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We show that the derivation of the small-signal gain given by Friedland [Phys. Rev. A 29, 1310 (1984)]
actually applied for an incoherent stimulating field with amplitude and phase fluctuations obeying a station-

ary Gaussian process rather than the standard situation where the stimulating field is assumed to be
coherent. The gains are identical in either case; however, the photon statistics are different. We also try

to rectify some confusing remarks about the quantum limit of the free-electron laser.

In a recent paper' [henceforth to be referred to as I;
equations designated by (In ) refer to Eq. (n) of Ref. I]
Friedland investigates the free-electron laser (FEL) by
inferring the photon statistics via the correspondence princi-
ple. We feel that this paper as it stands is likely to intro-
duce some confusion about the photon statistics of the FEL
as well as the limits of applicability of the classical descrip-
tion. Our comments may be summarized by two points.
(1) The assessment of the quantum limit of the FEL is con-
tradictory and confusing. In particular, the condition given
explicitly in Eq. (Il) is wrong. (2) The model description of
the stimulating laser field introduced in Sec. II of Ref. 1 is
different from that usually considered in the derivations of
the gain in the FEL: Normally, in classical treatments, the
stimulating field is assumed to be a coherent field with fixed
amplitude and phase, while in quantum-mechanical treat-
ments, it is described by an eigenstate of photon number or
a coherent state. In contrast, the description adopted in I is
a classical chaotic field with amplitude and phase fluctua-
tions and an infinite correlation time. This will be demon-
strated below. Consequently, the photon statistics derived
from this model are different from previous results, while
the gain is identical, as it should be. The model of a chaotic
field is not without physical interest; in fact, the photon
statistics of spontaneous emission of a high current electron
beam is thermal. Hence, the conclusion which should have
been drawn from Ref. 1 is not that the gain has been
rederived by different arguments, but rather that it has been
derived for a different physica1 situation and happens to be
identical to the one which is normally considered. In what
follows we will consider these two points in more detail.

We will first address the question of the quantum limit.
It is well known that one has to discriminate between two
different quantum regimes, which may be referred to as the
low-intensity and the large-recoil regimes. The former is re-
lated to the quantum nature of the electromagnetic field and
the latter to that of the electron. The low-intensity quantum
regime applies to spontaneous emission of very dilute elec-
tron beams where the number of electrons is so smal1 that
the spontaneously radiated field remains comparable with
the vacuum field fluctuations throughout most of the time
that the electrons interact with the wiggler. When a very
weak stimulating field is present, the field increase is still
dominated by spontaneous emission. However, the princi-
ple of detailed balancing, as formulated in Eq. (I27), does
not apply whenever spontaneous emission is important.
Consequently, the statement made below Eq. (I31) that
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Here, and in what follows we use without further explana-
tion the notation of I. Whereas the individual wave trains
EL; have fixed amplitudes, the amplitude of the entire field
El. is a stochastic quantity, because the polarization vectors

"this expression describes both the quantum and the classi-
cal limits" is meaningless since the low-intensity quantum
limit is beyond the scope of Ref. 1. In the large-recoil
quantum regime the energy of a photon is large compared
with the width of the gain profile. In this case the expan-
sion (128) is inapplicable.

In Eq. (Il) it is assumed that the criterion for classical
behavior is that the average energy loss by an electron is
very large compared with the energy @co of a field quantum.
This is incorrect: the multiphoton character of the FEL be-
comes mainly apparent in the average electron energy
spread, and it is the latter quantity that must be much larger
than hew for the classical description to apply. In compar-
ison, the average energy loss is a very small quantity in the
small signal regime. If this is taken into account the result-
ing limiting radiation flux comes out to be lower by many
orders of magnitude than the value of 1 W/cm given below
Eq. (Il). Actually, later in Ref. 1 it is repeatedly and
correctly pointed out that the criterion is given by n » 1.

The model adopted in Sec. II of Ref. 1 describes the laser
field as a superposition of N linearly polarized mono-
chromatic wave trains with identical frequencies, where the
polarization vector and phase of each wave are considered
as stochastic quantities. Since the magnetic wiggler field
(I4) is circularly polarized, only the component of the laser
field (I3) with the same circular polarization can be ampli-
fied or attenuated, whereas the component with the oppo-
site circular polarization is virtually unaffected. The impor-
tant component is
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p; are stochastic. We have (p; = 1)
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where L~ is a Laguerre polynomial. The parameter z is

essentially the line shape of spontaneous emission; ex-
pressed in terms of the notation of I it reads
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and for N » 1
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The integral operator in Eq. (7) has the property that
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This explains why the gain (I36) agrees with the standard
result:5 the small signal gain for a coherent stimulating field
is just proportional to its intensity I, so that it is reproduced
by the integral operator according to Eq. (g) . It is
noteworthy that this equivalence no longer holds if satura-
tion corrections6 are considered: the lowest-order correction
is proportional to I, which is in the incoherent case re-
placed by 2I . Hence, as long as only the second-order
correction needs to be considered, saturation sets in faster
for an incoherent than for a coherent field.

In contrast to the small-signal gain, the photon statistics
are different in the two cases. The photon statistics for the
chaotic field are given by Eq. (I19), viz. ,
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where IIII is a modified Bessel function. In contrast, if the
stimulating field is in a photon number state with Np pho-
tons, they are
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where in Eq. (6) the sum is over all n permutations P of the
variables (zk, tk). Consequently, the field EL satisfies a sta-
tionary Gaussian process with an infinite correlation time.
It is well known4 that in this case there is a simple relation
between any quantity A calculated for a coherent field with
intensity I, and the ensemble average of the same quantity
calculated for the chaotic field with average intensity I,
namely,

It is important to notice that z is independent of N p since Q
is the radiation energy density. Equation (10) holds for all
Np, for Np » 1 when spontaneous emission is negligible its
limit is

R.(l) = [J (24N~ ) l',
where Ji is a Bessel function. This has now to be compared
with R (l) from Eq. (9). Owing to the integral8
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we have in fact
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with n/z the average radiation density in the incoherent
case. Hence, R (l) and R, (l) are connected by the general
relation (7) as was to be expected.

A brief comparison of the two photon distribution func-
tions R, (l) and R (l) for the two cases of the coherent and
incoherent stimulating fields, respectively, is instructive.
The function Ji (x) for fixed x undergoes extremely rapid
oscillations as a function of l. If these are averaged over,
since they are completely unobservable quantum features,
we observe the limit
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This limit agrees with the classical distribution of the elec-
tron energy after the interaction with a coherent laser field
inside the wiggler, as derived, e.g. , from the pendulum
equation. In the classical limit the energy exchange between
the electron and the laser field is limited by the maximum
of the ponderomotive potential 2e ALA~, where AL and
A~ are the vector potential of the laser and the wiggler
field, respectively. For a coherent field with no amplitude
fluctuations this maximum has a well defined value. This is
the origin of the sharp cutoff exhibited in Eq. (14). In con-
trast, for the incoherent field with amplitude fluctuations no
corresponding maximum exists, and this results in the
smooth distribution function (9).
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