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Electron distribution function in the potential electric field of a high-frequency
monochromatic plasma wave with an arbitrarily large amplitude
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An analytic solution of the Vlasov equation in the one-dimensional case is presented for electrons in the
potential electric field of a high-frequency monochromatic plasma wave with an arbitrarily large amplitude.
The phase velocity of this wave is assumed to be appreciably higher than the electron thermal velocity. The
ambipolar potential due to charge separation is taken into account and the form of the electron distribution
function on the boundary need not be Maxwellian.

in laser-pellet experiments and rf heating in tokamaks,
large-amplitude high-frequency monochromatic plasma
waves are generated in a plasma. If the phase velocity of
these spatially modulated plasma waves is appreciably higher
than the electron thermal velocity, then resonant effects
(Landau damping) are negligible. Modulation of the ampli-
tude is crucial in changing the plasma equilibrium. In many
problems of interest, the collisionless regime is appropriate,
and so the Vlasov equation can be used to determine the
electron distribution function.

For a considerable time only a "pure" quasilinear solu-
tion of this equation was known. This solution remained
Maxwellian with a modified temperature and density. Some
years ago it was demonstrated for the first time' that even
in the frame of quasilinear theory, the electron distribution
function, with the phase-space dependence modified in a
nontrivial manner, can be found. Hence, from the practical
point of view it became very important to find a solution of
the Vlasov equation beyond the limits of quasilinear theory.

The accurate analytic solution of the Vlasov equation for
electrons iri a homogeneous plasma, with an externally
driven, nonmodulated, high-frequency monochromatic elec-
tric field of arbitrarily large amplitude, is easy to find, as is
the time-independent component of this fu.ctiOn. . The
complete solution is in the form of a displaced Maxwellian
distribution. However, until recently there had been no
success in finding an exact solution of the Vlasov equation
for more general conditions, even in the one-dimensional
case.

The first successful attempt was reported2 for the simplest
one-dimensional case of the potential electric field of a
high-frequency monochromatic standing plasma wave of ar-
bitrarily large amplitude. Even though the importance of
taking the ambipolar potential into account was mentioned
in that paper, the method used to generate the solution
made its inclusion difficult. In a subsequent paper, a more
powerful method of solving the Vlasov equation was used
which allowed the limitation of a standing plasma wave to
be removed and the ambipolar potential to be taken into ac-
count.

All the solutions mentioned above were based on the as-
sumption that, where the high-frequency electric field was
zero, the electron distribution function remained Maxwelli-
an. Although this assumption may not be far removed
from reality (since we are not dealing with resonant veloci-
ties), a more general solution which does not require this

E(0, t) =0, V'(0) =0, f(0, v, t) = feto'(v) (2)

Here —e and m, are the electron charge and mass; p(x) is
the ambipolar potential; E(x, t) is the potential electric field
of a high-frequency monochromatic plasma wave with the
angular frequency co [subsequently, E(x, t) will sometimes
be denoted simply by E]; and '7 and '7„denote 8/Bx and
8/Bv, respectively. We shall assume that the phase velocity
of the plasma wave is appreciably higher than the electron
thermal velocity, as can be expressed in the form

~T '7E
0) E

where ~T is the electron thermal velocity defined as
f +oo f +oo

v f dv=2 v f dvTg 0 & —oo

We shall write the electric field in the form

E = E (x, t) = E (x)e i~i+ E '(x) e

(4)

We shall introduce the dimensionless potentials

e'(E'(x, t) )
2 2 2 ' 2

me co v T mev T

where the brackets ( ) denote time average over the
period of the oscillations. These potentials are the normal-
ized ponderomotive potential and the normalized ambipolar
potential, respectively. The square root of the first of these
is the ratio of the average electron oscillation velocity to the
electron thermal velocity and will be further used as a for-
mal parameter.

The electron distribution function may be written in the
form of a sum of two terms —one slowly varying and the

Maxwellian boundary condition can, in principle, be found.
In the frame of a quasilinear approximation, such a solution
for the case of a simple traveling plasma wave whose ampli-
tude varies slowly in time, is known. ~ In this Rapid Com-
munication a solution of this type for the general conditions
assumed in Ref. 3 is found, using the method developed in
that paper.

