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A peculiar route to chaos is known experimentally for magnetic parallel pumping. The periods of
auto-oscillations become irregular at the onset of chaos, without previous cascades of period-
doubling bifurcations. This route to chaos has been found by the simulation of parallel pumping of
a single spin interacting with a cavity or, for multispin systems, coupled by exchange.

I. INTRODUCTION

Nonlinear systems which undergo transitions from sta-
tionary to periodic and chaotic states are usually classified
according to their route to chaos. The route to chaos by a
caslcade of period-doubling bifurcations is well establish-
ed.

Here, a different route by ‘“‘irregular periods” will be
considered. It might be present in many systems showing
auto-oscillations, if these oscillations are allowed to vary
their frequency continuously. It could also be found in
systems having a cascade of period-doubling bifurcations,
if the parameters are set accordingly. In Fourier spectra,
irregular periods will broaden the Fourier peaks, while
period doubling will create additional peaks at fractional
frequencies. A combination of both routes would create a
chaotic regime before the full cascade of period-doubling
bifurcations is developed.

Magnetic resonances in ferro- and antiferromagnets
provide examples of both routes. Yamazaki? described
period doubling under parallel pumping in an antifer-
romagnet in accord with the theoretical predictions of
Nakamura et al.> Gibson and Jeffries* reported a similar
behavior for ferromagnetic resonant in yttrium iron gar-
net (YIG). In addition, they write “Another, quite dif-
ferent, signal shape is shown . .. reminiscent of relaxation
oscillations in general; in fact, Hartwick et al.® in their
discovery of auto-oscillations described them as relaxation
oscillations. We believe that these are distinct phenomena
but have not investigated their possibly chaotic dynam-
ics.” Indeed, Fig. 6(a) in Ref. 4 shows a scatter in the
time intervals between consecutive spikes, i.e., it is chaotic
with irregular periods. Recently, even more pronounced
irregular periods of relaxation oscillations were found in
parallel pumping experiments, performed in ferro- and
antiferromagnets with low threshold powers. Typical ex-
amples are shown in Fig. 1, and the experiments are
described elsewhere.®

Unfortunately, earlier reports on auto-oscillations
magnetic resonance do not, to our knowledge, display
records of these oscillations. Therefore, they cannot be
tested for irregular periods.

5,7,8 in

Using the method introduced by Zakharov et al.® for
the description of parallel pumping, Grankin et al.'° and
Nakamura et al.> have simulated the chaotic regime for
two interacting spin-wave pairs. One paper® reports nu- -
merical results showing period doubling, the other paper'”
displays Fourier spectra which seem to imply irregular
periods without period doubling. Recently, Lugiato
et al.!! found irregular periods as numerical solutions of
their nonlinear equations for a laser driven by an external
field. For different parameter settings, however, the same
system exhibits a cascade of period-doubling bifurcations.

It is the aim of this paper to describe a simple model
which, first, shows relaxation oscillations, and, second, ex-
plores the onset of chaotic behavior by irregular periods.
This work is restricted to the simulation of parallel pump-
ing in ferromagnets. After a brief introduction to parallel
pumping, models are presented which describe the experi-
mental situation closely. First the Landau-Lifshitz equa-
tions are used to describe the motion of a classical spin in
a cavity, where the interaction with the cavity is
represented by equations for a damped LC circuit. A
second model treats a chain of exchange coupled spins,
also driven by a parallel pumping field. Numerical simu-
lations are presented which illustrate relaxation oscilla-
tions and steps on the route to chaos by irregular periods.

