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The connection between the three-dimensional hydrogen atom and a four-dimensional harmonic oscilla-
tor (or equivalently a coupled pair of two-dimensional harmonic oscillators) subjected to a constraint condi-
tion is further explored. ln particular, the role the constraint condition plays in determining the phase rela-
tionship between the pair of two-dimensional oscillators is examined. Furthermore, the connection is dis-
cussed in a group-theoretical context involving the Lie algebras of SO(4), SO(3,1), E(3), SO(4,2), attd
Sp(8, H).

I. INTRODUCTION

The connection between the (three-dimensional) hydro-
gen atom and the four-dimensional isotropic harmonic oscil-
lator has been a subject of considerable interest in the last
1S years (cf. Refs. 1—6). Recently, a number of papers
have appeared in the literature " in which the connection
is further discussed. In Refs. 7-9, the connection is esta-
blished directly without making use of what is now often re-
ferred to as the Kustaanheimo-Stiefel (KS) transformation
by introducing boson realizations of the angular momentum
operator L and the Laplace-Runge-Lenz-Pauli operator A
and by using two basic conditions satisfied by L and A, and
the Hamiltonian operator 0of the hydrogen atom. The ap-
proach in Refs. '7-9 is particularly appropriate to generate
the dynamical symmetry group SO(4,2) of the three-
dimensional hydrogen atom from the dynamical symmetry
group Sp(8, 1R) of the four-dimensional harmonic oscillator.
Furthermore, Cornish' derived the hydrogen-oscillator con-
nection by defining two complex stereographic coordinates,
which can be shown to be the complex version of the KS
coordinates, and discussed the physical significance of the
constraint imposed by the KS transformation. Finally,
Gracia-Bondia" used the KS transformation to obtain the
connection and proceeded to derive the Green's function
for the hydrogen atom within the framework of the %eyl-
Wigner-Moyal phase-space formulation of nonrelativistic
quantum mechanics. In all the cited references, the theoret-
ical and physical significance of the constraint (or annihila-
tion) condition imposed by the KS transformation or by its
equivalent, L A = 0, is not fully discussed.

In this Brief Report, we will discuss in detail the role the
constraint plays in determining the phase relationship

between the pair of two-dimensional oscillators which arises
when the space of the four-dimensional oscillator is broken
in two parts, in eliminating the superfluous states, and in al-
lowing for the separation of the hydrogenic system in para-
bolic coordinates. %e will also show that the constraint is
related to the fact that the SO(4) Lie algebra is the direct
sum of two SO(3) Lie subalgebras spanned by two triads of
operators. The relationship between the 15 infinitesimal
generators of SO(4,2) and the 36 infinitesimal generators of
Sp(8, IR) will also be discussed.

II. 8 —R S E HYDROGEN-OSCILLATOR CONNECTION

%e define the four-dimensional Cartesian coordinates by

yt =y cosa cosp

y2=y cosa sinp

y3 =y sino. cosy

y4 =y sino.' sing

(2)

(3)

(4)

They have been known for a long time (cf. Refs. 12 and 13)
and can be related to the KS transformation
(yt, y2, y3,y4 r, 8, @), rewritten in the context of the
discrete spectrum of the hydrogen atom, through the rela-
tionship y2 = 2r/n, a = 0/2, and P + y = $. (We work in a
system such that h = Ze2= m = 1 so that the discrete energy
levels of hydrogen are —1/n2. ) The latter relationship is
consistent with the constraint condition imposed by the KS
transformation, which reads

y2qi -ylq2-y4q3+y3q4= o
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where qi= —iB/By~. [Equation (5) and some similar rela-
tions in this paper are understood modulo their action on a
wave function iii of hydrogen. ] Equation (5) is equivalent
to l. A=O because'

m. The replacement of the angular parts in Eqs. (19) and
(20) by —m2 yields the well-known equations for the hy-
drogen atom separated in the squared parabolic coordinates
(cf. Ref. 15).

