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Plasma noise effects on the beat-wave resonance condition and the subsequent reduction of the ac-
celerating electric field for the laser beat-wave accelerator are investigated. Plasma noise or tur-
bulence causes the accelerating electric field to saturate at a reduced level e=L,gf/L of the ideal
coherent accelerating field, where L,ff is the effective growth length for the plasma wave and L is
the ideal growth length. When the noise parameter o = ((Qn)')/n~ is above a threshold value, we
find L,ff—2c/co~~, o., where ~, is the correlation time of the noise spectrum along co=kv~. Slower
noise is less effective in limiting the plasma wave growth. For strong noise L,ff becomes shortened
to the correlation length in the noise L, =v~~, . In the case of slowly increasing mismatch in the
beat-wave resonance condition, the effective growth length L,ff becomes the geometric mean of the
density gradient scale length L„and the collisionless skin depth (L„c/co~ )'

I. INTRODUCTION

Collective acceleration of particles to high energies by
intense fields is a topic of considerable interest in recent
years. This is in part due to an increasing awareness that
the conventional method of acceleration, such as by the
radio-frequency cavity, yields only a limited strength of
the accelerating fields which results in a huge, expensive,
and perhaps unmanageable accelerator in order to meet
the needs for the next generation of high-energy-physics
experiments. The hope is that some novel acceleration
ideas may be able to substantially reduce the size, cost,
and complexity of future accelerators.

The laser beat-wave accelerator' presents a possible
method for an efficacious collective acceleration that may
be applicable to a future ultrahigh-energy accelerator.
The method calls for an efficient high-power laser, a resi-
lient method of matching the accelerating fields and parti-
cles, and a robust way to ensure the production of ac-
celerating fields in a plasma. Some of the possible prob-
lems associated with the laser beat-wave accelerator in
high-energy applications have been identified: ' (i) the
transverse deterioration of matching of the beat-wave con-
dition and (ii) the longitudinal deterioration of the condi-
tion. The former includes the Rayleigh refraction of laser
light, the filamentation instability, and the self-focusing
and defocusing. The latter involves the mismatch in ve-
locities of the phase of the accelerating wave and particles
in the laser beat-wave scheme, the phase instability of par-
ticles, and the degree of incoherency of the accelerating
fields. In order to overcome the difficulty of the longitu-
dinal mismatch, a few ideas have been advanced. These
include the Surfatron and the plasma fiber accelerator.
The last element of the longitudinal deterioration, the loss
of coherency of the accelerating fields, may arise from the
imperfect beat-wave resonance coo —co&+co~, for example,
where coo and co~ are the laser frequencies associated with
the first laser light and the other and co& is the local plas-
ma frequency. The contamination of coherent accelerat-
ing fields can inflict deleterious effects on accelerating

fields for the original beat-wave accelerator scheme as
well as for the Surfatron and the plasma fiber accelerator
schemes. It is the purpose of the present work to investi-
gate the contamination of the coherent plasma accelerat-
ing field by the various forms of plasma noise.

Recent numerical simulations ' and an experiment"
underline the importance of matching the beat-wave con-
dition and that of effects of plasma noise. The computer
simulations ' show that even under the perfect resonance
condition (i.e., co~ —co2 ——co& originally matched in a uni-
form plasma) the plasma wave created by the beat of two
lasers eventually becomes incoherent in the downstream of
the wave train. This may be partly attributed to
mismatch of the phase velocities of plasma waves generat-
ed by successive forward Raman decays. The phase velo-
city of the beat plasma wave by lasers coo and co& is
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Therefore, the time for the plasma waves to become in-
coherent is

Although these plasma waves generated by successive for-
ward Raman decays have a similar phase velocity and
thus do not destroy the accelerating fields immediately,
they eventually interfere with each other and become in-
coherent. The difference in phase velocity between U~q
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which is sufficiently long for large y
Among the other possibilities to explain the simulation

result of incoherency, two other plausible explanations
are mentioned. One is that as the plasma is excited and
also heats electrons, the electrons become relativistic
which contributes to the detuning' through the frequency
mismatch. With more than one forward Raman decay,
the above-mentioned phase velocity difference becomes
magnified, thus increasing the incoherency. Another
mechanism is that as the laser lights cascade by multiple
Raman scattering, the interaction among many laser
lights and the p1asma wave becomes chaotic and in-
coherent because of the many degrees of freedom in-
volved.

