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Plasma noise effects on the beat-wave resonance condition and the subsequent reduction of the ac-
celerating electric field for the laser beat-wave accelerator are investigated. Plasma noise or tur-
bulence causes the accelerating electric field to saturate at a reduced level e=L /L of the ideal
coherent accelerating field, where L. is the effective growth length for the plasma wave and L is
the ideal growth length. When the noise parameter o =((8n)?) /n? is above a threshold value, we
find L y~2c /wg'rca, where 7, is the correlation time of the noise spectrum along w=~kv,. Slower
noise is less effective in limiting the plasma wave growth. For strong noise L. becomes shortened
to the correlation length in the noise L.=uv,7.. In the case of slowly increasing mismatch in the
beat-wave resonance condition, the effective growth length L. becomes the geometric mean of the

density gradient scale length L, and the collisionless skin depth (L,c /o,

I. INTRODUCTION

Collective acceleration of particles to high energies by
intense fields is a topic of considerable interest in recent
years. This is in part due to an increasing awareness that
the conventional method of acceleration, such as by the
radio-frequency cavity, yields only a limited strength of
the accelerating fields which results in a huge, expensive,
and perhaps unmanageable accelerator in order to meet
the needs for the next generation of high-energy-physics
experiments. The hope is that some novel acceleration
ideas may be able to substantially reduce the size, cost,
and complexity of future accelerators.

The laser beat-wave accelerator’’? presents a possible
method for an efficacious collective acceleration that may
be applicable to a future ultrahigh-energy accelerator.’
The method calls for an efficient high-power laser, a resi-
lient method of matching the accelerating fields and parti-
cles, and a robust way to ensure the production of ac-
celerating fields in a plasma. Some of the possible prob-
lems associated with the laser beat-wave accelerator in
high-energy applications have been identified:>* (i) the
transverse deterioration of matching of the beat-wave con-
dition and (ii) the longitudinal deterioration of the condi-
tion. The former includes the Rayleigh refraction of laser
light, the filamentation instability,” and the self-focusing
and defocusing.® The latter involves the mismatch in ve-
locities of the phase of the accelerating wave and particles
in the laser beat-wave scheme, the phase instability of par-
ticles, and the degree of incoherency of the accelerating
fields. In order to overcome the difficulty of the longitu-
dinal mismatch, a few ideas have been advanced. These
include the Surfatron’ and the plasma fiber accelerator.?
The last element of the longitudinal deterioration, the loss
of coherency of the accelerating fields, may arise from the
imperfect beat-wave resonance wo—w;7#%w,, for example,
where wy and ; are the laser frequencies associated with
the first laser light and the other and w, is the local plas-
ma frequency. The contamination of coherent accelerat-
ing fields can inflict deleterious effects on accelerating
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fields for the original beat-wave accelerator scheme as
well as for the Surfatron and the plasma fiber accelerator
schemes. It is the purpose of the present work to investi-
gate the contamination of the coherent plasma accelerat-
ing field by the various forms of plasma noise.

Recent numerical simulations”!® and an experiment!!
underline the importance of matching the beat-wave con-
dition and that of effects of plasma noise. The computer
simulations® !° show that even under the perfect resonance
condition (i.e., ®j—w,=w, originally matched in a uni-
form plasma) the plasma wave created by the beat of two
lasers eventually becomes incoherent in the downstream of
the wave train. This may be partly attributed® to
mismatch of the phase velocities of plasma waves generat-
ed by successive forward Raman decays. The phase velo-
city of the beat plasma wave by lasers w, and o is
2 1172

Dp
1— 2
@1

=c ll—-—l-—

22

if w,<<wp. Here v,=(wg—w)/(kog—k,)=cB, and
Yp=(1— BIZ, )~172, Similarly, the phase velocity of the
beat wave produced by laser @, and the decay product w,
is
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Although these plasma waves generated by successive for-
ward Raman decays have a similar phase velocity and
thus do not destroy the accelerating fields immediately,
they eventually interfere with each other and become in-
coherent. The difference in phase velocity between vll,h
and vf,h is

1 2
Avpy =vpp —Vpp =c

Therefore, the time for the plasma waves to become in-
coherent is
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which is sufficiently long for large y,.

Among the other possibilities to explain the simulation
result’ of incoherency, two other plausible explanations
are mentioned. One is that as the plasma is excited and
also heats electrons, the electrons become relativistic
which contributes to the detuning'? through the frequency
mismatch. With more than one forward Raman decay,
the above-mentioned phase velocity difference becomes
magnified, thus increasing the incoherency. Another
mechanism is that as the laser lights cascade by multiple
Raman scattering, the interaction among many laser
lights and the plasma wave becomes chaotic and in-
coherent because of the many degrees of freedom in-
volved.

