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We present an analytic theory of Richtmyer-Meshkov instabilities in an arbitrary number X of
stratified fluids subjected to a shock. Following our earlier work on Rayleigh-Taylor instabilities,
the theory assumes incompressible flow in which a shock is treated as an impulsive acceleration. We
discuss the special cases %=2 and %=3, and illustrate both Rayleigh-Taylor and Richtmyer-
Meshkov instabilities by examples patterned after inertial-confinement-fusion implosions.

I. INTRODUCTION

The Rayleigh-Talyor' (RT) instability occurs in sys-
tems undergoing a constant acceleration, while the
Richtmyer-Meshkov ' (RM) instability occurs in systems
which have been impulsively accelerated by a shock. For
both types of instabilities the classical case is a system of
two semi-infinite fluids of densities pt and pz, with pertur-
bations of wavelength A, at their common interface. If the
acceleration is constant (RT case), then these perturba-
tions grow exponentially in time,

Recently we generalized the results of the classical RT
instability to a system of an arbitrary number N of strati-
fied fluids (see Fig. 1). In this paper we derive the corre-
sponding equations for the RM instability. The classical
results, Eqs. (1) and (2), will be special cases given by
X=2.
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. (RT case) where g is the acceleration directed from pt to
io2, k =2'tr/&, and & =(p2 —

p& )/(p2+p~) is the Atwood
number. If the acceleration is impulsive (RM case), then
the perturbations grow linearly in time,
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(RM case) where b.v is the jump velocity caused by the
passage of a shock from p& to p2. In Eqs. (1) and (2) ti is
the amplitude of the sinusoidal perturbations and r stands
for time.

Equation (2), derived by Richtmyer, is based on the
same assumptions that go into the derivation of the classi-
cal RT result, Eq. (1). Both equations are valid only in
the small amplitude, or linear, regime, i.e., g &~A, . The
fluids are assumed to be incompressible with no viscosity
or surface tension, and heat transfer is neglected. De-
tailed numerical calculations by Richtmyer showed good
agreement with Eq. (2) if the instantaneous reduction in
amplitude due to shock compression was taken into ac-
count. Experiments by Meshkov confirmed the predic-
tion that amplitudes grow linearly with time after the pas-
sage of a shock. As the amplitude grows, the linear ap-
proximation is no longer valid: turbulent mixing takes
place. Subsequent experiments observed this mixing and
a semiempirical model was developed.

A A
9 =f

FICx. 1. X fluid layers of density pl. . . ,p~ and thickness
t&, . . ., t~ which are stacked in the direction of acceleration

g =y, where g is constant for Rayleigh-Taylor and

g =Av 6(~—~, ) for Richtmyer-Meshkov instabilities. Unper-
turbed densities are uniform in the x and z directions and vary
only in the y direction. The amplitude of sinusoidal perturba-
tions at each interface i is denoted by g;. The wavelength of the
perturbations is A, .
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X Ig (0)cosh(yir)+[g (0)/yi]

Xsinh(y~r) I, (4)

where W(i, l) and W '(I,j) are, respectively, the (i, l)th
and (l,j)th element of the matrix W and its inverse W'

To obtain the corresponding equation for the RM case,
we use a technique similar to the one used by Richtmyer
in obtaining Eq. (2). From Eq. (4),

g, (r) N —l N —1

=g p p I I W(i&l)W '(l&j)
I=1 j=1

X [qj(0)cosh(y&r)+ [gj(0)/y~]

X sinh(y&r) I,
where we have defined yI ——gI ~. With this definition, I I

is independent of g since y~ is proportional to g [see Eq.
(3)].

II. DERIVIATION OF THE GENERAL EQUATION

Figure 1 shows the system and some of our notation:
X Quid layers of densities p1,p2, . . .,pN and thicknesses
t&, tz, . . , tN. T. here are X —1 interfaces and g; is the am-
plitude of perturbations (of wavelength A, ) at the interface
between p; and p;+1.

