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Route to chaos by irregular periods: Simulations of parallel pumping in ferromagnets
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A peculiar route to chaos is known experimentally for magnetic parallel pumping. The periods of
auto-oscillations become irregular at the onset of chaos, without previous cascades of period-
doubling bifurcations. This route to chaos has been found by the simulation of parallel pumping of
a single spin interacting with a cavity or, for multispin systems, coupled by exchange.

I. INTRODUCTION

Nonlinear systems which undergo transitions from sta-
tionary to periodic and chaotic states are usually classified
according to their route to chaos. The route to chaos by a
cascade of period-doubling bifurcations is well establish-
ed. '

Here, a different route by "irregular periods" will be
considered. It might be present in many systems showing
auto-oscillations, if these oscillations are allowed to vary
their frequency continuously. It could also be found in
systems having a cascade of period-doubling bifurcations,
if the parameters are set accordingly. In Fourier spectra,
irregular periods will broaden the Fourier peaks, while
period doubling will create additional peaks at fractional
frequencies. A combination of both routes would create a
chaotic regime before the full cascade of period-doubling
bifurcations is developed.

Magnetic resonances in ferro- and antiferromagnets
provide examples of both routes. Yamazaki described
period doubling under parallel pumping in an antifer-
romagnet in accord with the theoretical predictions of
Nakamura et al. Gibson and Jeffries reported a similar
behavior for ferromagnetic resonant in yttrium iron gar-
net (YIG). In addition, they write "Another, quite dif-
ferent, signal shape is shown. . . reminiscent of relaxation
oscillations in general; in fact, . Hartwick et al. in their
discovery of auto-oscillations described, them as relaxation
oscillations. %'e believe that these are distinct phenomena
but have not investigated their possibly chaotic dynam-
ics." Indeed, Fig. 6(a) in Ref. 4 shows a scatter in the
time intervals between consecutive spikes, i.e., it is chaotic
with irregular periods. Recently, even more pronounced
irregular periods of relaxation oscillations were found in
parallel pumping experiments, performed in ferro- and
antiferromagnets with low threshold powers. Typical ex-
amples are shown in Fig. 1, and the experiments are
described elsewhere.

Unfortunately, earlier reports on auto-oscillations ' ' in
magnetic resonance do not, to our knowledge, display
records of these oscillations. Therefore, they cannot be
tested for irregular periods.

Using the method introduced by Zakharov et al. for
the description of parallel pumping, Grankin et al. ' and
Nakamura et al. have simulated the chaotic regime for
two interacting spin-wave pairs. One paper reports nu-
merical results showing period doubling, the other paper'
displays Fourier spectra which seem to imply irregular
periods without period doubling. Recently, Lugiato
et al. " found irregular periods as numerical solutions of
their nonlinear equations for a laser driven by an external
field. For different parameter settings, however, the same
system exhibits a cascade of period-doubling bifurcations

It is the aim of this paper to describe a simple model
which, first, shows relaxation oscillations, and, second, ex-
plores the onset of chaotic behavior by irregular periods.
This work is restricted to the simulation of parallel pump-
ing in ferromagnets. After a brief introduction to parallel
pumping, models are presented which describe the experi-
mental situation closely. First the Landau-Lifshitz equa-
tions are used to describe the motion of a classical spin in
a cavity, where the interaction with the cavity is
represented by equations for a damped LC circuit. A
second model treats a chain of exchange coupled spins,
also driven by a parallel pumping field. Numerical simu-
lations are presented which illustrate relaxation oscilla-
tions and steps on the route to chaos by irregular periods.
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FIG. 1. Relaxation oscillations measured by parallel pump-
ing, showing nearly regular and irregular periods in the 10-kHz
region, in the antiferromagnet (NH3)2(CH2)zCuC14 at 9.36 GHz,
0.88 T, 1.4 K.
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II. MODELS FOR PARALLEL PUMPING

B. Model for one spin in a cavity

We use the following model for parallel pumping in fer-
romagnets: A single classical spin is described by an
equation of motion with Landau-Lifshitz damping. Due
to the inclusion of anisotropic terms, the description is in
the laboratory frame. In addition, the microwave cavity
is represented by a damped resonant circuit. The corre-
sponding Kirchhoff equations include radiation damping
effects along the z axis. In order to facilitate computa-
tions, these "Landau-Lifshitz-Kirchhoff" (LLK) equa-
tions are given in normalized parameters.