In addition, the experiment!! indicates that the injection
of a single laser causes more than one wave number of
plasma waves to grow up because the beating light signal
has to grow from noise which takes time. If this is the
case, the excitation of many plasma waves can give rise to
incoherency, thus retarding the growth of the accelerating
fields.

In order to investigate the possible saturation or
suppression of the beat plasma wave growth from the
mismatch of phase velocities from variations in the plas-
ma density, we derive a general equation for the plasma
wave with the beating lasers allowing for the presence of
plasma noise. In the previous example of multicascade of
photons, the noise effects may enter either through the
plasma density fluctuation (Sa)j or through the source
noise 8S."3 In the present discussion we confine our atten-
tion to the plasma density fluctuation only and assume
that the source term is coherent. The equation for the
beat wave in the plasma density fluctuations is analyzed
in two cases. The first is for the case of plasma noise
which may be regarded as turbulence, and the noise
characteristics are given by statistical quantities such as
the correlation length and the level of fluctuations of plas-
ma (the variance of plasma density fluctuations). This
problem is discussed in Sec. II. The second is for the case
in which the plasma is slowly changing its characteristics
(not turbulently). This case is analyzed using the WKB

theory. We treat this problem in Sec. III. In Sec. IV the
|
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accelerating plasma electric field is evaluated for some ex-
amples considered in Secs. II and III. In Sec. V we dis-
cuss further other plasma-noise effects, summarize our re-
sults, and give the conclusions.

II. GROWTH OF THE BEAT WAVE
IN PLASMA TURBULENCE

We consider two plane-polarized laser beams of length
L incident upon an underdense cold plasma. The laser
fields are Ejsin(k;x —w;t+¢;)¢, and B;sin(k;x
—w;t+¢;)e, with B~=(ck5/a)j )E; and satisfy the disper-
sion relation w’=c’k?+w, where w}=47Ne?/m, with
the mean density N. The local plasma density # (x,?) con-
tains fluctuations with n(x,t)=N +8n(x,t). We charac-
terize the density fluctuations in the case of noise by the
dimensionless variance o= {(8n)?)/N? and correlation
scales L, and 7, defined by the autocorrelation functions.
The dimensionless oscillation velocities are a;=v;/c
=eE;/m,cw;, and we approximate the transverse relativ-
istic factor v, =(1+a?/2+a2%/2)"/? by unity.

The longitudinal motion of the electrons in the plasma
rest frame are described by the displacement field &(x,?).
The longitudinal electric field is given by

E, =4men&(x,t) , (1)

where £(xg,t) is the displacement of the cold plasma elec-
trons at x,. The electron dynamics is considered in the
linear regime where k,& < 1. The electron longitudinal ac-
celeration by the beat laser fields is

3 d e e
™ 7’53% = E, — — (U;I)BZ(Z)+U}£2)BZ(1)) , )
where
. . eE;
y§=(1_§2/c2)—1/2 and U;.])= mec’;j cos({}j) (3)

with ¥, =k;x ~w;t+¢;.

We calculate 9,(y g-a,g )=7/§8,2§, substituting Eqgs. (1)
and (3) into Eq. (2) to derive the acceleration equation for
plasma oscillations

sin[(ky +k{)x —(0y+0 )t +d1+¢,] | , )

with A=aa, /4P, as defined in Ref. 12 and Ak =k, —k,,
Aw=w,—w;. The thermal velocity effects of order v2/c?
are neglected in Eq. (4). The beat-wave driving accelera-

2 e’EE
723_§+a,;(x,t)g=———2 2 (k,sin®,c0s9; -+ ksind cosd,)
ot miwi,
=5(x —vgt) {Sin[(kz—kl x —(w;— o)t +¢3—¢1]
ky+ky
ky—k,
I
where
e’ Ak E\E,
Si(x —vgt)=—2-—=2ch7»SO(x —Ugl) (5)
2m; w0,

tion S(x —v,t) is a square pulse of length L containing
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Ak L ~w,L /c >>1 wavelengths of the beat wave. Since
0y — 01 ~0, <<, the speed of the difference wave

W) — W

'k

v, =Byc (6
is approximately that of the laser pulse! U, ~vg =dwy /dk.