We shall analyze the one-dimensional Vlasov equation

f+vVf+ V&'7„f E'7„f=—0,9i m,

allowing for the boundary condition
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other oscillating rapidly as a function of time:

f(x, u, t)= fp(x, u, t)+ f(x, u, t) (7)

w1th respect to co, we wr1te
+oo

f (n) X (f (n)e im—tnt+ f (n) eimott)

m=1
(9)

n=o
f(n)

' f g f(n)
n=1

Since each of the terms f " can contain higher harmonics

We shall be primarily interested in the solution of fp = (f) .
We shall express the solution (7) in the form of an infi-

nite series of terms of order n with respect to the formal
parameter defined above:

Bearing in mind that the function fp varies slowly with
time, we can confine our interest to velocities for which the
following condition is satisfied:

(n)
(10)

9t
The procedure leading to the recurrent relations for the

nonzero terms f (") does not depend on the form of the
boundary condition fp(0). Therefore, we can omit all the
lengthy derivations and start our analysis just from these re-
lations [see Eq. (32) in Ref. 31:

u~f (2n) e
I p'tp. ~ f (2n —2) + ~ [E( )xf (2n )) + -En(x)f (2n —)) ])

me

(n)

t

ie
1 iuVE( ')~ f (n ))

nme~ neo
t

(n)

mmes
1 — [ —9& '7„f(" 2)+E(x)'vt„f (")') +E'(x)V„f(+)') ], n «I, m= n —2k«1, k«1

mcus

Owing to the fact that

f(" )) =0, n«1 (12)

fp " (O, u, t)=0, n«1 (13)

and taking into account the condition (3), we have found
the form of terms fp(2), fp(4), fp(6), and fp(8). It is then ap-
parent that introducing a dimensionless velocity w = u/uT
and defining a differential operator

'7w

where V = 8/Bw, these terms fit the general formula

f(2n) x x 4 &~2
i=0k=0

it follows from (8) that we need to determine a general for-
mula for the term fp(2").

The main advantage of the system of recurrent relations
(11) is that it can be solved in a straightforward manner,
even if with increasing n the number of mathematical opera-
tions needed to find the form of fp(2") grows very quickly.
Bearing in mind that

e(f Q)M W2n —( W2 + (It $ ) n (18)

it is easy to show that the following expression is valid
(after the Fourier transformation in velocity space has been
performed):

p +oo
fo= —

J cos(pw) Jo(pv'2(tt)F(p ttt ttt) dp (19)
m'

time dependence of the ponderomotive and ambipolar po-
tentials, respectively.

Special requirements for the boundary condition fo(0)

have not been mentioned so far; however, only a function
for which either a finite or a convergent infinite series is
generated can be treated by this method. In the case of odd
powers of w this means that a condition w2 ) t[t —@ must be
satisfied. This condition expresses the physical fact that
only those electrons from the boundary which are energetic
enough not to be back reflected by the potential barrier
t[t —hatt can cause an asymmetry in the form of the boundary
condition fo(0). More precisely, the maximum value of this
potential barrier must be taken into account.

To illustrate the use of the operator I. let us suppose that
the boundary condition fp(0) is an even function of velocity,
i.e., fp ) = fp ) (w ). Owing to the fact that

( —titM)' " (EflM)" '
(())

( i —k)! ( n —i)! (15)
~here

F(p, () = J cos(pw)f()"'(w2+() dw (20)

Eventually the function fp can be found in the form

fo = I-fo"' (16)

As one can readily see for the case of the Maxwellian boun-
dary condition

where I. is the differential operator in velocity space which
can be expressed formally as

no
fIM ~ e ~

&ST
(21)

1.= J (iJ2QV„)e & (17)

and Jo is a zero-order Bessel function. Slow time depen-
dence of the function f0 may be incorporated using the slow

where no is the corresponding electron density at the boun-
dary, our result (19) is in full agreement with the result ob-
tained in Ref. 3.

In the case in which we are particularly interested in the
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fo = J a( i J2iiiV „)fa{ol ( w2 + iII —$ ) (22)

Then, for example, we can write expressions for the elec-
tron density and the average quadratic velocity of the elec-
trons as

moments of the distribution function f'0 it is more con-
venient to use the following formula:

f (0) 1
—If (2S)

to be performed. This inverse operator can be formally ex-
pressed as

Finally, we would like to mention the fact that an inverse
differential operator L ' can, in principle, be found, 5 which
permits the reverse procedure

P +DO

n(x) =
~ fo (w +i]i @) d& (23) r.-'= e&~-»"J (i42yV„), (26)

and

lf T
'2

e +oo

n(x) &— w fo (w +tii —@)du+2tii t T (24)

where Jo (x) is an infinite series with coefficients such
that the condition Jti(x)+ Jo (x)=1 is satisfied for each
value x for which Jo(x)eo.

respectively. Again, for the Maxwellian boundary condi-
tion, our results agree with the results obtained in Ref. 3.

The authors are indebted to B. Luther-Davies for critical
reading of the manuscript.
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