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The interfacial tension of the simple-cubic Ising model near the transition temperature has been calculat-
ed with use of an extension of a recently proposed novel Monte Carlo method. Finite-size scaling theory
was used to analyze the results and to obtain the surface tension amplitude. Universal ratios involving the
surface tension amplitude are evaluated. Previous ambiguities in the theoretial value of the ratio involving
the surface tension and specific-heat amplitudes have been clarified.

The properties of surfaces and interfaces near the bulk
critical point are of considerable current theoretical and ex-
perimental interest.! Until recently, there have been no ef-
ficient direct methods for calculating the interfacial tension
near the critical point (7,) that are applicable to large sys-
tems. Indirect methods using standard thermodynamic in-
tegration? techniques have been very useful below 7., and a
rather elegant method?® based on studying the order parame-
ter distribution was shown to be quite successful, but limit-
ed to systems of moderate size. In a recent paper,* we have
proposed the application of a multistage sampling technique
to the direct calculation of interfacial tension. Our con-
clusions, based on the use of extensive results using large
system sizes and a wide range of temperatures, were in ex-
cellent agreement with exact results for the two-dimensional
ferromagnetic Ising model. Here we extend this method to
the three-dimensional ferromagnetic Ising model on a
simple-cubic lattice using system size as large as 16X 16x 16.
(One may treat larger system sizes with this method, but for
our present purposes it does not appear to be necessary.)
The results have been analyzed using finite-size scaling
theory to obtain the surface tension amplitude. An accurate
computation of this amplitude allows a determination of es-
timates for a number of universal ratios involving the am-
plitude of surface tension and various other thermodynamic
quantities which are experimentally accessible.

Specifically, in this Brief Report, the new estimate of the
surface tension amplitude is used to update estimates for
four universal ratios. For several reasons, the ratio Uy, in-
volving the surface tension and correlation length, is of pri-
mary interest, but we shall also comment on three addition-
al ratios which have been discussed. The first, Y(i'), in-
volves amplitudes for the surface tension and specific heat.
The second, B2c, involves the surface tension, susceptibility,
and correlation length, and, finally, X, involves surface ten-
sion, susceptibility, and the miscibility gap. These quantities
will be defined below. Estimates of U, take on special signi-
ficance because of a recent reanalysis of available experi-
mental data by Moldover.> The agreement or, rather, lack
of agreement, shall be discussed in the following. In gen-
eral, comparison of these ratios is important in assessing the
levels of present theoretical understanding. Accurate values
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for some of these ratios are also important in discussions of
various phenomena such as critical wetting.®

We consider a ferromagnetic Ising model having nearest-
neighbor exchange J on a simple-cubic lattice of sites la-
beled by integers (ij,k) with NyXN,XN, (Ny=N,=N,
N,= N +2) spins, o= £1. The Ising Hamiltonian is, as
usual, H= — 3 (xny /O k0 imn, the sum being over nearest-
neighbor sites. The system is at temperature 7 below the
critical temperature 7, in zero magnetic field. The interfa-
cial tension is taken as the difference of free energy per unit
area:

—kyT. Zo4_
I
N Yz,

7= lim [ 1)

Here Z,_ and Z4 4+ are the partition functions under two
sets of boundary conditions (+ — ) and (+ + ), respective-
ly. The (+ —) boundary condition is defined by fixing the
first and last layers of spins [(ij,1) and (/,mN,)] with
values o= +1 and —1, respectively. Periodic boundary
conditions are taken for the x and y directions. The (+ +)
boundary condition is similar except that the first and last
layers of spins both have o= +1. Equation (1) may be
rewritten as

kT 1
=T 132 ln<exp[~7§?(H+“—H++) >++
kT 2
Y2 l“<exp T YT Ms >++ ’ @

where M;=3,)_ 0,;n+1 is the magnetization of the layer
adjacent to the fixed (boundary) ‘‘all minus” layer, and the
ensemble average ( )4+, is generated by the Hamiltonian
H,,, in which the boundary spins satisfy the (+ +)
boundary condition.

Except for very small systems, the ensemble averages
cannot in practice be evaluated directly by standard Monte
Carlo sampling. We have shown that accurate results can
be obtained even for rather large systems by application of
multistage sampling techniques.* To do this, Eq. (1) is rewrit-
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ten by considering a three-stage sampling,

Z+_ Z+_ ZHI ZHII

= , 3)
Z++ ZH/ ZHII Z++

where each ratio can be evaluated as an ensemble average
as in Egs. (1) and (2). For example,

Z ’
—Z—ﬁ =<exp[ - 7(;—T~(H’— H")I>H,, . @)

H' and H" are some suitable Hamiltonians chosen such that
the ratios can be evaluated efficiently. In the application to
the two-dimensional Ising model,* only two stages were
found to be necessary, and H' was defined by a ‘‘hybrid
boundary condition.”” (The spins on one edge are all ““+”
and on the other edge ‘“+”’ and ‘““—”’ in an alternating se-
quence.) We have found the two-stage formulation to be
adequate for small systems in three dimensions, but it rap-
idly becomes inefficient for large systems.