The small nonresonant oscillations driven by the sum
frequency are given by Ea(x, 1) =8ox, 20, 5I0(29,)  with
§2k1,2¢,,15e2E 1/3ml2wic producing a small density oscilla-
tion 6n/N~2ki&x 20, The 2¥; oscillation is not

resonant with particles because the phase velocity of this
beat wave is larger than the speed of light.

The growth of the plasma wave in the laboratory frame
is given by ‘

yga%§+w,%§=5(x—u,,t)sin[Ak(x—v,,t)+¢]. NG

In the Lorentz frame x'=y,(x —v,t) shown in Fig. 1
traveling with the laser pulse, the equation is written as

. 82 ( ',t') .
—2v 50y —g_axj'cat' +(r rp s+ 0 EX )
» =S (x")sinlky,x"'+¢), (8)

where k,=Ak/y,. This is the basic equation for the
present problem. In writing Eq. (8) a weak time depen-
dence o’ =y ,(w—kv,) <<, is allowed in the wave frame.
It is straightforward to use the envelope approximation
and the weakly relativistic approximation
y251+3§ 2/2¢? to derive the Rosenbluth-Liu equations
from Eq. (8).

There are two kinds of noise that are important:
resonant noise propagating with the velocity v, of the

FIG. 1. Lorentz rest frames of the thermal plasma x,z and
the laser pulse x’,¢’ used in the calculations.
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laser pulse and transient noise which passes through the
laser pulse. The resonant noise is static in the wave frame
(8,=0) and thus can permanently reduce the amplitude
of the accelerating electric field

E(x")=(m,w,/e)w,&(x")/c] .
The effect of resonant noise is given by
[v 370503 +@p (xN]E(x") =S (x)sin(k,x'+¢)  (9)

and is analyzed in this work. The transient noise propa-
gates through the plasma wave and has the frequency
m’iyp(w—kvp) in the wave frame. The most important
effect of transient noise may be on the phase locking of
the accelerating particles, especially when o' resonates
with the phase-locking frequency. The two-dimensional
problem &(x’,t') of transient noise will be considered in a
future work.
The ideal resonant solution for

Av=w,=Ypk,v,=Ak v,

with  £y(x")=0;£,=0 for x'>0 and S(x’)
=2cw,AO(—x") from Eq. (8) is
cA @px’
(x")=—|— cos(k,x'+¢)
0 @p YpUp
.| opx’
+ cosg sin (10)
Yolp

Equation (10) gives the resonant secular growth'* of the
ideal accelerator system. From Eq. (10) we see that the
nonrelativistic approximation breaks down for Aw,x’
> ¥VpUp- .

For low laser power A << 1 or short pulse length L the
plasma wave grows secularly by Eq. (10) for Aw,L /v, < 1.
For high laser power or long laser pulse length the secular
growth ends before w,x’/y,v, =1/A from the relativistic
detuning'? from , /7/2;/2#/3&) in Eq. (9).

From relativistic detuning growth stops when the dis-
placement £y(x’) reaches the Rosenbluth-Liu value'?

16 1/3 eEl eE2 1/3

c 4 cAl3
3 moic mw,c

=31/
3 a)p

@p

gRL =

(11)

In this second case of high laser power the ideal growth
length L at which the secular growth of the beat wave ter-
minates is obtained from Eq. (10) and by relating Eq. (11)
with Eq. (10) as :

y 4
LZ31/3

) (12)

@p

A—2/3 [_2_

where a;=¢eE,/mw,c and a,=e¢eE,/mw,c. In the third
case in which the laser amplitude a; is of the order of uni-
ty, the wavebreaking or trapping condition!? determines
the ideal growth length L as

4

@p

Lem (13)
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Now we investigate the modification of the ideal solu-
tion £y(x’') by plasma turbulence in the form of density
fluctuations. The effect of the scattering of energy away
from £y(x’) by the action of the density fluctuations is
shown clearly by writing Eq. (7) in kw space. Represent-
ing &(x,t) and 6n(x,t) by their Fourier transforms with
dk do
(2m)?
we have from Eq. (7)
dk'da)’ 2
——8w; (k

(m? 7
=7 (k,0,0)=270w—kv)S (k). (15)

E(x,t)= Elk,)e™> —iot (14)

(;w2+w;)§kw+f Lok —k'\o—o')

Note here that the noise effects under consideration are
due to the plasma noise or plasma nonuniformity that
come in through the second term on the left-hand side of
Eq. (4) that is })roportional to the squared “noise plasma
frequency” 8w,. The presence of the Dirac 8 function
8(w—ku,) on the right-hand side (the source term) stems
from our assumption that the laser beams are coherent
and do not contain noise. Thus, the source term produces
a sharp (6-function) beat velocity at the photon group
velocity in Eq. (15).
1
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In order to solve Eq. (15) for the longitudinal electron
displacement &;,, we have to invert the integral operator
on the left-hand side of Eq. (15). An approximate method
to accomplish this is to iterate the inversion process by
startmg from the unperturbed propagator Ly(k,w)
=—w +cup for Langmuir waves.