\
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FIG. 1. Relaxation oscillations measured by parallel pump-
ing, showing nearly regular and irregular periods in the 10-kHz
region, in the antiferromagnet (NH;3),(CH,),CuCl, at 9.36 GHz,
0.88 T, 1.4 K.
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II. MODELS FOR PARALLEL PUMPING

A. Introduction to parallel pumping (Ref. 12)

For the usual magnetic resonance one applies an oscil-
lating field normal to the static field i:lo. For parallel
pumping, however, both oscillating and static field are
parallel. Further, the pumping frequency is about twice
the Larmor frequency of the spin system. Why does this
field couple to the motion of the spins? The point is that
a nonlinear term breaks the axial symmetry along ﬁo.
This might be done, for example, by a crystalline anisotro-
py energy DS,%, while ﬁo is along the z axis. Then, the
spins will precess along an elliptical path with their z
component oscillating at twice the Larmor frequency w; .
Therefore, this oscillation can be driven by the external
pumping field along the z axis, oscillating at w,~2w.
Usually, this driving is explained in terms of the excita-
tion of spin waves or magnon pairs with small and oppo-
site wave vectors K. Here, we assume models which
describe the motions of the spins classically.

B. Model for one spin in a cavity

We use the following model for parallel pumping in fer-
romagnets: A single classical spin is described by an
equation of motion with Landau-Lifshitz damping. Due
to the inclusion of anisotropic terms, the description is in

the laboratory frame. In addition, the microwave cavity

is represented by a damped resonant circuit. The corre-
sponding Kirchhoff equations include radiation damping
effects along the z axis. In order to facilitate computa-
tions, these “Landau-Lifshitz-Kirchhoff” (LLK) equa-
tions are given in normalized parameters.

The equation of motion has the form'?

48 s B-ASX(SXH) W
dt

for a classical spin vector § of unit length | S| =1in an
effective normalized field H:yf—i (gyromagnetic ratio y,
effective magnetic field H), where A is the Landau-
Lifshitz damping parameter. The effective field h

h=(ho+ah, +a)e, —h,&, (1a)

is the sum of the static field h,, the pumping field
hy,=/4p0sin(wpt), and the field a(z) of the cavity along
the z axis with unit vector €,, and an anisotropy field
h 4 =d 45, along the x axis, representing an anisotropy en-
ergy term with a hard x axis and an easy yz plane. (The
factor a will be described later.) The Larmor precession
frequency w; for small polar angles 8 of the spin is'?

wr=[holho+h4)]1""? (1b)

and w; decreases with increasing angle 6 due to the non-
linear anisotropy term.

For parallel pumping, the sample is at a position inside
the microwave cavity where the pumping field is parallel
to the static field Hy. The sample is affected also by the

radiation field, whose z component is enhanced by the
cavity. For steady-state conditions, this interaction acts
as an additional damping (“radiation damping”). If the
spin opens its precession cone, the cavity will create a
larger damping field with some time delay. Usually, this
retarding effect is neglected. For highly nonlinear sys-
tems, however, such small effects might change the time
evolution drastically. Therefore, the cavity will be
represented by a damped LC circuit. In normalized pa-
rameters, the following Kirchhoff equations describe this
LC circuit: ‘

da 2 dhp dsz

—_——== —_ —_ —_— I 2
ar Y@ —ob —B, o s (2a)
db

—_—=— . 2b
dt Y;)_b +a (2b)

The parameter a(¢) is the normalized field produced by
the coil at the position of the sample and is proportional
to the current in the coil. The parameter b (t) is propor-
tional to the charge on the capacitor, ¥; and ¥, describe
series and parallel damping, respectively, and o, is the
resonance frequency of the undamped circuit. The values
B, and By contain the coupling for the induction in the
coil by the pumping field 4,(¢) and by the precessing
magnetic moment, which is in turn proportional to s,().
[Since Eqgs. (2a) and (2b) are linear, the external pumping
field could also be added directly by setting a=1 and
Bp=0.] Further, dimensionless parameters can be ob-
tained by introducing a normalized time t'=t/2T,, with
2T, being the period of the forced spin precession for
steady-state pumping.

C. Comparison with the Maxwell-Bloch
and Bloch-Kirchhoff models

It is interesting to compare the above LLK equations
with the Maxwell-Bloch (MB) equations used by Lugiato
et al.!! to describe an optical laser driven by an external
pumping field and with the Bloch-Kirchhoff (BK) equa-
tions proposed by Brun et al.'® for their nuclear magnetic
resonance laser. Both models are equivalent. The atomic
or nuclear spin system is described by one complex pa-
rameter (atomic polarization or spin component normal to
the precession axis, respectively) and one real, parameter
(population difference or spin component along the rota-
tion axis) in a frame rotating with the pumping field. In
both cases the resonator (mirrors or LC circuit) is
represented by one complex parameter only, since the
Kirchhoff equations are truncated to one differential
equation of first order. This approximation treats only
motions which are slow relative to the Larmor precession.