L ~ A= (alai+ a2a2+ a3a3+ a4a4+2)

x (a2ai —ai a2+ a3a4 a4a3) =0

where

ai= (yq+ iqj)/J2

aq' = (yg —i')/ J2

(6)

(7)

(8)

III. LIE ALGEBRAIC APPROACH

The operators L3 and N3 are members of two triads of
operators (Li,L2, L3) and (Ni, N2, N3) which are elements
of two SO(3) Lie algebras, the direct sum of which forms
the SO(4) Lie algebra. In terms of the KS coordinates, they
are given by

It then follows that

a2 ai al a2+ a3 4 a4 a3 i (y2q1 y1q2 y4q3+ y3'q4)

yi = p, cosp

y2= p, sinp

y3= v COS+

y4= v sing

from which we obtain

= cosp
Bi4

sinp

u BP

(10)

(13)

(14)

cosp= sin
BP

6 6= cosy
sing

v

B ~ B cosy B= sin+
By4 Bv v Bp

(17)

Accordingly, Eq. (5) can be written out as [see Eq. (27)
below]

1
N3$ =—

2i' Bp
/=0

8p
(18)

Since the operator N3 acts on the angular part e'~& of the
hydrogen wave function iti, Eq. (18) can be satisfied only if

=p+y. As a result, the transformation defined by Eqs.
(10)-(13) allows converting the (quantum-mechanical) hy-
drogen atom problem into the one for a pair of t~o-
dimensiona/ isotropic harmonic oscillators which satisfy the
following equations:

1

(j2 1 (j+ — + —i42 $=N, Qi2 BP'

1 Q 1+ — + — —v Q = NbiiI
v v Qv v

1

(i9)

(20)

which agrees with Eq. (5). The determination of the rela-
tionship between the phase angles p and y can be made if
we express Eqs. (I)—(4) in the form

Li = &( y2q3+—y'3q2 y1q4+ y4qi)
I

L2 ~(ylq3 y3ql y2'q4+ y4q2)
1

L3 2 (yiq2 y2ql +y3q4 y4'q3)

» = T( y2q3+y3q2+yiq4 —y4qi)1

N2 T (yl q3 y3q1 + y2'q4 y4q2)
1

N3 T(ylq2 y2ql y3q4+ y4q3)
1

(22)

(23)

(24)

(25)

(26)

(27)

n 6 2 n 6L14= 2 + —S1S3+—
2 ()s1'Qs3 n 2 QS29S4

——S2S4
n

It can be seen that the two sets of operators differ only in
the sign of y4 or, equivalently, the sign of y. Thus, the hy-
drogenic wave functions are those associated with the right-
handed oscillator' consisting of a pair of two-dimensional
oscillators having the same angular momentum m. The
constraint condition [Eq. (18)] then means that the operator
%3 annihilates the physical states of the hydrogen atom, for
which L3 is diagonal and L + = L1 +iL2 are the raising and
lowering operators. The roles of L& and W& are reversed
when the sign of y4 is reversed.

As a consequence, we can identify those generators of the
group Sp(8, R) that span the group SO(4,2). The 36 gen-
erators of Sp(8, R) have been obtained in terms of four-
dimensional Cartesian coordinates by Staunton. ' The result
of a comparison between the two sets of generators is given
in Table I.

The group SO(4), a subgroup of both the special pseudo-
orthogonal group SO(4,2) and the real symplectic group
Sp(8, R ), is the degeneracy group of the hydrogenic bound
states. The group SO(3,1) of the continuum states of the
hydrogen atom is the analytic continuation of SO(4) when n

is allowed to become —iq while the Euclidean group E(3)
for the zero-energy point is a contraction of SO(4). Since
the angular momentum is energy independent, l and m
remain good quantum numbers for all energies. The boson
realizations of the Laplace-Runge-Lenz-Pauli vector A for
positive energies and zero energy can be obtained by analyt-
ic continuation and group contraction, respectively. To ob-
tain the vector A for E) 0, we let n in y~= (2/n)' s, ,
where g&s& = r, be equal to —iq For exam. ple (see Table
I),

L3$ = —Ti + Q = mild
1 ~ 6 8

Bp By
(21)

1

Ti — + —si s3 —— ——s2s4 . (28)1 ~ 9 9 2 'g Q 2
2 Q s1Q s3 7) 2 0s2$ s4

with N, +Nb=2n. Equation (21) [cf. Eq. (24)] indicates
that the two oscillators have the same angular momentum The expression in the last set of parentheses is in the form
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TABLE I. A comparison of the SO(4, 2) generators and Sp(8, R ) generators. (See Ref. 17 for additional
notations. )