We obtain the dominant effect of the stochastic density
fluctuations by summing to all orders the most secular
terms in the perturbation expansion

§k,,,:(Lo+5L)“lfkw

o' (1—8L Ly '+8L Ly 'L Ly} N ko

of Eq. (15). The secular terms contain the highest-degree
multiple pole in Ly(k,0)=0 in each order of the pertur-
bation expansion, and their contribution can be summed
to all orders as given by Horton and Choi.!> The resulting
renormalized propagator, L (k,w)=Lo— (8L Ly '8L), is
given by!>16

L (k,0)éko={ —0*+@,> +[ (A0, )T —ioovg } Exy
=2L(k,0,v), (16)

where the frequency shift [(Aw, )?]x and the stochastic
damping v, are given by

dkdw | én(ky,w,) |?

_ 4
ok |

[(Aw, Y1k —iwvy =

Evaluating the denominator of the right-hand side of
Eq. (17) at w=w, leads to resonances of the interaction
term at @((20, —©;)~0. The w;=2w, is a parametric
resonance that leads to backscatter in £y(x,t). Although
we do not expect fluctuations at 2w,, we show the effect
of noise at 2w, =2Akv, in Sec. IV. Thus, in the following
we consider contributions from the low-frequency reso-
nance. Reducing Eq. (17) for w; <w, and defining I(w)

f(dk/21r) | 8n (k,) | */N? we obtain

3
w dwI (w;)

(Awp)——zwpv-— £ f ki )

—* 01+ (Aw,) /2cop—zv/2

(18)

For a broad frequency spectrum centered about w;/w, ~0
we obtain

(A, P?=—apP [

The damplng rate obtained is
" I

The damping of the mean wave is due to the diffusion of
the wave phase by the density fluctuations. In rewriting
Eq. (19) we have used the definitions of the dimensionless
variance o and the autocorrelation time 7, of the density
fluctuations

“do ( 1) /[01+(Awy)?/2w,]1~0 .

do8(o)] (o)) =Fw,T.0 . (19)

—(@—@1+0; +[(80, )Tk i, —i (@—0 WV _i,

(17)

r

+ o0
TeO= f_ dr <5”(x’t';:2)5”(x’t)>

(k
f dk d(dl ’8" 1,(01)] 8((01) ) (20)

N2
Since the source f (k,w,v) is peaked along o =kv, the de-
cay rate v defines the effective growth length
L ¢ =7yp,v,/v(0) in the beat-wave frame.
The growth of the plasma wave limited by the scatter-
ing rate v follows from Eq. (16) and is given by

Elx,t)=E(x —vpt)

+o dk Vpt s(k)
—w 27 (kvp)z—l-zvkvp—a); ’

where  S(k)= [ “dx e~ (x)sin(Akx+a).  For
S(x)=0 for x >0, S(k) is analytic in the upper half of
the k plane, and &(x’)=0 for x’>0. For a box of length
L for the laser envelope function and v=0 the integral
(21) reproduces the ideal solution (9). For finite v the
plasma poles are displaced to

ik(x —
e 1)

P B (22)
- Up 2vp

and the resonance Akv=w, becomes broadened. The de-
tails of the response function &(x) are complicated and de-
pend on the choice of the envelope function. The formu-
las given here apply when the rise time 7, of the laser
pulse is short compared with the growth length, e.g.,
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wpT, << 3/A%”3 from Eq. (12). Some examples are evaluat-
ed in Sec. IV.

The general features of the plasma response are that for
| x| <Legela)=ypv,/v(0) the growth of the Langmuir
wave continues as

§(x')z£%§;&cos(kwx'+¢) (23)
»Vp

for y,v,/w, << |x'| <Leg(o). The noise limits the
growth when L (o) < L’ which occurs for the regime

4}
< 8nz >> T " (24)
N2 |~ wlL.L

where L.=v,7,. For L (o
is saturated at the value

Legr(o)h
g, = Sl (25)

Y

)< |x’| <L’ the amplitude

In this regime the laser-driving force balances the scatter-
ing of the plasma wave by the density fluctuations into
secondary plasma waves. For | x’| > L’ in the regime of
Eq. (24), the Langmuir wave decays due to the continued
scattering of the longitudinal plasma wave by density
fluctuations.