In contrast, the LLK equations are written in a fixed
laboratory frame, because the crystalline anisotropy term
prevents a transformation to a rotating frame. Therefore,
the full time evolution has to be calculated including the
Larmor precession itself. The motion of the spin of con-
stant length is described by polar and azimuthal angles
which correspond to one complex parameter. In addition,
the untruncated equations for the resonator have two vari-
ables, both with an amplitude and a relative phase, corre-
sponding to two complex parameters. Therefore, the full
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parameter space is larger, although it is easier to describe
the spin system itself, since time trajectories for LLK are
two dimensional on the surface of the unit sphere, while
they are three dimensional (inside a sphere) for MB and
BK.

D. Model for a multispin system

Parallel pumping can be described as the creation of
standing spin waves at about half the pumping frequency,
or, as the creation of magnon pairs with small and oppo-
site wave vectors k. Due to the nonlinearity of the prob-
lem, these spin waves or magnons interact with further
spin waves or magnons. In an elegant analysis, Nakamura
et al.’? found the route to chaos by period-doubling bifur-
cations for pumped spin waves which interact with one
additional standing spin wave. To describe this coupling,
he included a four magnon interaction (two interacting
magnon pairs). '

In order to study higher-order interactions with several
additional spin-wave pairs, a simple classical approach
will be used here. A chain of N discrete spins §; are cou-
pled by nearest-neighbor isotropic Heisenberg exchange
interactions. The time evolution of this multispin system
is described by a set of N equations (1), each with an addi-
tional term Hex, ; for the effective field h

hex,izA(_s.i—1+<s’i+1) ’ (3)
where A4 denotes the normalized exchange constant. The
same method has been used to calculate the turbulent
behavior of domain walls in strong static fields.!* Parallel
pumping of such a multispin system shows chaos by ir-
regular periods without the need for an interacting cavity.
Hence Eq. (2) will not be included in these “Landau-
Lifshitz-Heisenberg” (LLH) equations (1) and (3).

III. NUMERICAL RESULTS FOR ONE
SPIN IN A CAVITY

The LLK Egs. (1) and (2) representing one spin in a
cavity were solved numerically by calculating time evolu-
tions (“runs”) on a computer. After a few remarks about
the numerical procedure, a typical example for irregular
periods will be presented by displaying different aspects of

the same run. Then, several runs will illustrate the gradu--

al development of periodic relaxation oscillations, includ-
ing also a merging of two attractors. Finally, the onset of
chaotic behavior will be shown followed by a few runs ex-
hibiting a rather stochastic regime.

A. Remarks about the numerical procedure

The trajectories of the precessing spin were calculated
in small time steps (typical 1400—2800 steps for one Lar-
mor period). A variation of these steps did not change the
solutions, except for very chaotic regimes, where the devi-
ations grew slowly and approximately logarithmically, as
expected for strange attractors.

Although the trajectories of the spins were calculated
along the entire path in the laboratory frame, only
snapshots at times ¢t =n 2T, i.e., t'=n, will be displayed.

Thus, a steady-state pumping would give constant values.
Further, functions averaged over 27, will be evaluated
and plotted, yielding results which could be compared
with measurable quantities. Parameter values and initial
conditions were chosen rather to restrict computing time
than to quantitatively simulate the experiments.

B. An illustrative example for irregular periods

In this section, a typical example for irregular periods
will be displayed. Different aspects of the same run will
be presented. This run has a pronounced scatter in the
periods between spikes of comparable amplitudes. Figure
2(a) gives a periodically strobed view of the polar angle
6(n) of the spin versus the normalized time ¢’ =n.