The equation of motion has the form'

= s Xh —&s X(s Xh)
dt

for a classical spin vector s of unit length
~

s
~

= 1 in an

effective normalized field h=yH (gyromagnetic ratio y,
effective magnetic field H), where A, is the Landau-

Lifshitz damping parameter. The effective field h

h =(hp+ahz+a)e, —hz e„ (la)

is the sum of the static field hp, the pumping field
hz ——Azpsin(cozt), and the field a(t) of the cavity along
the z axis with unit vector e„and an anisotropy field
h~ ——d~s„along the x axis, representing an anisotropy en-

ergy term with a hard x axis and an easy yz plane. (The
factor a will be described later. ) The Larmor precession
frequency cot, for small polar angles 8 of the spin is'2

cot, ——[hp(hp+hg )]' (lb)

and co~ decreases with increasing angle 0 due to the non-
linear anisotropy term.

For parallel pumping, the sample is at a position inside
the microwave cavity where the pumping field is para11el
to the static field Hp. The sample is affected also by the

A. Introduction to parallel pumping (Ref. 12)

For the usual magnetic resonance one applies an oscil-
lating field normal to the static field Hp. For parallel
pumping, however, both oscillating and static field are
parallel. Further, the pumping frequency is about twice
the Larmor frequency of the spin system. Why does this
field couple to the motion of the spins? The point is that
a nonlinear term breaks the axial symmetry along Ho.
This might be done, for example, by a crystalline anisotro-

py energy DS, while Ho is along the z axis. Then, the
spins will precess along an elliptical path with their z
component oscillating at twice the Larmor frequency cot .
Therefore, this oscillation can be driven by the external
pumping field along the z axis, oscillating at co& —2cot.
Usually, this driving is explained in terms of the excita-
tion of spin waves or magnon pairs with small and oppo-
site wave vectors k. Here, we assume models which
describe the motions of the spins classically.

radiation field, whose z component is enhanced by the
cavity. For steady-state conditions, this interaction acts
as an additional damping ("radiation damping" ). If the
spin opens its precession cone, the cavity will create a
larger damping field with some time delay. Usually, this
retarding effect is neglected. For highly nonlinear sys-
tems, however, such small effects might change the time
evolution drastically. Therefore, the cavity will be
represented by a damped J C circuit. In normalized pa-
rameters, the following Kirchhoff equations describe this
LC circuit:

da
dt

db
dt

dk& dSz= —y )a —co,b —B —B,
dt ' dt

= —y2b +a .

(2a)

(2b)

C. Comparison with the Maxwell-Bloch
and Bloch-Kirchhoff models

It is interesting to compare the above LLK equations
with the Maxwell-Bloch (MB) equations used by Lugiato
et al. " to describe an optical laser driven by an external
pumping field and with the Bloch-Kirchhoff (BK) equa-
tions proposed by Brun et al. ' for their nuclear magnetic
resonance laser. Both models are equivalent. The atomic

I

or nuclear spin system is described by one complex pa-
rameter (atomic polarization or spin component normal to
the precession axis, respectively) and one real parameter
(population difference or spin component along the rota-
tion axis) in a frame rotating with the pumping field. In
both cases the resonator (mirrors or LC circuit) is
represented by one complex parameter only, since the
Kirchhoff equations are truncated to one differential
equation of first order. This approximation treats only
motions which are slow relative to the Larmor precession.