SO (4,2)
Sp{8,IR )

y4

L31 = L2

—B1

B2

—E3P = N1

T2= N2

L14 2 (qlq3+y1y3 q2q4 —y~4)1

L24 =
2 (q2q3 +»y3 + q& q4+ y1y4)
1

L34= 4 (qi + q2 q7 q4 +yf +y7 Cp

Dp

B3

Cp

L1S=

L2s =
q1q3 +y1y3 + q2q4 —y2y4)

1

q2q3 +y~3 —q1q4+ y1y4)
1

Bo

L3& =
4 ( —qf —q$ + q$+ qf +y]2+y22 —y$ —yg)

L4s 2 y1q1 y2q2 —y3q3 —y4q4+ 2i)

1
L36 - 2 (y1q1 +y2q2 y3q3 y4q4)

L46= 4 ( —qi' —q2 —q7 —q4 +yr" +y2 +y$+yf')

LS6= 4 (q]2+q$+qf+qk+yi2+yf+y/+y/)
1L16= 2 (y1q3+y3q1 —y2q4 —y4q2)

2 (y2q3+y3q2+y1q4+y4q1)1

—S3o

E3P

A3

Ap

C3

S3o

E3O

Ap

of the expression for L1s with the exception that n is re-
placed by q. Therefore, for E & 0, we have IJ4 iL, s and
the Laplace-Runge-Lenz-Pauli vector is given by

(tL],3L2,3L3)3which is in agreement with the result in Ref.
8. For E= 0, the vector A can be obtained by a group con-
traction process as follows:

Stiefel' in their regularization of the classical Kepler prob-
lem and the well-known theory of spinors (and quater-
nions). The Institut de Physique Nucleaire de Lyon is "la-
boratoire associe a l'Institut National de Physique Nucleaire
et de Physique des Particules. "

AJ lim LJ4/n = —lim Lls/n =
2 limn~ 42O n~ ~ n~ ~

x (L,4 Ls)/n = ,' (L34 L&—s)/n——(29)
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(see Appendix).

The group E(3) is the group of translations and rotations
in three-dimensional space. The three-dimensional space
for the group operations is the u space, which is the
geometric inversion of the p space. ' In the u space, we
have L= ux A = ux Ao, where u=2p/p', A= Ao+ u/u',
A = —iu V„u ', and Ap = —i V „. It is interesting to note
that A is a non-Hermitian operator and the zero-energy
wave function is the eigenfunction of A. The zero-energy
wave function is not normalizable but can be shown to be
orthogonal to all (non-zero-energy) bound state wave func-
tions.

APPENDIX

a] 2 ( t3 s4 lt4 is3) (Al)

a2 2 (t2 Sl ltl ls2)

a3 2 ( t]+ S2+ lt2+ lS])

a4 =
2 ( t4+ $3+ lt3+ ls4)

(A2)

(A3)

with the operators a, n = 1, 2, 3, 4, being the complex con-
jugate of a . According to the definition of C in Eq. (22)
of Ref. 9, we have

In this Appendix, we establish the agreement between the
vector A and the vector C of Ref. 9. With p, =h = 1 and
c = 2jp, we first let si = cu], s2 = cu4, s3 = cu2, s4 = cu3, and
ti =pi/c, t2= p4/c, t3= p2/c, t4= p3/c. Then, we obtain
from Eqs. (13) and (27) of Ref. 9 the following boson
operators:

One of the authors (M.K.) wishes to thank Professor
Henri Bacry for an interesting discussion concerning the link
between the transformation used by Kustaanheimo and

1r't0 ~ i'
C1 = T yia1 a4 —ia1a4 —ia2 a3

+ia2a3+ a, a]+ a4 a4 —a2 a2 —a3 a3)
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Utilizing Eqs. (Al) —(A4), we can show that

Ti(at a,' —ata4) = ~(tj+ t$ s$ ——s$)

Ti(a&a3 —a2a3) = ~(tt + t$ —sf —s2 )

T(a, at+ a4aq) =
~ (t$ + t$ + sf + sf )

T(a2a2+ a3a3) = ~(tt + t2 + st + s2 )

A substitution of these results yields

Ct = ~ ( —tf —t$ + t$ + t$ )

On the other hand, since y = (2/n )'t2s and
q = (n/2)' 't, with the use of L34 and L35 given in Table I
we obtain from Eq. (29)

A, = ( —t,' —t2 + t$ + t4 )/8

Therefore, CI =433. In a similar manner, we can establish
L)=L)2, L2=L23 L3 L3] C2 43~, and C3=4A2. The
factor of 4 does not affect the commutation relationship.
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