We showed in Ref. 6 that there are N —1 eigenvalues

yI and associated eigenfunctions W obtained by solving

gk
y'

where M is a (X —1)X (N —1) tridiagonal dimensionless
matrix, the elements of which depend only on kt; and the
ratios p;/p;+~. Expanding in terms of these eigenfunc-
tions we derived a general equation which describes how
the amplitude rj; at interface i evolves in time:

N —1N —1

rj;(r) = g g W(i, I) W '(Ij )
1=1 j=1

Following Ref. 3 we represent a shock by an impulsive
acceleration, i.e., let g =Au 5(r—r, ), where r, is the shock
arrival time. This implies that g =0 immediately before
(r & v; ) and immediately after (r & r, ) the shock. Actually
we can treat the case where the shock is immediately pre-
ceded and/or followed by a finite acceleration (see Sec.
IV), but in this section we treat the case of an isolated
shock for clarity.

Substituting g=b.u5(r —r, ) in Eq. (5) and integrating
twice, we get

rj;(r) =rj;(0)+g;(0)r
N —1N —1

+aU g g r', w(i, t)w '(lj-)
/=1 j=1

X [hajj(0)+gj(0)&, ](7 —r )e(
(6)

Before considering special cases and applications of Eq.
(6) we note a few points. As in Eq. (4) we see that all the
modes, indicated by the summation over l, contribute to
the time evolution of g;(r) at each interface
i=1,2,. . .,N —1. Similarly, the initial conditions at all
the interfaces, indicated by the summation over j, con-
tribute to g;(r). Note that since re(0)+r'Ij(0)r, =gj(r, ),
it is actually the instantaneous values of qj at shock time
r, that influence ri;(r).

As seen from Eq. (6), the effect of the shock is to
change the rate of change dg;/dr. The amplitude q; it-
self is not immediately affected by the shock,
g;(r, +)=g;(r, ), where r, + refer to times immediately
before and after the shock. The amplitude remains the
same but its slope is changed suddenly so that
r'I;(r, +)~g;(v; ).

We now consider special cases of Eq. (6) which illus-
trate the above remarks and also have interesting proper-
ties.

III. SPECIAL CASES

A. N =2
This is the classical case considered by Richtmyer. The

density profile is shown in Fig. 2(a). Since there is only

~outside ~ lnsKle

3

0 3 0

FIG. 2. (a) The density profile for the classical case X =2 with one interface. (b) The density profile for X =3 and for the special
case p~ ——p3 ——0, p2 ——p and t 1

——t3 ——ao, t2 ——t. (c) The density profile for N =5 with densities (0,1,2,4,0) and thicknesses
(ao, t/3, t/3, t/3, ao). The amplitudes g,„„;z,and g;„„z,refer to perturbations at the first and last interfaces, respectively.
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one interface and only one term in the sum indicated in
Eq. {6),we drop the subscripts. Of course,

I =y,i„„„i/g=kA =k(p2 —pi)/(p2+p, ),
and we get

g(r) =g(0)+g(0)r
r

+ b,u k [q(0)+g(0)~, ]
P2+P&

(7)

We are considering a system of two semi-infinite fluids
moving under the action of an isolated shock; between
~=0 and ~=~, the system is coasting at some constant
velocity U(0). At r=r, a shock induces a jump velocity
b,u and after r =r, the system coasts with velocity
U(0)+EU. The jump occurs instantaneously at r=r, .
Perturbations at the interface, which may have been in-
creasing or decreasing linearly with time until w=z„con-
tinue to evolve linearly in time but with a new slope given
by g(0)+b, u keg(r, ). If the initial conditions read
g(0) =r, =0, then

q(r) /g(0) = 1+EU kA r,
(RM case) which agrees with the result derived in Ref. 3.