In contrast, the LLK equations are written in a fixed
laboratory frame, because the crysta11ine anisotropy term
prevents a transformation to a rotating frame. Therefore,
the full time evolution has to be calculated including the
Larmor precession itself. The motion of the spin of con-
stant length is described by polar and azimuthal angles
which correspond to one complex parameter. In addition,
the untruncated equations for the resonator have two vari-
ables, both with an amplitude and a relative phase, corre-
sponding to two complex parameters. Therefore, the full

The parameter a (t) is the normalized field produced by
the coil at the position of the sample and is proportional
to the current in the coil. The parameter b(t) js propor-
tional to the charge on the capacitor, y& and y2 describe
series and parallel damping, respectively, and co, is the
resonance frequency of the undamped circuit. The values

Bz and 8, contain the coupling for the induction in the
coil by the pumping field hz(t) and by the precessing
magnetic moment, which is in turn proportional to s, (t).
[Since Eqs. (2a) and (2b) are linear, the external pumping
field could also be added directly by setting a=1 and

Bz ——0.] Further, dimensionless parameters can be ob-
tained by introducing a normalized time t'=tl2T&, with
2T& being the period of the forced spin precession for
steady-state pumping.



F. WALDNER, D, R. BARBERIS, AND H. YAMAZAKI 31

parameter space is larger, although it is easier to describe
the spin system itself, since time trajectories for LLK are
two dimensional on the surface of the unit sphere, while
they are three dimensional (inside a sphere) for MB and
BK.

D. Model for a multispin system

Parallel pumping can be described as the creation of
standing spin waves at about half the pumping frequency,
or, as the creation of magnon pairs with small and oppo-
site wave vectors k. Due to the nonlinearity of the prob-
lem, these spin waves or magnons interact with further
spin waves or magnons. In an elegant analysis, Nakamura
et al. found the route to chaos by period-doubling bifur-
cations for pumped spin waves which interact with one
additional standing spin wave. To describe this coupling,
he included a four magnon interaction (two interacting
magnon pairs).

In order to study higher-order interactions with several
additional spin-wave pairs, a simple classical approach
will be used here. A chain of X discrete spins s; are cou-
pled by nearest-neighbor isotropic Heisenberg exchange
interactions. The time evolution of this multispin system
is described by a set of X equations (1), each with an addi-
tional term h,„;for the effective field h

hexi~ (, i —1+ [+1)

Thus, a steady-state pumping would give constant values.
Further, functions averaged over 2T& will be evaluated
and plotted, yielding results which could be compared
with measurable quantities. Parameter values and initial
conditions were chosen rather to restrict computing time
than to quantitatively simulate the experiments.

B. An illustrative example for irregular periods

In this section, a typical example for irregular periods
will be displayed. Different aspects of the same run will
be presented. This run has a pronounced scatter in the
periods between spikes of comparable amplitudes. Figure
2(a) gives a periodically strobed view of the polar angle
0(n) of the spin versus the normalized time t'=n

Figure 2(b) shows a function f (n) which is proportion-
al to the power absorbed by the spin system. This func-
tion can be compared to the absorption signals of parallel
pumping experiments, and it is proportional to
s, cos(iu~t), averaged over 2T& and plotted at normalized
times t'=n.

Again averaged over 2T&, Fig. 2(c) shows the parameter
b(n) as a measure of the voltage across the resonating
capacitor. Clearly, the periods are unequal. Longer runs

6 (n)

where 3 denotes the normalized exchange constant. The
same method has been used to calculate the turbulent
behavior of domain walls in strong static fields. ' Parallel
pumping of such a multispin system shows chaos by ir-
regular periods without the need for an interacting cavity.
Hence Eq. (2) will not be included in these "'Landau-
Lifshitz-Heisenberg" (LLH) equations (1) and (3).

III. NUMERICAL RESULTS FOR ONE
SPIN IN A CAVITY

CO

(a)
b

C3

f {n)

200

The LLK Eqs. (1) and (2) representing one spin in a
cavity were solved numerically by calculating time evolu-
tions ("runs") on a computer. After a few remarks about
the numerical procedure, a typical example for irregular
periods will be presented by displaying different aspects of
the same run. Then, several runs will illustrate the gradu-
al development of periodic relaxation oscillations, includ-
ing also a merging of two attractors. Finally, the onset of
chaotic behavior will be shown followed by a few runs ex-
hibiting a rather stochastic regime.

