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Wrinkling of mode-locked tori in the transition to chaos
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The transition from a mode-locked torus to a chaotic fractal attractor via the generic saddle-node bifurca-

tion is considered. Although superficially the transition seems to be one of the known types of intermitten-

cy, it is shown to be in fact discontinuous. All the invariants that characterize chaos show a distinct jump.
It is also argued that the power spectra are not sensitive to the discontinuous nature of the transition.

Recently some important progress has been achieved in
understanding the transition to chaos from quasiperiodicity
with strictly irrational winding numbers. ' 3 It appears, how-
ever, that experimental systems "taken off the shelf" will
tend to mode lock before going chaotic. In such a situation
a Poincare surface of section reveals a finite number of
fixed points. The transition to chaos seems to be related to
the reappearance, upon a change of a parameter, of a con-
nected "curve" which is however a fractal, or wrinkled on
all length scales. Some of the mechanisms involved in this
loss of smoothness have been discussed in detail by
McGehee, Arson, Chory, and Hall. Essentially the generic
bifurcation that leads to mode locking and then to wrinkling
of the mode-locked torus seems to be the saddle-node bi-
furcation. The wrinkling appears to be due to homoclinic
tangencies of the invariant manifold with the strong stable
foliation of the sadd1e node. 4 A number of clear exam-
ples of such a transition have been presented first by Gollub
and Benson, and recently by Sano and Sawada. On the
basis of a series of measurements of power spectra, Gollub
and Benson proposed that the transition is continuous.

The main purpose of this Brief Report is to show that this
type of transition can be in fact discontinuous, but the power
spectra appear not to be sensitive to this. Rather, the in-
variants that characterize chaos like dimension, metric en-
tropy, etc. , all show very clearly a discontinuous jurnp at
the transition. We also claim that the wrinkling phenom-
enon provides the mechanism for the discontinuity in the
in variants.

Although our analysis relies on a simple two-dimensional
map that is due to Curry and Yorke, ' the conclusions per-
tain of course to the generic saddle-node bifurcation se-
quence underlying such a transition. We consider a map on
R2 which is a composition of the two simpler homeomor-
phisms Pt and P2, where Pt is defined in polar coordinates

of the attracting set restricts the behavior somewhat in that
additional attractors cannot just pop up as the parameter ~ is
varied.

The transition to chaos runs as follows At ~=1 the
origin is a global attractor. As ~ increases, the attractor ap-
pears to be a closed smooth curve encircling the origin [see
Fig. 1(a)]. This persists until e = eML= 1.272758. . . , where
we observe a transition to a real orbit having period 3 [Fig.
1(b)]. As such the system models a transition from an irra-
tional torus (two incommensurate frequencies) to a mode-
locked torus (the frequencies are rationally related;
f t/f2 ——1j3). This mode-locked phase persists until
& = e, = 1.395 358 1. . ., where a connected curve reappears,
but it has an infinite set of wrinkles on all length scales (see
Fig. 2).

Very close to the onset of chaos e ) e, the motion seems
intermittent in the sense that the orbit sits for fairly long
times in the vicinity of the nearly periodic orbit, with rapid
bursts to fill the attractor between the previous fixed points.
In between bursts the orbit returns to the same region of
the nearly periodic orbit and is trapped there for relatively
long periods. We remark here that in our numerous nu-
merical experiments we kept verifying the uniqueness of the
attracting set. This includes the check of trajectories start-
ing near the tangent bifurcation, at the time of tangent bi-
furcation. These trajectories follow the above motion and
they do not reach any other attractor. The corresponding
return maps appear to have the usua1 "bottlenecks" typical
to tangent bifurcations" '2 (see Fig. 3). The fact is that this
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and P2 in Cartesian coordinates

y2(x,y) = (x, y +x').
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and 80 are parameters. In the following we fix 00 ——2 and

consider $2gt as a one-parameter family of maps.
Before we describe the evolution of the attracting set we

stress that our numerical experiments suggest that the
above map is "dynamically ergodic. "' This means that for
each value of e in the interval of interest, almost every
point in R2 has the same positive limit set. This uniqueness
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FIG. 1. (a) The smooth attractor of the map Eqs. (1) for
& = 1.20. Th'e iterates cover the attractor in a clockwise motion. (b)
The mode-locked state at e = 1.395.
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(a.)
TABLE I. Values of the maximal Lyapunov exponent X&, the in-

formation dimension Dt, and the average laminar region (I) for
map equation (1).
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bThe values of P j are obtained from 10 threefo1d iterations of map
(1).
'For the computation of D~ we took 800000 threefold iterations of
map (1) and used the algorithm of Ref. 8 with averaging over 500
points.
dFor the computation of (I) we used a run of 2&&106 threefold
iterations of map (1), and a gate of 0.045, The number of laminar
regions observed within this run was around 10".
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FIG. 2. (a) The attractor at a=1.39536. The curve here is wrin-
kled on the sma11 lengthscales. (b) The attractor at ~=1.42. The
wrinkles are more apparent now. (c) An enlargement of the corre-
sponding square of Fig. 2(a) to show the wrinkles. (d) An enlarge-
ment at e = 1.40.