It is clear from Eq. (8) that, following a shock, pertur-
bation amplitudes can increase or decrease depending on
the sign of b,u A. If the shock proceeds from low to high
density (b,u A &0), then perturbations increase, while a
shock proceeding from high to low density (b,u A &0)
causes perturbations to decrease. However, if the system
continues to coast, perturbations in the second case simply
go through zero, i.e., change phase, and continue to grow
in absolute magnitude.

For the RT case of constant acceleration g, Eq. (8) is
replaced by

q(r)/g(0) =cosh(&kgb r),
(RT case) again assuming g(0) =0. For gA & 0, i.e.,
high-density fluid accelerating low-density fluid, the sys-
tem is stable and g(r) oscillates in time and never grows
any larger than its initial value as long as the system con-
tinues to accelerate in the same direction. We conclude
that while the distinction between stable and unstable
cases gA ~ 0 and gA & 0 is clear for RT instabilities, that
distinction becomes somewhat blurred for RM instabili-
ties where perturbations grow in magnitude for both cases
ADA ~0 and AU 2 ~0.

We now take advantage of Eq. (7), which is general and
accommodates arbitrary initial conditions, to analyze all
possible cases of how g(r) can evolve after the passage of
a shock at w=~, . There are 15 possibilities, not all of
which are allowed for a given sign of EU A. These are
shown in Fig. 3. For a "stable" shock, i.e., AU 3 & 0, Figs.
3(a)—3(i) are allowed while the rest are not allowed. For
an "unstable" shock, i.e., hu A &0, only Figs. 3(i)—3(o)
are allowed. The two simplest cases with g(0)=-0 are
shown in Figs. 3(a) and 3(j); the rest are obtained by con-

g(0)+b, U keg(0)
hu keg(0)

It is interesting to point out that this freezing out of the
amplitude can be achieved with a stable shock (&U g & Q)i»«h cases of g(0) &0 or g(0) &0, as indicated in Figs.
3(c) and 3(g), while an unstable shock (Eve &0) can
freeze out an amplitude only if it previously was decreas-
ing, i.e., g(0) &0, as indicated in Fig. 3(n).

Freezing out can be used as a stabilizing mechanism
particularly for perturbations on the inside of inertial-
confinement-fusion (ICF) shells where the shocks are
stable as they proceed into the fuel. Of course real targets
have perturbations in a range of wavelengths and, since
the timing condition in Eq. (10) depends on k, one can
completely freeze out perturbations of a given wavelength
X, while others close to A, will have reduced, but nonzero,
growth rates.

Finally, we point out that it is, unfortunately, impossi-
ble to freeze out an amplitude as it passes through zero.

B. N =3

(10)

The system consists of three fluid layers of densities p&,
p2, and p3, with t~ ——t3 ——~. The eigenvalues and eigen-
functions for arbitrary densities were given previously '

and wiH not be repeated here. Instead, we wiH consider
the more specialized case of p~

——p3 ——0, i.e., a single fiuid
with two free boundaries as shown in Fig. 2(b).

As indicated in Fig. 2(b), we let p and t denote the den-
sity and thickness, respectively, of the "middle" layer
(pz ——p and t2 t). The results are in—d—ependent of p since
the eigenvalue equation, Eq. (3), involves only the ratios of
densities. Furthermore, t appears only in the combination
kt.

The two eigenvalues are I ~
———I 2

——k, and the eigen-
functions are W(1, 1)= W(2, 2)=1, W(1,2)= W(2, 1)
=e "'. The elements of the inverse matrix 8' ' are

W '(1,2) = W (2, 1)=— e
—kt

—2k'

Substituting these expressions in Eq. (6) we obtain

sidering a positive or negative g(0) and short or long
shock arrival time r, . One may imagine, for example,
that the initial conditions were set by a first shock at r=0
and the perturbations evolve until a second shock arrives
at r= r, . T. he effect of this second shock is to change g
by an amount equal to b,u kA rf(r, ).