In addition, the experiment" indicates that the injection
of a single laser causes more than one wave number of
plasma waves to grow up because the beating light signal
has to grow from noise which takes time. If this is the
case, the excitation of many plasma waves can give rise to
incoherency, thus retarding the growth of the accelerating
fields.

In order to investigate the possible saturation or
suppression of the beat plasma wave growth from the
mismatch of phase velocities from variations in the plas-
ma density, we derive a general equation for the plasma
wave with the beating lasers allowing for the presence of
plasma noise. In the previous example of multicascade of
photons, the noise effects may enter either through the
plasma density fluctuation 5(vz or through the source
noise 6S.' In the present discussion we confine our atten-
tion to the plasma density fluctuation only and assume
that the source term is coherent. The equation for the
beat wave in the plasma density fluctuations is analyzed
in two cases. The first is for the case of plasma noise
which may be regarded as turbulence, and the noise
characteristics are given by statistical quantities such as
the correlation length and the level of fluctuations of plas-
ma (the variance of plasma density fluctuations). This
problem is discussed in Sec. II. The second is for the case
in which the plasma is slowly changing its characteristics
(not turbulently). This case is analyzed using the WKB
theory. We treat this problem in Sec. III. In Sec. IV the

I

accelerating plasma electric field is evaluated for some ex-
amples considered in Secs. II and III. In Sec. V we dis-
cuss further other plasma-noise effects, summarize our re-
sults, and give the conclusions.

II. GROWTH OF THE BEAT WAVE
IN PLASMA TURBULENCE

E„=4fren g(x, t), '

where g(xp, t) is the displacement of the cold plasma elec-
trons at xo. The electron dynamics is considered in the
linear regime where keg ~ 1. The electron longitudinal ac-
celeration by the beat laser fields is

a ag
a~ ~&a~ ( (I)B(2)+v(2)B(1)) (2)

where

y&
——(1—g /c )

' and vP'= cos(BJ)
meCOJ

wlfll a9~ ——kjx —cv)r+(j5&.
We calculate c~1, (y&B,g) =y&B,g, substituting Eqs. (1)

and (3) into Eq. (2) to derive the acceleration equation for
plasma oscillations

We consider two plane-polarized laser beams of lengthI incident upon an underdense cold plasma. The laser
fields are Ejsin(kjx cojt+—P~ )e& and BJsin(k~x

co~—t+PJ. )e, with B =(ck /cvj )EJ and satisfy the disper-
sion relation rv =c k +co~ where co~=4m¹ /m, with
the mean density K. The local plasma density n (x, t) con-
tains fluctuations with n (x, t) =X+5n(x, t) We . charac-
terize the density fluctuations in the case of noise by the
dimensionless variance (7=((5n) )/N and correlation
scales L, and r, defined by the autocorrelation functions.
The dimensionless oscillation velocities are aj ——uz /e
=eE~/m, ceo~, and we approximate the transverse relativ-
istic factor yI ——(1+a I /2+ a 2/2) '

by unity.
The longitudinaI motion of the electrons in the plasma

rest frame are described by the displacement field g(x, t).
The longitudinal electric field is given by

e cEIE2
2 +co~(x, t)g= 2 (k2sin82cos&1+ k I sin@.)cosa''2)Bt' ' I,'m, ~z

=S(x vgt) sin[—(k2 —k))x —(A@2 cv))t+p2 —QI]—

kz+k,+ sin[(k2+kI)x (cv2+cvI)r +p(+$2]—
2 I

(4)

where

ezak E,EzS(x vg t) =
2

——2 Ace cAS—p(x —v&r)
2m, ~i~z

with A, =a)a2/4p~ as defined in Ref. 12 and Ak =k2 —k),
hcv=co2 —coI. The thermal velocity effects of order v, /c
are neglected in Eq. (4). The beat-wave driving accelera-
tion S(x —

vent) is a square pulse of length L containing
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b,k L —co&L/c »1 wavelengths of the beat wave. Since
co2 —co, -co~ &&co, 2 the speed of the difference wave

C02 —C01

k —k2 1

is approximately that of the laser pulse' Uz
—

Ug
——dcok ldk.

