
—0.021 18

—0.01656
—0.020 12
—0.024 15
—0.027 86
—0.031 52
—0.012 75
—0.01560
—0.018 15
—0.020 56
—0.022 81
—0.024 86
—0.009 36
—0.01193
—0.01400
—0.015 71
—0.01720
—0.01848
—0.01951

—0.13421
—0.131 39
—0.125 68
—0.11692
—0.104 81
—0.07008
—0.068 26
—0.064 62
—O.OS9 13
—0.051 74
—0.042 38
—0.042 11
—0.041 03
—0.038 91
—0.035 78

' —0.031 76
—0.02709
—0.022 60

lations has a similar shape to that of R„~(r) if the Yukawa
contribution is not large.

Table XI shows the critical values Co, C~, and C2, for
which the levels 2s 4f (for B)0—) and 3d—5p (for B&0)
cross over. For positive B and for C & Co the state with
the larger principal quantum number n has lower energy
than that with smaller n. For higher excited states the
level crossing takes place at smaller B, e.g., E7; (E6, up
to 8=1.25. For 0(8&1.25 no level crossing between
the levels 2s —7i has been obtained. With increasing B the
number of energy levels with different n and I, which

cross over, increases. An interesting feature of the spectra
for the positive strength B is that the energy eigenvalues
of the states 2p, 3d, 4f, etc. tend to E&, with increasing B
and decreasing C and in the hmit they become degenerate
with the state ls (see Table IV). It should be noted that
the states 1 s, 2p, 3d, 4f, . . . are the lowest eigenstates with
the orbital momentum quantum numbers 1=0,1,2,3, . . . ,
respectively.

For negative B one can observe an opposite tendency.
The levels E4„E5„etc. lie below the E3d, E4f, etc.,
respectively, if the values of the screening parameter be-

TABLE X. Energy eigenvalues of states 1$—6h for C =1. Symbols have the same meaning as in Table I.
—10 —30 —50

1$
2$
2p
3$
3p
3d
4$
4p
4d
4f
5$
Sp
Sd
Sf
Sg
6$
6p
6d
6f
6g
6h

—8.1637
0.7334

—0.5265
—0.1981
—0.1588
—0.1141
—0.0942
—0.080S
—0.0641
—0.0625
—0.0550
—0.0487
—0.0409
—0.0400
—0.0400
—0.0359
—0.0324
—0.0283
—0.0278
—0.0278
—0.0278

. —18.0693
—1.6570
—1.3061
—0.2800
—0.2099
—0.1171
—0.1178
—0.0971
—0.0657
—0.0626
—0.0649
—0.0561
—0.0418
—0.0401
—0.0400
—0.0409
—0.0365
—0.0288
—0.0278
—0.0278
—0.0278

—27.1336
—2.7323
—2.3053
—0.3652
—0.2605
—0.1207
—0.1368
—0.1105
—0.0677
—0.0626
—0.0723
—0.0617
—0.0429
—0.0401
—0.0400
—0.0443
—0.0392
—0.0295
—0.0278
—0.0278
—0.0278

—102 2894
—14.8343
—14.1939
—2.2297
—1.8634
—1.0866
—0.3142
—0.2274
—0.1161
—0.0627
—0.1230
—0.0997
—0.0646
—0.0402
—0.0400
—0.0639
—0.0552
—0.0410
—0.0279
—0.0278
—0.0278

—227.3520
—38.9624
—38.2253
—8.3499
—7.8233
—6.7237
—1.2721
—1.00S9
—0.4802
—0.0630
—0.2234
—0.1711
—0.1032
—0.0404
—0.0400
—0.0944
—0.0786
—0.0583
—0.0281
—0.0278
—0.0278

—627.4070
—124.3203
—123.4919
—36.1419
—35.4589
—34.0663
—10.0259
—9.5239
—8.1119
—6.8572
—1.9100
—1.6225
—1.0472
—0.2035
—0.0400
—0.2673
—0.1287
—0.1106
—0.0601
—0.0278
—0.0278
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TABLE XI. Estimated critical values of the screening parameter C for the crossing of the energy
levels n 1-n'I' as functions of the strength 8. For positive 8 the level n'I' is located below the level nl
if C (Cp. Cp is listed in the upper part of the table. For negative 8 the level n'I' lies below the level nl
if C& (C(C&. C] is the first number, and C2 the second quoted for each pair n1-n'I' in the lower part
of the table.