We will discuss only a few out of the 15 cases shown in
Fig. 3. Figure 3(i) is the case q(r, )=0 in which case nei-
ther a stable shock nor an unstable shock has any effect
on the perturbation. Of course, this happens if the second
shock is timed to arrive exactly at v, = —7)(0)/g(0).

Perhaps the more interesting cases are shown in Figs.
3{c), 3(g), and 3(n), where the amplitude is "frozen out"
and remains constant after the shock. Obviously this is
achieved when the slope change caused by the second
shock exactly cance1s the slope set by the previous one.
Timing must be such that the interval time between the
two shocks is
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FIG. 3. Possible evolution patterns of the amplitude for the classical case N =2. g is the amplitude of perturbations at the inter-
face between p& and p2 [see Fig. 2(a)]. The system is assumed to be coasting until time r„atwhich time a shock induces a jump ve-
locity hv. Only diagrams (a)—(i) are allowed if the shock proceeds from a high to a low density. In the opposite case where the shock
proceeds from a low to a high density, only diagrams (i)—(o) are allowed. It is possible to freeze out an amplitude as indicated in dia-
grams (c), (g), and (n).

(12)r})(1) =r})(0)+r})(0)r+ 2k, t(1+e ')[r})(0)+j)(0)r, ]—2e "'[F2(0)+j2(0)r, ]J(r r, )B(r r, ), ——
e —2kt

rI2(r)=rI2(0)+r}2(0)r —
2k, I(1+e ')[r}2(0)+r'}2(0)r,]—2e "'[r}&(0)+r)~(0)r,]j(r—r, )B(r r, ) . —(13)

Clearly, rj2(r)=r}&(r) with 1~2 and bv~ —bv. Our con-
vention is that a positive hv indicates a shock directed
from p& to p2.

At short wavelengths A, or, equivalently, at large
thicknesses t, i.e., kt ~&1, the two interfaces decouple and
the two equations (12) and (13) each reduce to Eq. (7) with

t

an Atwood number of +1. In the opposite limit of long
wavelength or small thickness t, i.e., kt ~&1, the two in-
terfaces "see" each other and the evolution at one inter-
face depends very much on the other.

I.et us consider the case g~(0)=ri2(0)=r}2(0)=r, =0.
The system is shown in Fig. 4. Initially only one of the
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~perturbecl

FIG. 4. The simplest case for N =3: a fluid layer of density

p and thickness t having two free boundaries [see Fig. 2(b)]. Ini-
tially one surface is perturbed while the other is perfectly
smooth. Perturbations at each surface evolve according to Eqs.
I,'14}and (15}.

free surfaces is perturbed with amplitude gc, while the
other surface is perfectly smooth. Then,

9Pert"rbed
1

~U k
( 1

21 t)——k—2kt (14)

gsmooth Av ke
T 0

e
—2

(15)

For the case of RT instability, the corresponding equa-
tions are

QO

1
&,

[cosh(v'gk r) —e "'cos(v'gk r)],

(16)

e
—kt „,[cosh(Vgk v.)—cos(v'gk r)) .

p ] e
—2kt

Equations (14)—(17) illustrate how an initial perturbation
at one interface can induce perturbations at the other in-
terface.

IV. APPLICATIONS

In this section we will illustrate the numerical applica-
tion of our technique with the case N =5. We have also
treated problems with large X which are better approxi-
mations of density profiles in an imploding capsule. The
results for the relatively long wavelengths considered here
are not too sensitive to how well the density gradients are
resolved, and the conclusions presented in this paper ap-
ply also to the cases with large X.