We have used the three-stage formulation [Eq. (3)] and
have chosen H' and H'' as follows: The spins on one z face
(o,;1) are taken to be o,;;= +1, and are coupled to the
spins in the adjacent layer (o;;,) by J as before, but on the
other z face, the spins (o ;;ny+,) are fixed at o n42=—1
and are coupled to the spins in the adjacent layer (o;;x+1)
by J' and J”, respectively. J' and J'’ were chosen for effi-
cient sampling. In the actual calculation, a range of J' and
J” has been used and the results are independent of the
choices of J' and J"'. Values of J'= —0.4Jand J''= +0.3J
were found to be quite efficient.

We have been able to calculate 7 (near kg7,/J=4.5114)
(Ref. 7) for N <16 with about 10°~10° Monte Carlo steps
per spin and obtain, for the first time, accurate results for
such large systems using direct Monte Carlo samplings.
Much larger systems and/or lower temperatures can be stu-
died by this method by using a larger number of intermedi-
ate stages.

The results for different sizes and temperatures are
analyzed using finite-size scaling theory.® The scaling ansatz
for the interfacial tension is

TN(t)=70t“2(X) , (5)

with x=c; NV tand t=(T,— T)/T.. Here u and v are the
appropriate critical indices for the interfacial tension and
correlation length, respectively, and 7o and ¢ are
nonuniversal amplitudes. The universal scaling function
3(x) has the asymptotic limits, 3(x=o00)=1 and
S(x— 0)~x"*. We assume the hyperscaling form
w=(d—1)v=2v along with v=0.63.° To obtain 7, we
have plotted N**7,(t) vs NV with 7o as the limiting
slope for large x. (See Fig. 1.) (For a discussion of this
method of analysis, see Ref. 4.) This approach is more
direct, and simpler than the previous method used in ob-
taining estimates for the three-dimensional Ising model.?

For data with ¢=0.02, the large x limit is reached for
N#/v > 0.2, and the estimated slope is 5.4 +0.4. (For data
with > 0.02, deviations are observed.) We obtain
Fy=179/kgT,=1.2 £0.1, in contrast to previous estimates of
Binder® (1.05 £0.05), using a different method with smaller
system size (N =<12). Using the value for F;, we can ob-
tain estimates for universal ratios involving the surface ten-
sion. The most direct ratio is

Uy=FLf{P19-1 (6)
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FIG. 1. Finite-size scaling analysis for 7 < 7T, with N=<16.

t=(T,—T)/T..

where the correlation length above (4) and below (—) T,
is defined as £/a = f{ ¥’ ¢|=", where a is the lattice spacing
and v is the standard exponent. The amplitudes flt have
been estimated by Tarko and Fisher!® as
=0.47826 +0.0004 and f{~’ =0.244 £0.001. Our estimate
for U, is then U;=0.27 £0.023. (Here and in what follows
our errors reflect only that in 7¢.) This result will be dis-
cussed further in the conclusions and is included in the
summary (see Table I).

A related ratio involves the ‘specific heat, whose ampli-
tude 4(¥) above and below 7, is defined for convenience
by

Al

+)
C(i)(t)=—k—B:——lt|"", (T.—T+) . @)

The ratio which is presumed to be universal is given by!!

()= 1; T(I)/kBTc
Yi=i=lim [a2C D) (1)) kg1 @-1Vd
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In the first analysis of experimental data by Stauffer, Fer-
er, and Wortis,!! estimates were obtained using specific-heat
data for T > T,.!2 Of course, Y(*) is related to Y~ by use
of the ratio A*)/4(=) which is also presumed to be
universal. The values of Y given by Stauffer et al!l are
hence for Y+ and not Y(~). This rather subtle but impor-
tant point was apparently not noticed in the first compar-
ison® between theory and experiment and is responsible in
part®3 for the rather large discrepancy between the two (12.3
vs ~—6). The comparison involving 4(*’ is also preferred
from the theoretical point of view. Estimates!* for 4(*)
from series expansions are considered to be more reliable
than A=), and there is some uncertainty in the ratio
A/ 4> We have used the present estimate for F, and
A™)=0.142 from series expansions!* to obtain Y+’
=4.410.4. (See Table 1) The discrepancy between theory
and experiment is much reduced, and the two can be con-
sidered to be in reasonable agreement considering the rather
large uncertainty in the experimental estimates.

