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It is shown that the divergence of the pressure at the close-packed volume for the metastable supercooled
fluid branch may be less singular than that of a first-order pole—the result of the free-volume theory.
Such weaker singularity gives a possible explanation of why the numerical values found for the close-packed
volume are always less than Bernal’s random close-packing volume.

A question of constant interest for a classical continuous
system of particles with purely repulsive hard-core potential
is the nature of the singularity of the pressure P at the den-
sity of amorphous close packing!-2 (extended fluid branch),
and at the density of closest packing® (solid phase). In what
follows we show that the singularity at the density of closest
packing in the solid phase, viz., po= N/ Vy, where V is the
minimum volume enclosing N particles with hard cores, is
of the form

W as V— V1, 1)

Psolid/pokT =
with 4 >0 and A=1. In addition, if a singularity exists
with N/ V1=p; < po in an extended fluid branch, then

ﬁﬁ)—; as V— Vl, (2)

Pria/ pr1&T =
with B >0 and u > 0. For a macroscopic system of hard
disks, Vo= No2J/3/2, as given by the hexagonal close-
packed arrangement. In three dimensions, the densest pos-
sible packing for a macroscopic system of hard spheres is as-
sumed to be the regular close-packed arrangement, viz., ei-
ther hexagonal close packing or face-centered-cubic packing,
and so Vo= No?/~/2. Notice that for macroscopic systems
the shape of the volume is of no thermodynamic conse-
quence.

The partition function for the purely repulsive hard-core
potential in any spatial dimension dis given by*

Z(V,N,T)=(N!)\Nd)—1der1. . ’fydrN
X H S(ll'i_l'jl),

I<i<j<N
(3J)

e(N,T) exp{[CN/(1—w)1(1 = V,/V)1~%};

z¢ V’N'T)=lf(N,T)(1— V. V),

w=1,

as V— V., where e(N,T) and f(N,T) are constants of in-
tegrations. (It should be remarked that the pure numbers
C, w, and V,/V, depend weakly on N and become strictly
independent of N only in the thermodynamic limit.) For
Pe=po, Zsoiia(V,N,T) must vanish by (5) as V— ¥, and so
w=MA=1, thus establishing result (1) with C=A4. (The
free-volume approximation gives’ A =1 and 4 = d, which is
exact for hard rods.) However, for p.=pi, Zuia(V,N,T)
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w®l,

where

1if r| > o,

(The variable o is the length of the hard rods or the diame-
ter of the hard disks or spheres.) Note that

Z(V,N,T)=0 when p=py . )

It is important to remark that in computer experiments
the partition function is obtained® by integrating the equa-
tion of state [defined by Eq. (7) below]. Therefore, a meta-
stable supercooled phase and the solid phase possess dif-
ferent partition functions. However, a single mathematical
analysis suffices to consider both cases. Suppose the pres-
sure is singular at some density p = p,. =< py, and

Plp kT =

as V— 1V, , (6)

__Cc
1=V V)*
with C >0 and w>0. The assumed form (6) for the
behavior of the pressure near a singularity includes also pos-
sible multiplicative logarithmic singularities. (This is quite
similar to the way critical-point exponents are defined* in
the theory of phase transitions.) It is clear that one can
consider all sorts of more complicated singularities, e.g.,
essential singularities, limit point of different types of singu-
larities, and so on, and carry through a more general
analysis. However, even the simple form (6) is much more
general than anything assumed in the literature, and, in
fact, allows us to prove that the possibility u < 1 cannot be
ruled out for random close packing. Now, by definition,

P 9 ,
IWInZ( V,N, T)] , )

kT T

and so

®

-
need not vanish as V— V{, and so w=pu > 0, and result

(2) follows with C = B.

It should be noted that the analysis, with equation-of-
state data from molecular dynamics (MD) and Monte Carlo
studies is based on a linear behavior® of pkT/P
~ (nrcp—m) near the vicinity of random close packing
(RCP), where the packing fraction n=pwmo3/6 for hard
spheres. Also, Padé approximants, as applied to date,® can
only give rise to simple or higher-order poles. Notice that
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the value of the critical-packing fraction obtained from a
linear extrapolation would, according to (2), withO0<pu <1,
give that mey > mrep- Therefore, it may be that for hard
spheres Mrep=2/m =0.6366—the limiting high density® for
amorphous packing of hard spheres—and so the extrapolat-
ed values of m.y reflect already the behavior demanded by
(2) for 0 < u < 1. For instance, Mex = 0.644 from MD com-
putations! with a 32-particle system, meq=0.637 +0.002
from a lengthy MD computation,? with a 500-particle sys-
tem, and 7Mex=0.64 £0.02 in a recent® method of calculating
TMRCP-

The thermodynamic identity (7) gives, with the aid of
(3), that P/kT is a function of N and V only, which in the
thermodynamic limit becomes P/kT=F(p). Therefore,
the singularities appearing in (1) and (2) correspond to the
limits T/ Pgiq— O at V= Vy—the volume of close packing
for the crystal—and T/Pguq— 0 at V= V;—the volume of
close packing of the equilibrium liquid—respectively. The
existence of this latter singularity in the equation of state
for the hard-sphere fluid would result from the supercooled
metastable fluid branch. The singularity of Pguo/ kT at
V= ¥, is usually identified® with the random close packing
of hard spheres at 7=0 which occurs (to 0.06%) at Bernal’s
volume Vrcp= Na37w?/12. Result (1) together with Eq. (2)
with 0<pu <1 imply’ that the configurational entropy

S.(Py, T) = S (liquid, Py, T)— S(crystal, Py, T) >0, pos-
sesses a minimum at 7=7T;>0, and is such that
S.(Py,T)/Nk— +o00 as T— 0 for fixed P=P,. These

results corroborate the metastable nature of the (super-

4019

cooled) liquid branch, and strengthen further the identifica-
tion of the random close-packed state with the metastable
state for very low temperature packing of hard spheres.
Herein lies the importance of the possibility u < 1—even if
pn=1—¢€ with 0 < e << 1. It implies that the configuration-
al entropy S, is infinite at the absolute zero of temperature.
Note that at constant pressure P =P, S(liquid, Py, T)
— 3NkInTas T— 0, for u < 1. (Recall that the classical

hard sphere system does not satisfy the third law of thermo-
dynamics.) Consequently, the configurational entropy of
the supercooled liquid, viz., S.(liquid, Py, T)= S (liquid,
P, T)— %—Nk InT, is  finite in the  metastable
(random-close-packed) state at zero temperature. [It
should be remarked that in the free-volume theory,
S.(liquid, Po,T)— 3NkInT as T— 0, for fixed P=P,.]
Note also that the minimum configurational entropy
S.(Po, T,), which is’ approximately Nk, would correspond to
the residual entropies of ordinary laboratory glasses. In the
solid phase, at constant pressure P=P,,
S.(crystal, Py, T)~ — TU~M/A a5 T— 0, for A > 1, where
S.(crystal, Py, T)=S(crystal, P,,T)— 3 NkInT. If, how-
ever, A=1, then S.(crystal, Py, T)~InT as T— 0.
Therefore, A > 1 leads to an infinite heat capacity as T— 0,

-while A =1 gives rise to a finite heat capacity as 7— 0. Ac-

cordingly, the value A=1 is clearly preferred in the solid
phase.? (A similar argument can be used to eliminate the
possibility u > 1 for the extended fluid branch.)
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