motion has nothing to do with tangent bifurcations. The
reason is that the maximal Lyapunov exponent Xq, the in-
formation dimension D~, and the average laminarity length

(I ), all show a discontinuous jump at e = e„and do not rise
smoothly like (» —e, )& beyond onset as expected from true
intermittent transition. By a discontinuous jump we mean
that these in variants remain essentially constant over a
range of 4—5 orders of magnitude in (a —e, ). (I) was ob-
tained by counting how many iterates fall within a narrow
gate around the previous fixed points, ' whereas P j and D~
were calculated with the help of algorithms that were

described in detail elsewhere. s The results are summarized
in Table I.

Nevertheless, we still observed a continuous change in
the power spectra in the vicinity of e„ in the sense that the
noise grew smoothly with e above e,. The reason is that all

important changes are occurring on small length scales, to
which the power spectra appear to be insensitive.

The apparent discontinuity of the transition is due to the
fact that the orbits are not really trapped for long times in
the bottlenecks which appear in the return maps. Since the
attractor is strongly wrinkled in these regions, iterates can
skip the bottleneck (see Fig. 4). Consequently the invari-
ants are determined by the motion far away from the
bottleneck no less than by the motion near them, contrary
to the case of tangent bifurcations in intermittency. To test
this assertion we considered a piece-wise linear map which
attempts to mode1 the return map in the neighborhood of
the saddlepoint. It consists of the line x'=x —m-~x+& for
x (0, and the line x'=x+o, 2x+e for x «0. Defining a
gate ( —xc,xa) we ran this map and found that (I ) depend-
ed on e. %e mimicked the real situation of Fig. 4 by adding
a random jitter r froin the interval (O,R) to this map every
time the iterate was reinjected into the region x & 0. After

3.0

0.4

I,S

e„,
0.0

0.3 O. k

- S.S

O.O

8„
-3.0 0.0 '

8„
1,5

FIG. 3. (a) The return map „+~ vs H„at ~=1.39536. The
motion is from the upper-right corner to the lower-left corner, The
appearance of this map can give the superficial impression of a
tangent bifurcation. (b) Return map for e = 1.42.
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FIG. 4. (a) An enlargement of a "bottleneck" in the square of
Fig. 3(a). The arrows show how an iterate skips the bottleneck.
(b) A similar enlargement at ~ = 1.42.
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TABLE II. Values of the average laminar region (1) for the
piece-wise linear model, with various choices of 0. &, a2, and R.
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26.5
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18.4
18.5
18.5
18.5

0 'r/mi+~g

=0.
u i = 0.5, n 2

= 0.2, R = 0,001.
'nt ——0.7, n2 ——0.1, R =0.01. For the computation of (l) we used a
run of 10 iterations and a gate of 0.02. The number of laminar re-
gions observed within this run was around 2& 104.

FIG, 5. A piece-wise linear model of Fig. 4. The quantity r is a
random jitter of the reinjected orbit. (1 —ai) and (1+0.2) are the
"left" and "right" slopes at x = 0.

the jitter the iteration continued under the dynamics (see
Fig. 5):

x —ntx+e, x ( r/(nt+n2),
X x+n2x+e, x ~r/(nt+n2).

(2a)
(2b)

In this way we allow a random spread of the incoming orbits
that can avoid the bottleneck as in Fig. 4. The results of
this procedure are shown in Table II, and prove that a small

random jitter is sufficient to cause an average intermission
length that is essentailly independent of e. Needless to say,
in this example one can estimate (I) analytically and find
(I) const as e 0.

Once the uniqueness of the attractor is verified for a
one-parameter system in A2, the lack of scaling and the
presence of the discontinuity in the invariants, close to the
onset of chaos, can serve the experimentalist in testing
whether the mechanism discussed in Ref. 4 underlies the
transition to chaos from a mode-locked torus. If the invari-
ants remain essentially constant after the transition, it
should be seen as a good indication for the scenario dis-
cussed in Ref. 4.
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