The dependence of the effective growth length L. on
the noise is a complicated question in general. Here, we
give two approximate formulas, one for the weak-noise
limit and one for the strong-noise limit. For weak noise
the phase becomes stochastic and diffuses with the coeffi-
cient

2

D= [ (Bk(x"8k(0))dx' = (Bk))Le= "L (26)
4v,,
consistent with Eq. (19). The effective growth length is
then
v 4v?
Leg=—"2= ! =— . 27)

v ((8k)*)L,

For strong noise the growth length for £(x) can be es-
timated from renormalized turbulence theory using Eq.
* (18) with ve, > Aa)},, and it becomes limited to the corre-
lation length L, of the density fluctuations. The transi-
tion occurs at the critical noise level o, obtained from the
limit L =L, in Eq. (27) which determines

2
o,L.o

2
4vp
272

wpL;

0= (28)

as the critical noise level above which the growth is limit-
ed to

SL, 2cAL,

&L = = (29)

¢ Lpp Up

In the extreme limit of strong Langmuir turbulence the

correlation length L, may be determined by the driver at

wp, ky=w, /v, and would limit L.y to L. =v,/w, with

no mgmflcant growth of the plasma wave
(§L~S/wp-2kc/wp)

With regard to the nature of the driven Langmuir tur-

bulence the character of the spectrum will change accord-
ing to the relationship of the driven wave number
k,=w,/v,~w,/c and the characteristic wave number
k*—(m /m )‘/Z(a)pe/ve) For k, <k, there is a strong
interaction of the Langmuir turbulence with the ion-
acoustic waves. Once the typical turbulence wave number
reaches k, the turbulence can produce a broad spectrum
of ion-acoustic and Langmuir turbulence. The Zhakharov
equations!’ can describe this process including the modu-
lational instability of the Langmuir waves and the excita-
tion of ion-acoustic waves during the collapsing stage of
the nonlinear Langmuir turbulence.!®

For a hydrogen plasma the condition w, =k,v, defines
a critical electron temperature of 7T,=280 eV. For
T, > T, the threshold wave number for the modulational
instability lies below the source wave number k,. In this
case the source-generated plasma turbulence must spread
in k down from k, before reaching k.. The usual mecha-
nism for this downward spread is induced scattering from
ions. The energy density available to drive the modula-
tional instability at the Rosenbluth-Lui nonlinear limit is

w _ Ei
8anT, 4wnT,
2
maw,c
2/3 = | (a1a)*"?
_ |16 €
3 4rnm,v?
16 2/3m (,'2
e
= |—" (a,a)*?
3 T, 142

which is typically much greater than unity. The time
scale for growth of the modulational instability is suffi-
ciently rapid that it may be required to maintain k, >>k,
to retard the development of the modulational instability.
In this respect it is desirable to have the growth to
wp&/c~1 in a laser pulse length L <c¢ /.

III. EFFECT OF A WEAKLY NONUNIFORM
PLASMA

We now consider the reduction of the beat-wave ampli-
tude due to coherent plasma density variations. In the
case in which the background plasma has slowly varying
inhomogeneities compared with the scale c¢/w, of the
plasma wavelength, we return to Eq. (8) and use the WKB
approximation to solve for the driven plasma wave.

In the wave frame the equation for &(x) is [Eq. (9)]

[yvp0% +wp(x)1E(x) =S (x)sin(k,x +4) ,
where the primes have been dropped. For the scale length
over which the plasma density changes
L,= |a),2,/dw;/dx | >>7,vp/w, in the wave frame, the
WKB solutions of the homogeneous equation are

k0 172
ky(x)

(x)=

cos [foka(x’)dx’ ] , (30)
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k0 |12 .
B0 || s | [kutxrax | (31)
where
0p(X)
Ky (x)=—2— (32)
U 7p )

and k0 is the reference mean value of k,(x). By the

method of Green’s function we obtaln the solutlon of the
driven equation as

_r* L, S(x)sin(Ak x'+¢)
§(x)-fo dx W(E, E.)
X[E (x")Es(x)—E¢(x")E.(x)] (33)

with the boundary condition §(x =0)=0. The Wronskian
W(E,E,) is constant in the WKB approximation with

w =k°. The driven wave reduces to
E (x * dx'S(x’)
DE(x) =
E(x 2(k 1/2f 1/_k )