Figure 2(b) shows a function f(#n) which is proportion-
al to the power absorbed by the spin system. This func-
tion can be compared to the absorption signals of parallel
pumping experiments, and it is proportional to
s; cos(wy,t), averaged over 2T, and plotted at normalized
times t'=n.

Again averaged over 2T, Fig. 2(c) shows the parameter
b(n) as a measure of the voltage across the resonating
capacitor. Clearly, the periods are unequal. Longer runs
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FIG. 2. Numerical simulation for parallel pumping of one
spin in a cavity. (a) Polar angle 6(n) vs normalized time ¢'=n.
(b) Function f(n), see text. (c) b(n) of Eq. (2b). To ease the
counting of the time t'=n, each tenth data point is marked by a
circle. [The parameter values for the LLK Egs. (1) and (2) are:
A=0.01, ho/2m=0.85, hyo=0.600, d,/2m=0.3, w,/2w=2,
¥1=3.6X1073, ¥,=036, ./2m=0.57, B,=8x10"% B,
=4500; with initial conditions 6,=20°, ¢o= —70°.]
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FIG. 3. Return map for f(n) for the strobed times
n=100—200. In contrast to Fig. 2, each data point is marked
by a circle. Consecutive points are connected by straight lines.

(displayed later) confirm that their scatter is irregular.

A further interesting feature is best seen in Fig. 2(c).
Each spike triggers a damped oscillation with a period T
of twice the strobe period, i.e., with T'=2(27,). Howev-
er, a closer look indicates that this pattern could be due to
a beating with a damped oscillation of a slightly different
period. (To ease the counting of the beats each tenth data
point is marked by a circle.) Keeping in mind that the an-
isotropy energy makes the Larmor precession dependent
on the polar angle of the spin precession, this pattern
could be caused by triggering the free-running precession
as a transient feature. Such effects of variable detuning
are probably an important ingredient for the creation of
irregular periods.

Figure 3 displays a return map f(n + 1) versus f(n)
for the time rn=100—200. Here, each data point is
marked by a circle, and consecutive points are connected
by straight lines in order to illustrate the time sequence.
The points follow about the same path for the leading
edges of each spike, whereas the trailing edges give a rath-
er stochastic pattern.

Figure 4, however, demonstrates that the path of the
spins is different for consecutive spikes. In Fig. 4, the tra-
jectories of the spin are plotted, strobed at times ¢’ =n, for
the time interval n =100—200. Again, each data point is
marked by a circle and consecutive points are connected

S

y

(a)

by straight lines. Since the spin moves on the surface of
the unit sphere, Fig. 4(a) gives a “top view” and Fig. 4(b)
a “side view” of the sphere, i.e., the projection of the tra-
jectories onto the (sy,s,) and the (sy,s,) planes are shown.
An indication of some kind of twofold rotation symmetry
around the z axis in these patterns will be discussed later.

C. Periodic relaxation oscillations and the merging
of two attractors

In this section, the gradual development of periodic re-
laxation oscillations with increasing pumping power is il-
lustrated. All other parameters of the system, including
the initial conditions, were not changed for these runs.
Only the function f(#n) and top and side views of the tra-
jectories are displayed.

For the run shown in Fig. 5(a), no pumping was ap-
plied. Starting at a nonequilibrium condition, the spin re-
laxes towards the up position parallel to the static field
hy. The coupling of the spin precession with the resona-
tor results in a damped oscillatory behavior of f(n) exhib-
iting an overshoot. It seems plausible that the auto-
oscillations of the system observed under conditions of
strong pumping are governed by this oscillatory mecha-
nism which is inherent to the system. After the initial
transient, the spin is almost exactly along the z axis, as
displayed in the top and side views of the strobed trajec-
tories for the time n=100—200. Obviously, the trajec-
tories are reduced to a single point at the up position (po-
lar angle 6=0), and this point is a stable fixed point.

In the next run shown in Fig. 5(b), a pumping ampli-
tude hpo=+4,0/2m=0.300 drives the system into a
steady-state pumping condition above threshold. In this
steady state, the spin precesses along the same elliptical
path. Thus, the spin has the same direction after each full
Larmor precession forced by the pump. Strobing after in-
tervals 27, gives a single point on the surface of the unit
sphere. This point seen in the top and side views of Fig.
5(b) is a stable fixed point while the up position (6=0) is
now an unstable fixed point. A spin with 8540 will reach
the stable fixed point through a damped auto-oscillation,
as seen for f(n).