We now turn to a specific example. The densities are
(0,1,2,4,0) and the thicknesses are (co, t/3, t/3, t/3, ao ).
This density profile is shown in Fig. 2(c). It was chosen
for two reasons. First, it is representative of the density
profile in ICF capsules where a shell of thickness t is
driven from one side by low-density plasma and
compresses low-density fuel on the other side. With this
picture in mind, we will call the first interface, between
p=0 and p= 1, the "outer surface" of the shell, and the
last interface, between p=4 and 0, will be called the
"inner surface. " The reader must keep in mind that the
geometry assumed in all our calculations is planar (see
Fig. 1) and not spherical as suggested by the terms inner
and outer.

The second reason for choosing this admittedly simple
density profile is that we can obtain analytic expressions

for its four eigenvalues. Two of the eigenvalues are given
by y /gk= + 1 and —1, and the other two are

y S(1+ST)(R 1—)+S
~

R —1
~

v R
gk R'+R+1+S'(R+1)'

where S=sinh(kt/3) and T=tanh(kt/6), and R is the
common ratio of densities R=p&/p3 ——p3/p2 which is
equal to 2 for the density profile shown in Fig. 2(c). We
used these equations as a check of our numerical calcula-
tion.

%'e have not specified the units for the densities since
an overall scale is immaterial. The density profile
(0,1,2,4,0) is equivalent, for example, to (0,3,6, 12,0).

For the wavelength we chose A, =3t. Several considera-
tions led to this choice. As expected, very long Q, &&t)
wavelength perturbations grow too slowly, while very
short (A, &&t) wavelength perturbations grow very fast.
For reasonable assumptions on surface finish, as discussed
below, the very short wavelength perturbations grow so
large that they are well outside the linear regime where
our theory is applicable. Furthermore, the time evolution
of very short wavelength perturbations is given to a good
degree of accuracy by the classical expressions, Eqs. (1)
and (2), applied at each interface independently. The in-
teraction among the various interfaces, which is the main
feature of our approach, becomes dominant at relatively
longer wavelengths.

For our initial conditions we chose
'gi(0) ='g2(0) =g3(0) = I'14(0) =0, vh(0) =g3(0) =0, and
q&(0)=g,„„;z,(0)=g4(0)=—q;„„z,(0)=g(0), that is, we
chose to start with no perturbation within the fluids and
with equally rough initial surface finish g(0) on the inside
and outside surfaces. As the surface perturbations 7) ~ and

qq evolve in time, the fluid develops internal perturba-
tions, i.e., q2 and g3 grow from their initial zero value to
rather large values as they are driven by the surface per-
turbations.

We considered five different velocity histories shown as
diagram (a) in Figs. 5—9. They are combinations of
shocks and constant accelerations. In all cases we as-
sumed that a final shock at r=5 brings the shell to rest
(v =0), though, of course, in a capsule the shell would
slow down, turn around, and move out. Our velocity his-
tories represent fuel burn at about ~=5, though we will
continue to evolve our equations up to ~=6 to show the
effect of a large shock which proceeds from inside to the
outside.

Our unit of length is set by t =1. The units of time are
arbitrary. In Figs. 5—9 negative velocity indicates motion
directed "inward, " i.e., from p= j. to 4. An example will
clarify these points. A shell 10 pm thick with perturba-
tion of A, =30 pm on its outer and inner surfaces is sta-
tionary at ~=0. Assume that it moves according to Fig.
6(a), and that time is measured in nanoseconds. Then at
~=1 ns the shell jumps inward with speed 20 pm/ns and
immediately afterwards accelerates inward with

~ g ~

=20pm/ns until r=4 ns, at which time it is moving
inward at 80 pm/ns. We will call this maximum speed its
"implosion velocity. " At ~=4 ns the shell decelerates
with

~ g ~

=30 pm/ns until v=5 by which time its speed
is reduced to 50 pm/ns. A shock at ~=5 ns brings the
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FIG. 5. (a) A velocity history describing the motion of a shell
whose density profile is shown in Fig. 2(c}. Negative velocities
are directed from outside to inside. The shell thickness t is
chosen as seal~ for length or distance. Units of time r are arbi-

trary. D= v dv. . In this case the shell covers a distance D of
12.0 times its thickness. (b) Evolution of perturbations at the
outer and inner surfaces of the shell, assuming the velocity his-

tory of diagram (a). Initially the outer and inner surfaces have
perturbations of amplitudes q(0) and wavelengths A, =3t.