2
4

10

2s 4f-

0.07
0.18

3d-4s

3p 4f-
0.12
0.27

3s-4d

0.30
0.68

4f Ss-

2$-3d

0.33
0.71

3s 4f-
0.12
0.46
0.82

4f Sp-
—8

—10
—20
—50

0.83 1.02
0.82 1.58
1.21 3.92
2.57 8.84

0.36 1.14
0.40 1.56
0.63 3.38
1.37 6.51

0.37 0.74
0.41 0.97
0.64 1.88
1.39 4.22

long to the interval Ci &C&Cz and if
~

8
i

is large
enough. The values Ci and Cz for the crossing of the en-:
ergy levels 3d-4s, 4f-5s, and 4f-Sp are given in Table XI
for several values of 8 The .crossing between the levels
3d-4s and 4f-5s has been obtained for 8 & —7.78 and
—4.58, respectively. The calculations of the lowest ener-
gy levels were performed for —100&8 &100000 and
0.001 & C & 100 and in these limits the properties (i)—(iii)
were confirmed.

The splitting of the 2s and 2p levels, which corresponds
to the Lamb shift in the hydrogen atom, is shown on Fig.
1. The Lamb shift Ez, E~~ is positive —if the Yukawa po-
tential is repulsive and for C=0.1 takes a inaximum if
8=2.65. For 8 negative the Lamb shift is negative, too,
and changes monotonica11y with B. It seems that this
property, that the Lamb shift has the same sign as the po-
tential superposed with the Coulomb one, holds true for a
much broader class of potentials. One can show by the
first-order perturbation theory that this is valid for the 5-
like potential A5(r)/r and for the potentials of the form
A,r" if v & 0 or —2 & v & —1. These potentials superposed
with the attractive Coulomb potential 1'ead to the Lamb
shift of the same sign as the sign of their strength A, (at
least for small A, ). It agrees with the theorems'o'" stating
that for A, &0 and v&0, Ezz&Ez, &E3d For —1&v&0
and small I, the Lamb shift has a sign opposite to A, .

(6b)

Formulas (6) provide the upper bounds to the energy lev-
els of the SCYP for all values of 8 and C, but are useful
for C »1 or

~

8
~

&& 1. If C—+ oo the bounds (6) go over
into E„'"=E„=—1/n [Eq. (3)]. On the other hand, us-
ing the wave functions for the potential (8 —2)/2r we ob-
tain the following upper bounds, which are valid only for
B&2:

(z) 8 —2 28(2 —8) [8C +(2—8) ]
16 (2C+2—8)4

and, for the states with l =n —1,

(7a)

Approximate analytical expressions for the energy
eigenvalues of the SCYP can be found with the help the
hydrogenic wave functions R„~(r). They are, for the 2s
state,

1 8(2C +1)
(C+1)'

and for the states with l =n —1, i.e., the states with the
lowest energy for each l,

TABLE XII. Comparison of analytical estimates E'" [Eqs. (6)] and E' ' [Eqs. (7)] with numerical results calculated with the help
of wave function (5) for several energy levels and given values of the Yukawa parameters B and C. Energy is expressed in units Ep.

1.5

—1.5

—1.5

10

0.2

0.1

0.01

E(1)

E(&)
E(2)

E(1)
~(2)

E(2)

1s

—0.9583
—0.9627
—2.2397
—2.7864
—2.7864
—2.3661
—2.9187
—2.9187
—0.2599
—0.2599

2$

—0.2449
—0.2453
—0.4453
—0.5462
—0.5474
—0.5113
—0.6383
—0.6384
—0.0719
—0.0719

—0.2500
—0.2500
—0.4308
—0.5351
—0.5363
—0.5061
—0.6348
—0.6349
—0.0720
—0.0720

—0.1111
—0.1111
—0.1456
—0.1615
—0.1675
—0.1832
—0.2267
—0.2274
—0.0368
—0.0368

4f
—0.0625
—0.0625
—0.0689
—0.0590
—0.0716
—0.0843
—0.0964
—0.0988
—0.0240
—0.0241