(b)

FIG. 4. Trajectories of the spin projected onto: (a) (sx,s,) plane, (b) (sy,s;) plane. Each data poiﬁt is marked by a circle, and con-
secutive points at the strobed times n=100—200 are connected by straight lines.
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FIG. 5. Numerical simulation for parallel pumping of one spin in a cavity for different values of the pumping amplitude 4,,. (For
all other parameters, see caption of Fig. 2.) Left: f(n) vs time n=0-—200; circles: every tenth data point. Right: strobed trajec-
tories of the spin projected onto the (s,s,) plane and (sy,s,) plane, respectively, for the strobed times n=100—200; circles: every
data point. The pumping amplitudes 4,, are: (a) (top) O, (b) (center) 0.300, (c) (bottom) 0.360; showing: (a) relaxation to the up posi-
tion, (b) relaxation to a steady-state pumping, (c) relaxation to a periodic limit cycle.

Due to the peculiar symmetry of parallel pumping,
there is a second stable fixed point at the same polar an-
gle, related to the first point by a 180° rotation about the z
axis. More precisely, the system has a twofold rotation
symmetry about the z axis if the static and dynamic fields
hy and hp lie exactly in the easy plane of the anisotropy
term DS2. This rotation symmetry is related to the fact
that the pumping field goes through two maxima while
the spin precesses around once. Moreover, each of the
two stable fixed points, representing a steady-state pump-
ing, will attract only one half of the possible initial condi-
tions, i.e., half of the surface of the unit sphere, excluding
the unstable fixed points 6=0°180°. At a higher pumping
field of 4,,=0.360, the auto-oscillation of the system is
not damped away. Figure 5(c) shows an attractor in the
form of a limit cycle.

All runs displayed in Fig. 5 show the time evolution
starting at the initial condition. Longer runs reveal that
after about 200 time steps the system is rather close to the
limiting behavior for long times. Since this limiting
behavior is the primary interest, the next Figs. 6 and 7
only display the time evolution for the time steps
n=200—400.

For increasing pumping amplitudes, it is obvious that
the trajectory of the limit cycle shown in Fig. 5(c) will en-
large. By doing so, the variation of the polar angle 6 also
enlarges. Since the interaction of the spin system with the
pumping and the radiation damping field is smaller for
smaller angles @ and is zero for the up position (6=0°),
the speed along the trajectory is increased for large angles
and slowed down for small angles 6. This deforms the os-
cillation into the shape of spikes with intervals of small
values of f(n). This qualitative explanation of the shape
of the experimental relaxation oscillation is illustrated in
Fig. 6 for the pumping amplitudes h,,=0.400, 0.410,
0.415, respectively. For all these values, the behavior is
periodic, and the function f(n) does not change much, ex-
cept that the period increases from Fig. 6(a) to Fig. 6(b)
and decreases from Fig. 6(b) to Fig. 6(c). This effect can
be attributed to the merging of two attractors and will be -
explained by discussing the trajectories.

Keeping in mind that the problem has an inherent two-
fold rotation symmetry about the z axis, the limit cycle of
Fig. 6(a) has a counterpart which is not reached from the
chosen initial condition. The existence of this counterpart
is easily seen in Fig. 6(b), where the same initial condition
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FIG. 6. Same as Fig. 5, except: time n=200—400 for f(n) and trajectories; h,q: (a) 0.400, (b) 0.410, (c) 0.415; showing the shape
of periodic relaxation oscillations with trajectories along: (a) one limit cycle, (b) the other limit cycle, (c) a merged limit cycle.

is connected to the other cycle. It is natural to imagine
that for increased pumping amplitudes the enlarged limit
cycles (attractors) will come into contact and merge into
one limit cycle. Figure 6(c) shows such a coalesced cycle
with twofold rotation symmetry. Assuming that the at-
tractors come into contact.at one point only, this point
must be the up position in order to conserve the twofold
rotation symmetry. Since the up position is a fixed point,
the period of the relaxation oscillation diverges at the ex-
act merging condition. The simulations reveal that,
indeed, the periods increase when the merging condition is
approached from below or above. Although the system
bifurcates for decreasing power from one to two attrac-
tors, combined with a “slowing down” of the motion, this
behavior is not a second-order phase transition in the
strict sense, since no thermodynamic fluctuations are in-
volved.

