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%e present an extension of the analytical method of Macias and Riera to calculate radial couplings, to in-

clude model potentials or (local and nonlocal) pseudopotentials, in the Hamiltonian. As an illustration, en-

ergies, couplings, and momentum matrix elements are presented and discussed for the effective two-

electron NaH quasimolecule, as a stringent test case.

Model potential and pseudopotential methods, which have
been successfully applied to the study of atoms and
molecules, ' 3 are based on setting up an effective
Schrodinger equation that only treats. explicitly the valence
electron of a given system. This results not only in a con-
siderable reduction of the amount of computation work, but
also in great conceptual simplicity in the description of the
electronic structure of that system. A very promising area
of application of the valence-electron methods is the calcula-
tion of energy correlation diagrams for their use in the treat-
ment of atomic (molecular) collisions, 4 since these methods
are much less elaborate than all-electron configuration in-
teraction (CI) calculations, and do not present the difficul-
ties of less accurate methods, such as the virtual excitation
approach. '

The purpose of this Brief Report is to discuss how the
techniques employed in the molecular treatment of atomic
collisions can be adapted to include model potentials or
pseudopotentials in the Hamiltonian. In particular, the cal-
culation of radial couplings can be performed analytically, by
a straightforward extension of the method proposed by
Mac&as and Riera, provided that both the wave functions
and the effective potentials are expanded in terms of
Gaussian-type orbitals (GTO's). We shall prove the useful-
ness of this statement for the rather stringent, case~ of the
effective two-electron NaH quasimolecule, and for three dif-
ferent approaches: a model potential, a local, and a nonlo-
cal (Phillips-Kleinman-types) pseudopotential.

In recent years many measurements of charge exchange
cross sections between hydrogen atoms and alkali-metal va-
pors have been carried out, especially in view of their
relevance in controlled thermonuclear fusion research. In
particular, capture and stripping of Na targets by incident H
atoms has been reported. However, although some charac-
teristics of the energy curves of the NaH quasimolecule are
known, ' the corresponding radial couplings which are need-
ed to tackle the charge exchange process are not available in
the literature. Finally, it is also interesting to know wheth-
er, for that system, "diabatic" states can be constructed that
fulfi11 the basic assumptions of the widely used Landau-
Zener linear model. These assumptions are (i) that the "di-
abatic" states are orthogonal in the neighborhood of the
crossing point of their energies (ii) that their radial coupling
is negligible and (iii) that the transition region is so localized
in the crossing region that the energy difference can be tak-
en to be linear and the electrostatic interaction constant. As
a consequence of these assumptions the corresponding adia-

batic states present, in the crossing region, a Lorentzian ra-
dial coupling whose area is =7r/2. That these postulates
are not always fulfilled for ionic-covalent transitions was
first pointed out in Ref. 11, for the H2 quasimolecule. For
example, because of the failure of supposition (iii)
Nikitin's' exponential linear model should replace" ' the
usual linear approach. %hen the radial coupling between
the adiabatic states is available, a danger signal of break-
down of (iii) is given by the fact that the area under the
coupling is ((m/2; It is useful to know whether the H2
quasimolecule is an exception, or whether the Landau-
Zener approach is a priori questionable for other systems.

To calculate the NaH molecular energies, we have solved
an effective Schrodinger equation of the form (atomic units
are used throughout)
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where o. =1.83 is a parameter that was chosen so as to
(least-squares) fit, for R ~, the energies of the first two
states of separate atom limit of the quasimolecule. As ex-
plained in Ref. 7, the effective Hamiltonian of Eq. (1) sup-
ports, for V,ff= VM, an infinite number of low-lying "virtu-
al" or "core" states, 2 represented by ~ (p„iii ), where M
is the antisymmetrizer, Q„a virtual state of the model po-
tential (2), and i' a hydrogen eigenfunction. This striking
feature is common to all many-electron model potentials;
obviously, when solving (1) within the manifold spanned by
the configuration basis set, one only reproduces a finite
(basis-dependent) number of core states; a detailed discus-
sion of this property of model potentials would lengthen this
Brief Report unnecessarily and will be presented elsewhere.

(2) To the model potential of (2) a nonlocal Phillips-

where r~i is the distance of electron i from the Na nucleus
within the manifold spanned by a basis set of symmetry-
adapted configurations built from GTO's centered on each
nucleus; the atomic basis set is presented in Table I.

Three choices for the effective potential V,ff were select-
ed.

(1) A model potential of the form
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TABLE I. Exponents of the atomic basis set of GTO's used in the calculation.