-
Xsin(Ak x’-+¢)cos [f kwdx’]

(x")sin( Akx +¢)
Vikp(x")

b X' "
Xsin {fo kydx ] . (34)
For Ak ~k,, the resonant contribution

dx'S(x')
[k (x’ )] 172

I Tkutxn)—

E (x)
(k )1/2 f

frm B

X cos Akldx"

(35)

The dominant contribution to &(x) arises from the neigh-
borhood resonant point(s) x, defined by the condition
ky,(x,)=Ak. Near and around the resonant point(s), we
evaluate the integral as

fxt [kw(x

Performing the x' integral in Eq. (35) determines the ef-
fective growth length of the plasma beat wave L . for the
resonance as

1 dky,
2 dx

" —Akldx'= (= —x,)?.  (36)

doc 172 172

Lg= |27 =|=TL (37)
ot dky |k, =k, (x,)] k, "

Th1s evaluation of Eq. (35) is wvalid for regime

kw <<Leff <<L.
For a single resonance the plasma wave growth is ex-
pressed in terms of the displacement

SoE(x)L o

S0="

0s {foxr[kw(x')—Ak]dx’—i-% ] .

(38)
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For (j)\’ isolated  resonances, we define V;
x\J . .

=/ 'y [ku(x")—Akldx’ with x,(—1)=0 and j=1 to

N. We similarly obtain the electron displacement as a

measure of the plasma wave growth in this case as

SoE (x)
s 202k0 S L, ()cosd; | (39)
P j=1

E(x)=

where L (x,(f)) is the effective growth length for the jth
resonance point x,(j). Depending on the distribution of
the resonances k,(x,)=Ak =(w,—w;)/c and magnitude
of the phase dlfferences ¥}, the summation varies between

L.4N'? and L.4N with L.y being a mean resonance
length of order (A,L, )172, where Ap=c /@p.

The reduction of the beat plasma wave amplitude due
to inhomogeneity of the plasma density is by a factor of
the ratio of the geometrical mean of the plasma collision-
less skin depth A, and the density scale length L, to the
ideal beat-wave growth length.

IV. NUMERICAL EVALUATION OF PLASMA
BEAT WAVE

In this section several examples of the effect on the
plasma wave of the turbulent damping v and the mean
density variation {(n(x)) are evaluated by numerical in-
tegration.

By virtue of the Lorentz transformation from the cold
plasma rest frame to the beat-wave frame with

=Aw/Ak, the equation for the Lagrangian displace-
ment &(x,¢) at fixed x becomes time independent with the
independent variable x'=—v,v,t. See Fig. 1 for this
transformation. The driving force transforms according
to  S(Ak(x —v,2))=S(kyx') with k,=Ak/y,. We
choose to leave the displacement £ defined in the cold
plasma frame rather than introducing £’ =y, the same
displacement observed in the wave frame. We note that
the wave-breaking condition Ak&=k, & = is a Lorentz
scalar.

In the following figures we use the dimensionless in-
dependent variable w,t=—w,x'/v,y, for the distance
from the head of the laser pulse. We take £=£=0 for
x'>0 and a sharp turn-on of the beat-wave strength to
So=2cw,A for x'<0. The value of £ is measured in
units of ¢ /w, in the plasma rest frame. With these units
the value of &£, =max(w,§/c) gives the reduction factor
of the accelerating field E,, compared with the field
Ey=m,wpc/e =[N(particles/cm*)]!/> V/cm of the ideal
accelerator.

In the first case the relativistic detuning limit!? of the
ideal accelerator is shown. The Rosenbluth L1u solution
&ri(x’) uses the approximation Ve 142 § /c?in Eq. (4)
and solves the resulting harmomc oscillator equation for
exact resonance Aw=w, in a small A expansion. We
show in Fig. 2(a) (1) the exact numerical solution with 7/2,
(2) the numerlcal solution with the approximation
7/ =143 § /c?, and (3) the Rosenbluth-Liu limiting am-
phtude §RL—4(7L/3)V3 ¢ /wp) given in Eq. (11). In mak-
ing this comparison we defme the amplitude as the max-
imum &(x') over x' and also show the value of x.,
where £(x’) is maximum in Fig. 2(b).
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FIG. 2. Comparison of the maximum amplitude &,y in (a)
and the location xp., of the maximum in (b) as a function of
A=a,a,/4B, for (1) the exact y*® equation, (2) the
y3=1+2(£2/c?) weak relativistic approximation, and (3) the

Rosenbluth-Liu formulas.