D. The transition from regular to irregular
periods and to strongly chaotic behavior

In this section, it will be illustrated that the mismatch
between the period forced by the pumping and the Lar-
mor period of the spin results in irregular trajectories. As
a consequence, the periods between the spikes become . ir-

regular. Finally, the behavior is strongly chaotic for very
large pumping fields.

Figure 7(a) displays a regular relaxation oscillation for a
pumping amplitude 5,,=0.450. There is a rapid change
of the polar and azimuthal angles during the spiking.
This triggers a transient Larmor precession. The resulting
beat of the Larmor precession frequency with the pump-
ing frequency is seen as a zigzag in the trajectories strobed
with half the pumping frequency. During the time inter-
val between two spikes the transient oscillation is damped
away. The next transient is locked to the pumping. The
same beat pattern repeats and, therefore, the regime is
periodic.

For the run evaluated for 4,,=0.465 [Fig. 7(b)] the sys-
tem is in the chaotic regime. Both amplitudes and periods
are irregular, although their scatter is small. The scatter
of the periods is easily seen by comparing the data points
marked by circles (each tenth point) of Figs. 7(a) and 7(b).
The reason for the irregular behavior is best seen in the
trajectories. The zigzag paths do not repeat. The tran-
sient triggered by a spike is not fully damped until the
next spike starts. Since the self-oscillation of the system
is probably not commensurate with the pumping, the
pumping and the phase lag of the self-oscillation are re-
sponsible for the triggering of a new spike. Therefore,
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FIG. 7. Same as Fig. 5, except: time n=200—400 for f(n) and trajectories; hpo: (a) 0.450, (b) 0.465, (c) 0.470; showing: (a) regu-
lar periods slightly below, (b) irregular periods slightly above the transition to chaotic behavior, (c) a more pronounced scatter in the
periods and amplitudes of f(r) related to more complex trajectories.

this triggering occurs after variable time intervals.

At a slightly higher pumping amplitude #,,=0.470
[Fig. 7(c)] the irregularities of the time intervals are
stronger. A. pronounced zigzag might end at a smaller
polar angle for which the speed along the trajectory is
slowed down. This creates a much longer interval to the
next spike.

For the pumping amplitude 4,,=0.600, the irregulari-
ties have increased, see Fig. 8(a). For the last two runs
shown in Figs. 8(b) and 8(c) for hpo=1.000 and 4.000,
respectively, the system is in the strongly chaotic regime.
There is almost no section of smooth behavior, and the re-
sulting function f(n) shows more and more a determinis-
tic broadband noise. The trajectories are typical for
strange attractors. The basin of attraction is within a re-
stricted area of the parameter space, here at the upper half
of the surface of the unit sphere. Note that the run
displayed in Fig. 8(a) is a continuation (n=200—400) of
the initial time evolution (7=0—200) which has been
described in Sec. III B (Figs. 2—4).

IV. NUMERICAL RESULTS FOR
A MULTISPIN SYSTEM
A. Description of the system and the simulations

In this section, we present simulations of a multispin
system described by the LLH Egs. (1) and (3). Here, no

cavity is involved, therefore, Eq. (2) is not used. To
reduce computing time, only five spins (N=35) are ar-
ranged in a chain and coupled by isotropic exchange.

The intention is to study the pumping of the uniform
mode and the excitation of several nonuniform modes
(spin waves). Therefore, the end spins are not pinned, to
allow the uniform precession of all spins. The frequencies
wnym of the nonuniform modes (NM) are set to the same
order of magnitude as the pumping frequency w,
(onm/@p~2.0, 1.7, 1.0, 0.28 for zero static fields). The
initial condition was chosen such that all normal modes
were excited. Moreover, the pumping amplitudes varied
from spin to spin, thus simulating an inhomogeneous
pumping field, in order to couple the pumping to all nor-
mal modes.