shell to rest; it has covered a total distance of 215 pm.
The results of our calculations corresponding to the

velocity histories of Figs. 5(a)—9(a) are shown in Figs.
5(b)—9(b), respectively. In these figures we show
q~(r)/rI(0) and ri~(r)lrI(0), the "outside" and "inside"
perturbations, as functions of time r

FIG. 6. Same as Fig. 5 for a different velocity history. The
system covers a distance of 21.5 times the shell thickness.

The coupling between interfaces is most clear at r =5,
by which time the outer perturbation grows very large and
"takes over": the phase reversal of this outer perturbation
immediately after the last shock (which brings the system
to rest) is expected on classical grounds, since the shock,
directed from inside out, proceeds from a high (p= 1) to
low (p=O) density at the outer surface. What is difficult
to explain is the phase reversal at the inner surface where
the shock proceeds from low density (p=O) to high densi-

ty (p=4). This phase reversal can be understood if we
remember that by this time the large outer perturbation
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FICx. 7. Same as Fig. 5 for a different velocity history. The
distance covered is 20.0 times the shell thickness.

FIG. 8. Same as Fig. 5 for a different velocity history con-

sisting entirely of shocks. The distance covered is 19.0 times the
she11 thickness.

controls the rest of the perturbations; in other words, the
inner perturbations reverse their phase because the outer
perturbations have.

Figures 5—9 show that by ~=5 perturbations have in-
creased almost by a factor of about 10 . As mentioned
earlier, shorter wavelength perturbations grew even more,
particularly on the outer surface, and our choice of A, =3t
was partly motivated by reasonable estimates of surface
finish and how much growth can be tolerated because our
calculation breaks down when q ~ & A, and nonlinear effects

come into play. Going back to our example of a shell 10
pm thick, it is reasonable to assume an initial surface fin-
ish of g(0) & 100 A. Growing a thousandfold this ampli-
tude reaches q & 10 pm and is barely within the linear re-
gime since A, =30 pm. Clearly, choosing a shorter wave-
length which grows faster would have taken us weH
beyond the linear regime and the validity of our theory
unless, of course, we assumed a much smaller initial am-
plitude.

In Figs. 5—9 three out of the four inputs are kept fixed



31 RICHTMVER-MESHK. OV INST~ILITIES IN SIR.ATIFIED FLUIDS 417

0 0

D = 12.0

-9
0

I

4

-8 —
(

-9
0

l

. 2
I

3

1000 =
I I I

1000 ~
I I I I I

100 = 100 =

inside

0

'-100 =—

-1000 =
0

(b)

l I

2
l

4
I

5

-100 =
{b)

-1000 =-

0 1

l

4
I

5

FICr. 9. Same as Fig. 5 for a velocity history similar to Fig.
5{a) in which the constant acceleration between ~=2 and ~=4 is
replaced by a series of five small shocks. Compare with Fig. S.

FIG. 10. Same as Fig. 6 but with different initial conditions:
only the inner surface has initial perturbations; the outer surface
starts perfectly smooth. Compare with Fig. 6.

(same density profile, same wavelength, and same initial
conditions on the q;). Only the fourth input, viz. , the
velocity history, is varied in Figs. 5—9. The growth of the
perturbations clearly depends on the velocity history of
the shell, as these figures illustrate.