In these studies we assume the shortest laser pulse
length is w,T=Lw,/c=50 and allow the maximum
pulse length to increase with small a;a, such that the
laser power is fixed by w,TA=w,LA/c <5. The length
of the pulse required to reach the maximum of &(x') is
given by Fig. 2(b) and follows well Eq. (12).

In Fig. 3 we vary the driving frequency
Aw/w,=kyV,Y, /@, =Ak v, /0, through the resonant re-
gion at fixed A. The peak of the resonance curve is shift-
ed below Aw/w,=1 by an amount A2/3 as also reported
by Tang et al.'

2.4 |l T T T T
A=0.1

1.6 -
<
“
3

o8}

0 1 L 1 1
0] 025 050 0.75 100 125

Aw/wp

FIG. 3. Effect of turbulent damping on the maximum ampli-
tude is shown as a function of Aw/w, for fixed A and increasing
v/wp.
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Now we consider the effect of the turbulent damping
v/w, on the maximum amplitude of the plasma wave. In
Fig. 3 we show the effect of repeating the calculation tak-
ing into account increasing values of v/w,. For this rela-
tively strong value of A the resonance is effectively lost
for v>w, /5. For smaller values of A the condition on the
maximum allowable v/, becomes progressively more
severe. Analysis of the effect of v/w, on the weakly rela-
tivistic oscillation is given by Lee et al.?°

In Figs. 4 and 5 we show the ideal plasma wave growth
(v=0) for a strongly driven system (A=0.1) first at linear
resonance Aw=w, and then near the maximum of the rel-
ativistic resonance. The relativistic velocity v, =§& of the
thermal plasma is also shown and determines the detuning
of the resonance. The detuning appears in Fig. 4 as the
lengthening of the wavelength in the region near &,,.
Comparison of Figs. 4 and S shows that there is a gain in
the maximum amplitude by increasing (n) and that the
location of the maximum is shifted by three wavelengths
toward the tail of the laser pulse.

Now we consider the case of nonuniform density varia-
tions in the wave frame. First we consider linearly in-
creasing and decreasing density variations with
n(x')=N(1%xx'/L,) for |x'/L, | <1. In the laboratory
frame the density disturbance is a pulse with scale
L,=L, /v, and rise time L, /v,,.

Figure 6 shows an example in which n(x')/{(n) in-
creases from 5 at the head to 5 at the tail of the laser
beam with L, =50c/w,. A weak maximum appears after

T T T T

x=0.1 Aw/wp =10

— :/\ ANIA\ /\ /\ A /\
VY

o[m
— 1
T
—~
<>
|
>
|
<>
>

FIG. 4. Ideal relativistic plasma wave for exact resonance
Aw=w,=const.
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FIG. 6. Relativistic plasma wave with L, =50c /w, with the
density increasing toward the tail of the beam.

one wavelength, but the primary maximum does not occur
for seven wavelengths. For the case in which the density
decreases toward the tail the effect of the inhomogeneity
is less severe.

In Fig. 7 the linear variation of n(x)/{n) starts at &
and decreases to 5 at the tail of the laser pulse. The max-
imum amphtude is now 10% larger and occurs after four
wavelengths. In both cases, however, the resonant growth
region is limited to a region of order
L = (vpypL, /co‘,)l/2 or L =(cL, /wp)l/2 about the lo-
cal resonance condition. The maximum amplitude is
found to vary approximately as &, =AL g /v,.

Finally, we show the case for a modulation of the densi-
ty n(x")=N[1+e€sin(g,x'+¢)]. For g, <<k, the previ-
ous formula for the linear gradient applies with
L,~1/eq,. For g, >>k, the oscillation of n(x') aver-
ages out with little net effect on £(x’). Finally, we note
that for g, =2k, the equation becomes the driven
Mathieu equation with unstable bands in which the g,
modulation resonantly transfers energy between the plas-
ma wave and the modulation. We do not expect this last
regime to be of importance since the Mathieu resonance
conditions are unlikely to be satisfied in practice.

Figures 8(a) and 8(b) show the .resonant case with
gy =2k, and €=0.5. In case (a) =0 and case (b) p=.
The maximum amplitudes reached are nearly identical in
the two cases; however, the number of wavelengths re-
quired to reach &,,,, depends on ¢ and is much shorter in
case (b).

c \/
-y VYUV
1 ] 1 1 1
-50 -40 -30 -20 -10 (0]
wp x'
Yo%

FIG. 7. Relativistic plasma wave with density increasing to-
ward the head of the beam.
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FIG. 8. Relativistic plasma waves with sinusoidal variations [1+0.5sin(2k,x")] of the density with the + sign in (a) and the —

sign in (b).
V. CONCLUSIONS

We have analyzed the effect of variations of the back-
ground plasma density on the growth of the plasma wave
in the beat-wave accelerator. In general the results of the
variations are to limit the length over which the pondero-
motive force is effective in driving the plasma wave. We
call this effective growth length L. and give several ap-
proximate formulas for L. in different regimes for both
noisy and weakly varying plasma density cases. The re-
sults are summarized in Table I.