Another universal ratio, first suggested by Fisk and Wi-
dom, !’ involves the correlation length and, in addition, the
order parameter and susceptibility of the Ising model below
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TABLE I. Comparison of theory and experiments for the universal ratios.
Theory
Present work Ref. 3 Experiments
U, 0.27 £0.023 0.392
y(+) 44104 Xe: 6.2 +0.06b
CO,: 64 +0.4°
CgH;;—CH40: 41.0 £1.0°
B2 0.104 £0.01 0.092 +0.005 SFg:  0.093 £0.011¢
Xe: 0.1 +£0.12¢
CO,:  0.11°
0.123¢
0.146°¢
Xo 1.45+0.2 1.2+0.1 CO,:  1.24 +0.19
C7H14—C7F14: 1.3 iOld
28From Ref. 5. °Experimental values quoted in Ref. 20.
bExperimental values given in Ref. 11. dExperimental values quoted in Ref. 19.
T.: (o) =B®, kzTx= C)t~7. The ratio is given by? critical region.!® This ratio is defined by,>!? X§

CF,
2= 5. ®
Fe=amn

The various amplitudes used are B=1.569,1¢ C(-)=0.209,
and f{~) =0.244. The estimates for C~) and f{~’ are
given by Tarko and Fisher.l We note at this point that,
when comparing with experiments or calculations, there
may be some ambiguity in identifying the amplitude for the
correlation length.

The problem is the following. The Fisk-Widom approach
is based on a functional method which has correlations at
the level of modified Ornstein-Zernike (OZ) theory or ‘‘re-
normalized mean-field theory.”” At such a level, the critical
exponent n plays & role and, for example, X — £27" (not
simply £€2). At that level, however, the ‘‘true’’ correlation
length, based on the rate of exponential decay, is equal to
the ‘‘second-moment’ correlation length, based on the
second spatial moment of the two-point function. Further-
more, the natural interface width at the Fisk-Widom level is
also equal to these lengths. In general, however, the two
correlation lengths have amplitudes differing by order unity.
This is known from series expansions,!%!” and seen at O (e)
in a renormalization-group 4 — € expansion. At O(e), how-
ever, the natural interface width turns out to be equal to the
true bulk correlation length.!® It is not known whether or
not this result persists to higher order in €. The problem,
then, in comparing Eq. (9) with experiment is to get all in-
volved to make a consistent choice of the correlation length
and its amplitude. This may not be too serious in practice,
since experiments are usually fit to an OZ form. However,
the matter can be compounded experimentally since esti-
mates of ¢ may come from dynamical spectral width mea-
surements, which may again have amplitudes differing
slightly. The value f{~’ of Tarko and Fisher! is a second-
moment length.

The estimate for B2c is 0.104 +0.01 in agreement (taking
note of the cautions above) with estimates of Binder® and
experiments. (See Table I.) The final universal ratio
(universal only for d=3) was discussed by Langer and
Schwartz in the context of nucleation phenomena in the

= (167/382) F2[C' 1/ B

Using the present estimate for F, with B and C~), we
obtain Xp=1.45+0.2. (See Table 1.) This is also in agree-
ment with estimates of Binder’ and experiments (and not
susceptible to the ambiguities noted above).

We have shown in this paper that the interfacial tension
for the three-dimensional Ising model can be evaluated ac-
curately and with system size larger than handled previous-
ly, by an extension of a novel multistage Monte Carlo sam-
pling technique. The universal ratio U;, defined in Eq. (6),
is the most direct. From a theoretical point of view, esti-
mates of correlation length amplitudes are usually more ac-
curate via series analysis than specific heats. Our error esti-
mate in U, reflects entirely the uncertainty in 79 (~ 10%),
which is far larger than errors in f{*’ suggested by Tarko
and Fisher.1? It has not been our intent to reanalyze series
including, perhaps more systematically, corrections to scal-
ing. Such systematic corrections are not likely to increase
the uncertainty in f,(“ by orders of magnitude. However,
the theoretical estimate of U; seems to disagree substantial-
ly (perhaps 30% or 40%) with the confluence of experimen-
tal results U;==0.39 quoted by Moldover.> At the present
time, the origin for the discrepancies is not certain.

Agreement with experimental values of the other univer-
sal ratios Y(*), B2¢, and X, is reasonable, as shown in Table
I, although residual differences with Y‘*’ on the order of
30% may remain. These should perhaps not be taken as
seriously as differences in U; because of the difficulty of
obtaining precise estimates of specific-heat amplitudes. Fur-
ther experimentation here may yield significant improve-
ment over results obtained over a decade ago.

One may wonder if the Ising model itself shows that U, is
universal. Preliminary Monte Carlo estimates on the bcc
lattice indicate that U; is indeed universal. These results
will be presented elsewhere.
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