200

A. Remarks about the numerical procedure

The trajectories of the precessing spin were calculated
in small time steps (typical 1400—2800 steps for one Lar-
mor period). A variation of these steps did not change the
solutions, except for very chaotic regimes, where the devi-
ations grew slowly and approximately logarithmically, as
expected for strange attractors.

Although the trajectories of the spins were calculated
along the entire path in the laboratory frame, only
snapshots at times t =n2T&, i.e., t'=n, will be displayed.

(c)
0

time n

FICx. 2. Numerical simulation for parallel pumping of one
spin in a cavity. (a) Polar angle 0(n) vs normalized time t =n.
(b) Function f(ni, see text (c) b(n) .of Eq. (2b). To ease the
counting of the time t'=n, each tenth data point is marked by a
circle. [The parameter values for the LLK Eqs. (1) and (2) are:
I =0.01 hg/2w=0. 85 App=0. 600 dg /2w=0. 3 cop /277'=2
y)=3 6X10, p2 —036 CO /2W 057 Bp —8X10 B,
=4500; with initial conditions 00——20', $0 ———70 .]



31 ROUTE TO CHAOS BY IRREGULAR PERIODS: 423

C)

t (n+1)
by straight lines. Since the spin moves on the surface of
the unit sphere, Fig. 4(a) gives a "top view" and Fig. 4(b)
a "side view" of the sphere, i.e., the projection of the tra-
jectories onto the (s„,s~ ) and the (s„,s, ) planes are shown.
An indication of some kind of twofold rotation symmetry
around the z axis in these patterns will be discussed later.

AJ
C3

~ I
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I-0.01

f (n}
0.Q1

FICy. 3. Return map for f( n ) for the strobed times
n=100—200. In contrast to Fig. 2, each data point is marked
by a circle. Consecutive points are connected by straight lines.

(displayed later) confirm that their scatter is irregular.
A further interesting feature is best seen in Fig. 2(c).

Each spike triggers a damped oscillation with a period T
of twice the strobe period, i.e., with T =2(2T&). Howev-
er, a closer look indicates that this pattern could be due to
a beating with a damped oscillation of a slightly different
period. (To ease the counting of the beats each tenth data
point is marked by a circle. ) Keeping in mind that the an-
isotropy energy makes the Larmor precession dependent
on the polar angle of the spin precession, this pattern
could be caused by triggering the free-running precession
as a transient feature. Such effects of variable detuning
are probably an important ingredient for the creation of
irregular periods.

Figure 3 displays a return map f(n+ 1) versus f (n}
for the time n= 100—200. Here, each' data point is
marked by a circle, and consecutive points are connected
by straight lines in order to illustrate the time sequence.
The points follow about the same path for the leading
edges of each spike, whereas the trailing edges give a rath-
er stochastic pat tern.

Figure 4, however, demonstrates that the path of the
spins is different for consecutive spikes. In Fig. 4, the tra-
jectories of the spin are plotted, strobed at times t'=n, for
the time interval n =100—200. Again, each data point is
marked by a circle and consecutive points are connected

C. Periodic relaxation oscillations and the merging
of two attractors

In this section, the gradual development of periodic re-
laxation oscillations with increasing pumping power is il-
lustrated. All other parameters of the system, including
the initial conditions, were not changed for these runs.
Only the function f ( n) and top and side views of the tra-
jectories are displayed.

For the run shown in Fig. 5(a), no pumping was ap-
plied. Starting at a nonequilibrium condition, the spin re-
laxes towards the up position parallel to the static field
ho. The coupling of the spin precession with the resona-
tor results in a damped oscillatory behavior off (n) exhib-
iting an overshoot. It seems plausible that the auto-
oscillations of the system observed under conditions of
strong pumping are governed by this oscillatory mecha-
nism which is inherent to the system. After the initial
transient, the spin is alxnost exactly along the z axis, as
displayed in the top and side views of the strobed trajec-
tories for the time n=100—200. Obviously, the trajec-
tories are reduced to a single point at the up position (po-
lar angle 0=0), and this point is a stable fixed point.