B. Comparison of two chaotic runs

An important feature of chaotic time evolutions is their
extreme sensitivity to small parameter changes. This ef-
fect is illustrated by displaying two runs for which the
pumping amplitudes have a relative difference of
1.4x10~* In addition, these two runs for a multispin
system exhibit patterns of higher complexity than the
runs of the previous section for a single spin in a cavity, a
fact which is easily understood by a comparison of their
parameter spaces: three complex variables of the single-
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showing: (a) very irregular periods and amplitudes; (b), (c) strongly chaotic behavior resembling broadband noise.

spin systems in a cavity versus five complex variables of
the multispin system (five spins, no cavity).

Figures 9 and 10 give strobed plots of the polar angles
6;(n) and the azimuthal angles ¢;(n) of the spins i=1-5,
and the sum function f(n)= ", f;(n) for the runs 1 and
2, respectively. Clearly, the spin waves are not damped
away. Further, there is a gradual increase of the differ-
ence between the two runs for increased normalized time
n, resulting in very different patterns for larger values of
n. The functions f(n) seem to correspond to the strongly
chaotic regimes of the single-spin system, described in the
previous section.

For a better comparison to the single-spin system, the
normalized sum vector §=(1/N)3,;§; was evaluated
and its polar and azimuthal angles 6,¢ plotted in Figs. 11
and 12, together with the strobed trajectories of § project-
ed onto the xy and xz planes. (These trajectories are in-
side the unit sphere since the magnitude of the normalized
sum spin |§ | is smaller than unity when spin waves are
excited.) ‘

It is interesting that the trajectories of the sum spin
have a qualitatively different pattern than the trajectories
of the single-spin system in the strongly chaotic regime as
shown in Fig. 8. The sum spin stays in one of the two re-
gions related by twofold rotation symmetry for a number

of cycles, and turns over eventually to the other region,
where it cycles again but with a different period. It might
even come almost to rest for a while during the change-
over, when it comes close to the fixed point (up position).
The occurrence of such an “intermittency” is very sensi-
tive to the parameters. It is absent for run 2 during the
displayed evolution time.

Usually, excitations of coupled systems are analyzed by
the determination of the content of normal modes. In the
present spin system, there are four nonuniform normal
modes (standing spin waves) which are described by their
amplitudes and relative phases. However, such a treat-
ment implies a linearization since the superposition prin-
ciple is not valid for nonlinear problems. This lineariza-
tion is not practical for large excitations. Indeed, large
spin-wave excitations are present as illustrated in Fig. 13.
The strobed trajectories of the sum spin (describing the
uniform mode) [Fig. 13(a)] might be compared to the
strobed trajectories of the spinsi i=2 [Fig. 13(b)] and the
end spin i=5 [Fig. 13(c)] for the normalized time
n=>50—100 of run 2.

Lacking a convenient numerical method for the decom-
position of these excitations into normal modes, a rather
crude display is used to illustrate the temporal and spatial
structures of the nonuniform spin-wave excitations alone.
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FIG. 9. Numerical simulation for parallel pumping of a multispin system of N=35 spins coupled by isotropic Heisenberg exchange.
The polar angles 6;(n) and the azimuthal angle ¢,(n) are displayed at the strobed times » in (a) and (b), respectively, with the symbols
0, A, X, +, Q, for the spins i =1—5. (c) Sum function f(n), see text. [The parameter values of the LLH Egs. (1) and (3) are:
A=0.003; ho=0.8, w, /2r=2; hpo;=hpooc; With h,00=0.7, ¢;=0.98, 1.00, 0.98, 0.92, 0.82; d, /27w =0.7, A /2w=2. The initial condi-

tions are: 6;0=10.6°, 21.8°, 26.5°, 22.9°, 13.5°; ¢1,0=136°, —25.8°,

The excess exchange energy proportional to 1—7;-%; for
the spin pair §;,s; is a measure of nonuniform excita-
tion. Figure 14 displays for each of the five spins (hor-
izontal axis) the sum of this energy of interaction (vertical
axis) with its nearest neighbors as a function of time

127°, —63°, 113°]

(from back to front). Figure 14 indicates that the spatial
structure is chaotic also. Probably, several nonuniform
modes are excited and are interacting nonlinearily, in-
fluencing the temporal behavior of each spin.