Finally, we show an example of how a perfectly smooth
outer surface develops perturbations as large as the case of
an initiaHy rough outer surface. In Fig. 10 we show how

perturbations evolve from the initial values rl,„„;d,(0)=0
and g;„„d,——g(0), i.e., all surfaces start perfectly smooth
except for the inside surface. The velocity history is that
of Fig. 6(a). Comparing Figs. 6(b) and 10(b) we see that
an initially smooth outer surface does not necessarily
suppress the growth of perturbations at later times —a
perturbation at only one interface can act as seed for per-
turbations throughout the fluid.
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largely by the growth of the outer perturbations. If a
mechanism stabilizes the outer surface, then we have
reason to expect that the inner perturbations also will not
grow very large. We must point out, however, that other
20 hydrodynamic calculations' do not show a reduction
in the growth rate and that there is no clear experimental
evidence for such stabilization.

We have carried out a few 2D hydrodynamic calcula-
tions with targets driven by ablation and find that the ef-
fect depends on the target material. Of course, material
properties and the effects of ablation are completely ab-
sent from the analytic theory presented in this paper;
however, other characteristics of our theory, specifically
feed through of long wavelength perturbations from one
surface to another and phase reversal of amplitudes when
shocks proceed from a high- to a low-density fluid were
found in our 2D calculations also.

We illustrate with a problem run on the 20 hydro-
dynamic code LASNEX. " The target is 20-pm-thick Si02
glass with perturbations of wavelength A, =20 iMm and ini-
tial amplitude g(0) = 1 iMm on its backside, i.e., away from
the ablation surface. In Fig. 11 we show snapshots of the
lower half of the fluid at t =0, 1.7 ns, 2.0 ns, and 2.8 ns.
The drive corresponds to an about 10-kJ laser pulse whose
full width at half maximum, peak power occurring at
about 2 Ons. . By t=1.7 ns we see that the lower half of
the glass has been compressed by a factor of 2 from its in-
itial 10 pm thickness to about 5 pm. At this time the
shock is about 2 pm away from the backside At .t=2.0
ns the shock has broken through and the amplitude has
reversed its phase. The target begins to accelerate and by
t=2.8 ns it covers a distance of about 50 pm. Also, by
2.8 ns the upper half of the glass (not shown) has ablated
away so that only the lower half is still dense. The abla-
tion surface, as shown in Fig. 11,exhibits rather large per-
turbations, about 6 pm peak to valley, induced by pertur-
bations feeding through from the backside to the ablation
surface Perturba. tions continue to grow after 2.8 ns.

(iii) Finally, we discuss the assumption of incompressi-
bility. For the case of the Rayleigh-Taylor instability it is
not yet clear whether the effect of compressibility is to
cause an increase or decrease in the growth rate (see Ref.
12). In the case of the Richtmyer-Meshkov instability the

effects of compressibility would be even more important,
since real fluids invariably get compressed upon the pas-
sage of a shock.

Given the assumptions that go into the derivation of
the classical expression

P2 —Pl=g AUk
dv p2+pi

(19)
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it is indeed surprising that experiments and numerical cal-
culations with compressible fluids gave results consistent
with it: Richtmyer's numerical calculations were con-
sistent with Eq. (19) provided he used the postshock, i.e.,
compressed amplitude and the postshock densities in this
equation. He considered a shock proceeding from a light
to a heavy fluid. Subsequent numerical calculations by
Meyer and Blewett' agreed with Richtmyer's results and,
for the case of a shock proceeding from a heavy to a light
fluid, they suggested using the average of preshock and
postshock amplitudes in Eq. (19). Experiments by Mesh-
kov were also consistent, within a factor of -2, with Eq.
(19) and confirmed the fact that perturbation s grow
linearly with time whether the shock proceeds from light
to heavy or from heavy to light fluids.

Thus there is some evidence that the classical expres-
sion, in which a shock is treated as an impulsive accelera-
tion, does a reasonably good job for the case N =2.
Whether our extension to arbitrary X is also reasonable
remains to be seen by new calculations and experiments.

Note added in proof. A recent experiment' has mea-
sured the growth of perturbations which initially start on
the rear surface of a foil, i.e., opposite the side facing the
laser.
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