In the next run shown in Fig. 5(b), a pumping ampli-
tude hzo =Az o/2m =0.300 drives the system into a
steady-state pumping condition above threshold. In this
steady state, the spin precesses along the same elliptical
path. Thus, the spin has the same direction after each full
Larmor precession forced by the pump. Strobing after in-
tervals 2T& gives a single point on the surface of the unit
sphere. This point seen in the top and side views of Fig.
5(b) is a stable fixed point while the up position (8=0) is
now an unstable fixed point. A spin with 8&0 will reach
the stable fixed point through a damped auto-oscillation,
as seen for f ( n)

FIG. 4. Trajectories of the spin projected onto: (a) (s„,s„) plane, (b) (s„,s, ) plane. Each data point is marked by a circle, and con-
secutive points at the strobed times n = 100—200 are connected by straight lines.
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FIG. 9. Numerical simulation for parallel pumping of a multispin system of %=5 spins coupled by isotropic Heisenberg exchange.
The polar angles 8;(n) and the azimuthal angle P;(n) are displayed at the strobed times n in (a) and (b), respectively, with the symbols

+, Q, for the spins i =1—5. (c) Sum function f (n), see text. [The parameter values of the LLH Eqs. (1) and (3) are:
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tions are: t) 0=10.6 21.8 26.5 22.9 13.5 '

P~ 0=136 —25. 8 127 —63 113.]

The excess exchange energy proportional to 1 —s;. s J for
the spin pair s;, sj is a measure of nonuniform excita-
tion. Figure 14 displays for each of the five spins (hor-
izontal axis) the sum of this energy of interaction (vertical
axis) with its nearest neighbors as a function of time

(from back to front). Figure 14 indicates that the spatial
structure is chaotic also. Probably, several nonuniform
modes are excited and are interacting nonlinearily, in-
fluencing the temporal behavior of each spin.

An interplay of spatial and temporal behavior has also
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been reported by Bishop et al. ' for a sine-Gordon system
exhibiting a route to chaos by period doubling. In con-
trast to the multispin system (five complex variables),
their continuous sine-cordon system has, in principle, an
infinite number of variables.

Experimentally, a rather "broadband noisy" chaotic
behavior similar to the simulations for the multispin sys-
tem has been observed for pumping conditions under
which spin waves are excited, with frequencies compar-
able to the Larmor frequency.
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V. CONCI. UDING REMARKS

The LLK and LLH equations are used as simple classi-
cal models for magnetic parallel pumping. Evidently,
only a small portion of the rich variety of solutions have
yet been found by numerical simulations. However, their
similarity to experimental observations is promising.
They describe a peculiar route to chaos by irregular
periods without previous cascades of period-doubling bi-
furcations. It is essential that the processing spin is cou-
pled to one (or more) resonating system(s) such as a cavity
or standing spin waves. Further, driving the system
slightly off resonance seems to be necessary for the
creation of beat patterns between the free and enforced
Larmor precession frequencies of the spin(s).

There is a principal difference between the route to
chaos by cascades of period-doubling bifurcations and the
route by irregular periods. The cascades of period-
doubling bifurcations occur in the periodic regime. They
indicate the proximity of a chaotic regime and, using
Feigenbaum's univer'sality, ' they predict the critical pa-
rameter values for the transition to the chaotic regime.

In contrast, we have characterized the route to chaos by
irregular periods according to the behavior in the chaotic

regime close to the transition from regular to irregular
behavior. It is too early to infer that this route fits into
the quasiperiodic to turbulent transition described by
Ruelle and Takens, ' although the limit cycles observed in
the periodic regime are examples of quasiperiodicity. The
point is that the nonlinearity of the spin motion implies a
self-detuning of the Larmor frequency when the preces
sion angle is changed. This fact seems also to be impor-
tant for some kind of intermittency' found in the multi-
spin system. It is beyond the scope of this paper to
analyze this type of chaos in more detail. The aim was to
find simple models close to the experimental arrange-
ments of parallel-pumping experiments and to simulate
qualitatively the measured regular and irregular "relaxa-
tion oscillatlons.
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