Model potential
H Na

Local pseudopotential
H

A2pz
0!2pz

o'ls 0!2pz

300.0
50.0
9.1
1.65
0.30
0.05
0.01

8.5
1.55
0.28
0.05
0.01

10.6
2.8

'

0.6
0.16
0.04

3.2
0.7
0.25

9.1
1.65
0.30
0.05
0.01

8.5
1.55
0.28
0.05
0.01

10.6
2.8
0.6
0.16
0.04

3.2
0.7
0.25

Kleinman pseudopotential was added

N

n=1
(3)

where the summation runs over a11 atomic core states of the
model potential (2), of energies e„, and wave functions $„.
The addition of Vps of (3) to V~ of Eq. (2) has the effect
of shifting the virtual molecular states represented by
A ($„Q ) to higher energies.

(3) A local pseudopotential

To calculate the radial couplings between the (approxi-
mate) solutions of Eq. (1), the programs that are normally
employed at our laboratory to evaluate couplings were ap-
propriately modified, following the lines of the previous
paragraph. Our results for the molecular energies, radial
couplings, and iP, matrix elements are presented in Figs. 1,
2, and 3, respectively, and for the three approaches (1), (2),
and (3).

For short internuclear distances (R ( 4 a.u.), it will be
noticed in Fig. 1 that the energy levels calculated with the
model potential approach collapse to lower energies. We

VLps = — (1—p r ) e-10 2, 1

r r
(4)
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FIG. 1. Molecular energies; =, local pseudopotential [Eqs. (1)
and (4)]; 5, model potential [Eqs. (1) and (2)];, addition of a
nonlocal pseudopotential fEq. (3)], to the model potential; ———,
poorly reproduced virtual states (see text). Ab initio results of Ref.
10 are not shown since they fall exactly on the solid line.

was chosen with a form similar to (2). The parameters
n = 1.887 and p = 9.613 were chosen so as to fit, for
R 0o, the energies of the first four states of the separated
atom limit of the quasimolecule. Then, the fact that o. takes
up practically the same value for V~ as for VLps indicates
the physical relevance of both potentials [hence, of the cor-
responding wave functions in (1)], since their attractive
parts for R & 2.5 a.u. are identical, and they only differ in
the core region.

Our main point is that, for the three effective potentials
(1), (2), and (3), the matrix elements ($„~6/BR ~P ) can
be calculated analytically, provided that a set of GTO's is em.
p/oyed to construct the basis configurations. The pertinent
equations that yield the couplings are given in Refs. 5 and 6
and will not be repeated here. The only new terms that are
required here are the derivatives of V „2+ and of the ma-

NaH

trix elements of V,ff, with respect to the internuclear dis-
tance. For the former, the (analytic) asymptotic form of
the potential is a good approximation to V -„2+ for the

whole range of internuclear distances of interest, and this
asymptotic form can be differentiated. By expansion of the
exponential e 2 ' in terms of GTO's (e.g. , a six-term ex-
pansion is extremely accurate'4), the matrix elements of VM

[Eq. (2)] and Vtps [Eq. (4)] are expressed in terms of over-
lap and nuclear attraction matrix elements involving three
GTO's, which can be analytically evaluated' and differen-
tiated. Likewise, the derivative of the matrix elements of
Vps [Eq. (3)] can be expressed in terms of overlap integrals
and matrix elements of the djdR operator between GTO's;
the calculation of these matrix elements is explained in Ref.
6. When the origin of electronic coordinates is shifted by an
amount Rg, the radial couplings change6 by 8(g„~iP, ~Q ),
where P, is the component of the electronic linear momen-
tum along the internuclear axis. The calculation of these
matrix elements can be carried out as in the standard case. '
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lision treatment with translation factors is left for a separate
article. The minimum of (X'X~iP, ~A 'X) as a function of
8 (see Fig. 3) is due to the fact that at R =12 a.u. , the
character of the A 'X state changes from ionic (Na++H )
to covalent [Na(3p)+H(ls)]; since this covalent structure
is dipole coupled to the ground-state [Na(3s)+H(ls)]
one, the iP, matrix element tends to a constant value for
A oo. Likewise, (A 'X ~iP, ~

C 'X) also presents a

minimum for large R in the region where the O'X state
changes character from ionic to covalent [Na(4s)
+ H(ls)], and tends to a constant value for larger internu-
clear distances.

%e thank L. F. Errea for helping us to check the new
programs that calculate radial couplings for the model po-
tential and pseudopotential approaches.
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