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Quantum-corrected pair distribution function of liquid neon
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By means of computer simulation we have calculated the quantum-corrected pair distribution function
g (r ) of liquid neon up to the term k of the Wigner-Kirkwood series expansion. The agreement between
calculation and the experimental data at T = 35 K of De Graaf and Mozer is now, for the first time, satis-
factory.

Classical statistical mechanics is the usual framework in
which the properties of high-density fluids are calculated by
means of computer simulation techniques. Exceptions to
this approach are the well known cases of the helium iso-
topes.

However, in the case in which either the temperature is
low enough, or the mass of the elementary constituents is
low enough, or the property under examination is studied at
high enough frequency (which implies short correlation
time), the quantum behavior of the many-body system can-
not be neglected and consequently calculations must be per-
formed with a theoretical approach which correctly takes
into account quantum effects.

A rigorous quantum-mechanical calculation of the proper-
ties of a many-body system is presently not possible. How-
ever, there are two different approximate methods with
which this problem can be approached for particles following
the Boltzmann statistics.

One is based on the Wigner-Kirkwood expansion' 4 and
the other is based on the Feynman path-integral method. 5

Recently we have shown how the Wigner-Kirk wood

method can be applied for the calculation of spectral proper-
ties4 6 and how various quantum corrections can be calculat-
ed for a many-body system by means of classical
molecular-dynamics computer simulation techniques. 7 The
quantum corrections to the pair-correlation function in a
Lennard-Jones fluid have been also calculated in various
thermodynamic conditions up to the order 8, ' showing
the effect of the particles diffraction on the short-range
behavior of the static pair correlation function. 7 Calcula-
tions of g (r ), based on the Feynman path-integral method,
have been performed by Pollock and Ceperly for a
Lennard-Jones fluid at various temperatures.

Liquid neon is a system of particular interest; its behavior
is almost classical and therefore the Wigner-Kirkwood ap-
proach can be successfully used to calculate its properties.
In fact, liquid neon (temperatures of the order of 35 K) is a
system which can be considered in the framework of
Boltzrnann statistics and nevertheless shows a not negligible

quantum behavior in some of its properties. Calculations of
the free energy' and of the collision-induced light scattering
spectral moments of Ne in the vicinity of the triple point,
have already been performed and demonstrate the necessity
of including quantum effects.

Here we report the result of a calculation of the pair dis-
tribution function g(r) of liquid neon at reduced density

po = poa. 3 =0.694 and reduced temperature ? = ks T/6
=0.98, ~here p, T, and kg are the number density, the ab-
solute temperature, and the Boltzmann constant, respective-
ly, while o- and ~ are the parameters of the Lennard-Jones
potential used in the calculation.

Moreover, we will compare our calculations with the ex-
perimental values derived from the neutron scattering data
by De 6raaf and Mozer. " This comparison is of particular
interest since the experimental results for the neutron struc-
ture factor S (k ) of De Graaf and Mozer are very precise
and extend to unusually high k vectors, therefore permitting
a reliable derivation of an experimental g(r) by Fourier
transformation.

Recently Powles and Abascal' have tried to reconcile the
discrepancy between the classically calculated g (r ) of neon
and the one which is extracted from the neutron scattering
data. However, the disagreement between their calculation
and the experimental values remains of the same order of
magnitude as the one between the classical calculation and
the experimental values. This could be attributed to the
fact that Powles and Abascal used, in their calculation, the
Mayer and Band'3 effective "quantum" potential which
gives an incorrect account of the terms of order higher than
h, as it can be easily seen by comparing the h expansion for
g (r ), which is derived in terms of the Mayer and Band ef-
fective potential, with the rigorous one which is given by
the Wigner-Kirkwood expansion.

We will show that the calculation of the terms up to h in
the expansion of g (r ) is important for liquid Ne; therefore
they must be correctly included.

The g-series expansion of g (r) as a function of the re-
duced variable x = r/o. can be written up to A'6 in the
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g(x) =g, (x)+ g)(x)+ g2(x)+ g3(x)2' 2' 2'

where A" = lt/(rv'em, m is the mass of the atoms, and

g. (x) = .( X X(x+x, —x, )) .
1

WPO lj
(2)

g, (x)= .(Qg(x+X2 —x, )x2) —g, (x)(x, ) . ())1

Npo

g2(X)= ( $ g(X+XI X )X2)
1

Npo

—g, (x) (X2) g) (x) (X—)) (4)
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g2(x)= ( X g(x+xt x )x2)
1

Npo
le

—g, (x) (X3) —g)(x) (x2) —g2(x) (x)) . (5)

In the Eqs. (2)—(5) the averages are performed over the
classical phase space while the explicit expressions of the
functions X1, X2, and g3 are given in Refs. 4 and 8.

As in a previous paper' the averages which appear in the
various quantum corrections of g (r ) have been calculated,
for neon at p =0.694 and T'=0.98, by means of the
molecular-dynamics computer simulation technique. Two
independent computer experiments were carried out with
two Digital Equipment Corporation VAX-11/750 minicom-
puters, one at the Prozessrechenanlage Physik of the
University of Vienna and the other at the Institute of As-
tronomy of the University of Florence. In order to generate
sufficient statistics, particularly for the calculation of the h

correction, five independent computer runs with a number
of time steps ranging between 25000 and 100000 for a total
of 300000 were performed on a 64 particles system interact-
ing with a (12-6) Lennard-Jones (LJ) potential and con-
tained in a dodecahedral box with periodic boundary condi-
tions.