—0.0400
—0.0400
—0.0410
—0.0260
—0.0412
—0.0464
—0.0451
—0.0501
—0.0177
—0.0178

—0.0278
—0.0278
—0.0279
—0.0143—
—0.0279
—0.0296
—0.0231
—0.0302
—0.0139
—0.0141

7l

—0.0204
—0.0204
—0.0204
—0.0094
—0.0204
—0.0209
—0.0131
—0.0210
—0.0114
—0.0116
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(2) B —2
2 ~ 28

4n [nC/(2 —8)+1]"

Expressions (7) are useful for C«1 and 8&2. If C—+0
they go over into the hydrogenlike levels E„' '

(2—8—) /4n [cf E. q. (4)j. The upper bounds given
by Eqs. (6) and (7) are in general worse than those ob-
tained with the use of the trial function (5) (see Table
XII), although they provide accurate energy eigenvalues in
the case when the potential is almost Coulombic, i.e., for
very small or very large C, small

~

8
~

or 8 && —1, and
large n.

IV. CONCLUSIONS

In the present work the discrete energy eigenvalues for
the superposition of the Coulomb and the Yukawa poten-
tials have been calculated as functions of the strength 8
and the screening parameter C of the Yukawa potential.
For 8=0 the spectrum is given by E„=—1/n The .en-
ergy eigenvalues E„t for the SCYP are shifted upwards or
downwards with respect to the hydrogenlike levels E„ if8)0 or 8&0, respectively. The absolute values of the
deviations of E„t from E„, i e,

~

.E„t E„~, de—crease
with the increasing azim'uthal quantum number I, which
results in the corresponding ordering of the energy levels
for a given n. This is due to the influence of the finite-
range Yukawa potential, which decreases with increasing
I. For certain values of 8 and C it yields the level cross-
ing. For positive 8 and for C & Co(B) the levels E2„E3„
etc., lie above E3d, E4f, etc., respectively. On the con-
trary, for negative 8 and for C from the intervals
C, (8) &C&C2(8) the levels Eq„E5„etc., are located
below E3d, E4f, etc., respectively.

The energy eigenvalues considered as functions of 8
vary almost linearly if

~
8

j && 1 [cf. Eqs. (6)) and are ap-
proximately quadratic functions of 8 if 8 « —1 [cf. Eq.
(4)J. The dependence of E„t on C shows two hydrogenlike
limits for C~O and C~ co. The difference between the
spectra for the SCYP and for the purely Coulombic po-
tential is largest for the intermediate values of the screen-
ing parameter 0.1&C&2, i.e., for the screening length

10&D/ao &0.5, provided that B & —10. In this case the
splittings of the energy levels with the same n and various
I take also the largest values. If B~—oo this interval
shifts towards larger values of C.

The properties of the energy spectrum for the SCYP
obtained in the present work have many analogies in
atomic, solid-state, and quark physics. Property (i), giv-
ing the order of the energy levels E„t with the same n,
dependent on / and on the sign of the Yukawa potential,
has an application to such systems as an exciton and a
bound polaron in polar semiconductors and ionic crystals.
These systems consist of two oppositely charged particles
interacting with themselves through a polarizable medi-
um. The energy levels of both the systems exhibit proper-
ty (i), ' although the total effective potential is even more
complicated than the SCYP, being a linear combination of
the Coulomb potential and an additional potential, which
is a sum of two Yukawa potentials with different
strengths and screening parameters, and an exponential
potential. However, the net contribution of the additional
potential is negative for the exciton ' and positive for the
bound polaron, 7 and one of the Yukawa potentials dom-
iriates at small distances.

Another system, having the energy levels ordered simi-
larly to those for the SCYP with 8&0, is the charmoni-
uin (the bound state of heavy charmed quark-antiquark
pair). For each n the energy levels of charmonium in-
crease with decreasing l. ' This can be explained in the
frames of the simple model, ' assuming that the quark in-
teract via the potential being the superposition of the at-
tractive Coulomb potential and the positive linear poten-
tial.
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