An interplay of spatial and temporal behavior has also
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FIG. 10. Same as Fig. 9, except that the pumping amplitude h,o is changed from 0.7000 (Fig. 9: “run 1”) to 0.7001 (Fig. 10:
“run 2”). Note that the section of nearly smooth behavior observed in run 1 is lacking.

been reported by Bishop et al.!® for a sine-Gordon system
exhibiting a route to chaos by .period doubling. In con-
trast to the multispin system (five complex variables),
their continuous sine-Gordon system has, in principle, an
infinite number of variables.

Experimentally,® a rather “broadband noisy” chaotic
behavior similar to the simulations for the multispin sys-
tem has been observed for pumping conditions under
which spin waves are excited, with frequencies compar-
able to the Larmor frequency.
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FIG. 11. Run 1, h,00=0.7000, normalized sum spin: (a) po-
lar angle 6(n), (b) azimuthal angle ¢(n) vs time n; (c) trajectories
of the normalized sum spin § projected onto the xy plane and
the xz plane at the strobed times .
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a
o (n) o FIG. 13. Run 2, h,p0=0.7001. Strobed trajectories for the
time n=50—100 projected onto the xy plane and xz plane. (a)
z normalized sum spin §, (b) spin §; /=3, (c) end spin i=5. The
< very different patterns indicate strong excitations of nonuniform
7 \/ modes (spin waves).
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FIG. 14. Spatial and temporal behavior of the exchange ener-
gy per spin $; for runs 1 and 2 with k,00=0.7000, 0.7001. Hor-
) izontal: position of the spin §; in the chain (5 spins); vertical:

exchange energy per spin; from back to front: strobed time n.
xy plane Xz plane Clearly, several normal modes (spin waves) are excited in a
FIG. 12. Run 2, h,00=0.7001. Same plots as Fig. 11. chaotic fashion.
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V. CONCLUDING REMARKS

The LLK and LLH equations are used as simple classi-
cal models for magnetic parallel pumping. Evidently,
only a small portion of the rich variety of solutions have
yet been found by numerical simulations. However, their
similarity to experimental observations is promising.
They describe a peculiar route to chaos by irregular
periods without previous cascades of period-doubling bi-
furcations. It is essential that the processing spin is cou-
pled to one (or more) resonating system(s) such as a cavity
or standing spin waves. Further, driving the system
slightly off resonance seems to be necessary for the
creation of beat patterns between the free and enforced
Larmor precession frequencies of the spin(s).

There is a principal difference between the route to
chaos by cascades of period-doubling bifurcations and the
route by irregular periods. The cascades of period-
doubling bifurcations occur in the periodic regime. They
indicate the proximity of a chaotic regime and, using
Feigenbaum’s universality,'® they predict the critical pa-
rameter values for the transition to the chaotic regime.

In contrast, we have characterized the route to chaos by
irregular periods according to the behavior in the chaotic

regime close to the transition from regular to irregular
behavior. It is too early to infer that this route fits into
the quasiperiodic to turbulent transition described by
Ruelle and Takens,!” although the limit cycles observed in
the periodic regime are examples of quasiperiodicity. The
point is that the nonlinearity of the spin motion implies a
self-detuning of the Larmor frequency when the preces-
sion angle is changed. This fact seems also to be impor-
tant for some kind of intermittency'® found in the multi-
spin system. It is beyond the scope of this paper to
analyze this type of chaos in more detail. The aim was to
find simple models close to the experimental arrange-
ments of parallel-pumping experiments and to simulate
qualitatively the measured regular and irregular “relaxa-
tion oscillations.”
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