The dodecahedral shape was chosen, instead of the cubic
one, in order to reduce the volume and hence the number
of particles N. This was a- very decisive step in our simula-
tion since the calculation of the correction g3(x) is propor-
tional to N'. N =64 turned out as the minimum number
of particles which was able to simulate the fluid once the re-
duced density was set to 0.694 and the force cut off radius
was chosen equal to 2.5a-. The configurations were generat-
ed with a reduced time step of 0.005 by means of the Verlet
algorithm. The independence of the results of the computer
calculations from the number of particles used in the confi-
guration was verified by comparing the g, (r ), g)(r ), and
g2(r) obtained with 64 particles and a dodecahedral box
shape with the ones obtained with 108 atoms and a cubic
box at the same thermodynamic point. s

Figure 1 shows the results of our calculation for the four
different parts which appear in the g(r) given by Eq. (1)
for liquid Ne at p =0.694 and T'=0.98. From this figure
one can notice the convergent character of the series (I)
and the relative importance of the various terms, in particu-
lar, the importance of retaining and calculating all the terms

FIG. 1. Behavior of the parts of the quantum-corrected g(r) of
neon at T =0.98, p0=0.69. The curves a, b, c, d represent g„
(A /2m) g&, (A //2m) g2, (A /2m) g3, respectively.

up to h because of the strong cancellation among the vari-
ous contributions.

The comparison between the quantum-corrected calcula-
tion g (r ) and the one derived from neutron diffraction ex-
periment can now be performed. However, in order to do
this first we must choose the (LJ) parameters (r and e

which will relate our calculated g (r) (at a fixed p' and T')
to the one which can be derived from a set of experimental
data for S(k).

There are two sets of possible parameters which can be
used. One is a set derived from gas phase properties, i.e.,
e/ks ——35.8 K and o. =2.75 A, ' and the other derived from
the properties of the solid, i.e., e/k))( = 36.76 K and
a-=2.786 A, '5 which also gives the correct thermodynamic

g(|")

2:

1 ~ 2

FIG. 2. Comparison between the calculated and experimental
g(r) for neon at T =0.98 and p0=0.69. The dashed curve is the
classical g, (r ), the continuous is the quantum-corrected g (r ), and
the dots are the experimental points for T = 35.05 K and

po = 0.033 38 A . Here the LJ parameters are e jk& = 35.8 K,
&T =2.75 A.
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FIG. 3. Comparison between the calculated and experimental

g(r) for neon at T =0.98 and p0=0.69. The dashed curve is the
classical g, (r ), the continuous is the quantum-corrected g (r ) and
the dots are the experimental points for T = 36.02 K and

po = 0.031 91 A . Here the LJ parameters are ~/kz = 36.76 K,
a-= 2.786 A.

properties of liquid Ne including quantum corrections as
demonstrated by Hansen and Weis. '

If the gas phase values are taken for e and o-, the compar-
ison between our calculation and the experimental g (r ) can
be readily done by a simple Fourier transformation of the
experimental S (k ) of De Graaf and Mozer at T = 35.05 K

0 3
and p0=0.03338 A . On the other hand, if the solid
phase e and o- are taken, our reduced temperature T'= 0.98
and density pa = 0.694 correspond to a temperature

0 3
T =36.02 K and to a density p0=0.03191 A; therefore,
in order to compare our calculation with the experimental
results we must interpolate, to this thermodynamic point,
the values which are derived for g (r ) from the three S (k )
of De Graaf and Mozer. This interpolation is easily done
from the three g (r ) which we have derived by Fourier
transforming the three S (k ) of De Graaf and Mozer, since
measurements have been done at three different densities
and, moreover, the required density chancre is only 0.6%

0 3 0
from p0=0.03169 A to p0=0.03191 A . The required
temperature change, from T = 35.05 K to T = 36.02 K is a
little higher and amounts to 2.7%. We have performed the
density interpolation of g (r ) with a quadratic function while
the temperature dependence was extrapolated by means of
an exponential behavior of the type exp[ —Q(r)/ksT], i.e.,
considering the effective potential which gives g (r ) as tem-
perature independent within this small temperature range.

0. 8 1. 2
I

l. 6
FIG. 4. Comparison between the calculated and experimental

g(r) for neon at T =0.98 and po
——0.69. The dashed curve is the

classical g, (r), the continuous is the quantum-corrected g(r), and
the dots are the experimental points for T = 35.67 K and p~

——0.0320
A . Here the LJ parameters are e/k&=36. 4 K, o-=2.77 A.

We would like to thank the Institute of Astronomy of the
University of Florence which kindly permitted an extensive
use of the VAX-11/750 computer.

The result of the comparison between the quantum-
corrected calculation and experimental g(r) for the gas
phase values of e and o- is given in Fig. 2, while for the case
of solid phase e and o- is given in Fig. 3.

In both cases the quantum-corrected g (r) gives a much
better account of the experimental results than the classical
one.

A small discrepancy of the order of 3% and 1.5% still
remains in the region of the peak of g (r ) for the case of
the gas phase e, o- and the case of the solid phase e, a-,
respectively. It is not possible to attribute this remaining
difference to the fact that the calculation neglects the contri-
butions of quantum corrections of order higher than A, be-
cause these would contribute at distances shorter than
x=r/cr ~1.1 as Fig. 1 shows. Therefore the difference
should be attributed to the insufficient refinement of the
two pair potential used.

Finally, if different values of e and o- are used the agree-
ment between experiment and calculation can be improved
as shown in Fig. 4 where the comparison has been done
proceeding similarly to the case of Fig. 3, assuming
e/ks = 36.4 K and o. = 2.77 A, which are intermediate com-
pared with the. ones used before.
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