The noise effect of limiting the growth of the beat-wave
amplitude may play an important role in explaining the
experiment.'! In the experiment!! a single-frequency-laser

light was shone on a plasma with various densities, yield-
ing no evidence of high-energy electrons. The laser
HELIOS with a single-frequency arm with a rise time
from 300 to 1000 ns was injected into a preformed plas-
ma. The laser power density is such that the factor a, the
ratio of the quivering velocity to the speed of light, is of
order unity. Subsequent numerical simulations by Kindel
and Forslund® of the experimental conditions confirmed
the experimental observation. They carried out two-
dimensional electromagnetic particle simulation of both a
single-frequency laser and two-frequency lasers injections.
The simulation shows that when a single-frequency laser
is injected into a plasma, few relativistic electrons are pro-
duced. On the other hand, when laser beams with two

TABLE 1. Several approximate formulas for L. in different regimes for both noisy and weakly

varying plasma density cases.

Accel. field Condition Growth length
OB ok, s .
maoy,c ¢ T 4Bp off
Breaking limit 1 A>0.05 <205
‘ wph 7w,
(a 142 > 0.2)
Relativistic detuning 28017 A <0.05 2857
@p
Plasma noise Aoy 2 50.3612? £
Y o “p Vi
Inhomogeneity A Ln. @pln < 7.8 2]
wp ¢ }\4/3 w,
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frequencies are injected, a substantial number of relativis-
tic electrons are produced. The process of acceleration is
mitigated by a slower rise time. However, even in cases
with a slower rise time the overall qualitative features
remain the same.

These findings may be interpreted in light of our
present theory. When the input laser consists of only one
frequency, the other light waves have to rise from the
noise as a result of the forward Raman instability. This
situation allows for many different modes to grow simul-
taneously and leads to a noisy plasma. In light of the
present theory, when the condition Eq. (24) is satisfied,
noise of the plasma thus generated can limit the ampli-
- tude of the beat plasma wave below the trapping level (or
the wave-breaking limit).! If it does, the laser light would
fail to trap electrons in the bulk and to accelerate to rela-
tivistic energies.

The application of the formulas given in Table I re-
quires knowledge of the character of the plasma tur-
bulence or plasma density variations. There would appear
to be many possible regimes of plasma noise and density
variations. Here, we only mention the one case which
would appear to be dangerous in view of the very large en-
ergy densities in the driven plasma wave E} <nmc? If
the laser power is enough so that the beat wave grows to
the wave-breaking limit (trapping level) before the laser
generates plasma noise that retards the plasma wave
growth, we predict a strong plasma wave near the head of
laser light. Even in this case, it is possible to have noise
behind the coherent region. In addition to this direct exci-
tation of noise by laser light, it is possible to have secon-
dary plasma noise generated through the modulational in-
stability.”® A second condition for coherent wave growth
is that the driven plasma avoids undergoing the modula-
tional instability. We estimate that the modulational in-
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stability can be avoided provided that T, >>280 eV so
that the driven plasma wave has k =w,/c>>k,
=(m, /m;)"?wy /v,.

In the absence of the modulational instability we may
estimate that the correlation length L, of generic plasma
noise is characterized by ¢ /o, and the correlation time by
v, /L, ~w, in applying the formulas in Table I. For these
fluctuation scales the weak stochasticity limit would ap-
ply for density fluctuations with o= (8n2) /N2 << 1. The
effective interaction length is then given by
L ge~2c /w;'rcaz(Zc /®,)(N?/{8n?)). It should not im-
pose a serious limit to the accelerator provided
(8n?)/N?<2¢c /o,L. Such a condition may be realized if
two resonant lasers are applied and if they are strong
enough.

When the density varies smoothly on the scale c/w,
but contains only one resonance point where
¢k, (x)=w,—w, then the effective growth length is limit-
ed to the geometric mean of the density gradient scale
length L, and the plasma wavelength c/w,. Sufficient
growth may occur in this regime provided L, is suffi-
ciently large.
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