The small nonresonant oscillations driven by the sum
frequency are given by (2(x, t) =/2k 2„sin(25~) with

/2k 2„-eEf —/3m, co,c producing a small density oscilla-

tion 5n /N -2k, /2k 2„. The 28~ oscillation is not
resonant with particles because the phase velocity of this
beat wave is larger than the speed of light.

The growth of the plasma wave in the laboratory frame
is given by

~+ ~~=S( —~t)si [~k( —U~t)+(t]

In the Lorentz frame x'=yz(x uzt)—shown in Fig. 1

traveling with the laser pulse, the equation is written as

3~~2—2y p'p Up, , +(yap Up c)» + cop )g(x, t )
c)x dt'

=S(x')sin(k x'+P), (8)

where k =b.k/yz. This is the basic equation for the
present problem. In writing Eq. (8) a weak time depen-
dence co'

= yz(co —kuz ) &&co~ is allowed in the wave frame.
It is straightforward to use the envelope approximation
and the weakly relativistic approximation

y&
-—1+3/ /2c to derive the Rosenbluth-Liu equations

from Eq. (8).
There are two kinds of noise that are important:

resonant noise propagating with the velocity Up of the

[y&yzu&c)„+co&(x')]g(x') =S(x')sin(k x'+P) (9)

and is analyzed in this work. The transient noise propa-
gates through the plasma wave and has the frequency
co'=yz(co —kuz) in the wave frame T.he most important
effect of transient noise may be on the phase locking of
the accelerating particles, especially when co' resonates
with the phase-locking frequency. The two-dimensional
problem g( x', t') of transient noise will be considered in a
future work.

The ideal resonant solution for

ACO=COp =Ppk~Up =6k Up

x') 0with go(x') =c) $0=0 for
=2cco~AB( —x') from Eq. (8) is

cg copx
go(x') = — cos(k„x'+(t )

Cc)p gp Up

and S(x')

COp X
+ cosP sin

Equation (10) gives the resonant secular growth' of the
ideal accelerator system. From Eq. (10) we see that the
nonrelativistic approximation breaks down for A,mpx

»pUp. T

For low laser power A, &&1 or short pulse length I. the
plasma wave grows secularly by Eq. (10) for italo&L /u& & 1.
For high laser power or long laser pulse length the secular
growth ends before coax'/yzuz ——1/A, from the relativistic
detuning' from co&/y& &bco in Eq. (9).

From relativistic detuning growth stops when the dis-
placement go(x') reaches the Rosenbluth-Liu value'

1/3 1/3
16 c eE1 eE2

3

(10)

4 ca'/3
31/3

p
kRL

Np Plh)]C PlC02C

laser pulse and transient noise which passes through the
laser pulse. The resonant noise is static in the wave frame
(c), =0) and thus can permanently reduce the amplitude
of the accelerating electric field

E(x') =(m, cop/e)[co~((x')/c] .

The effect of resonant noise is given by

In this second case of high laser power the ideal growth
length L at which the secular growth of the beat wave ter-
minates is obtained from Eq. (10) and by relating Eq. (11)
with Eq. (10) as

4 2/3 C

3 1/3
COp

(12)

where a& eE&lmco~c an——d a2 eE2/mco2c. In th——e third
case in which the laser amplitude a; is of the order of uni-

ty, the wavebreaking or trapping condition' determines
the ideal growth length I. as

FIG. 1. Lorentz rest frames of the thermal plasma x, t and
the laser pulse x', t' used in the calculations.

(13)
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Now we investigate the modification of the ideal solu-
tion gv(x') by plasma turbulence in the form of density
fluctuations. The effect of the scattering of energy away
from go(x*) by the action of the density fluctuations is
shown clearly by writing Eq. (7) in kco space. Represent-
ing g(x, t) and 5n(x, t) by their Fourier transforms with

g(
.

) f g( J )
lkx —lcot

(2m )

we have from Eq. (7)

dk'd
( —co +co )gk + f 5co (k, co )g(k —k, co —co )

=W(k, co, v) =27r5(co kv )S—(k) . (15)

Note here that the noise effects under consideration are
due to the plasma noise or plasma nonuniformity that
come in through the second term on the left-hand side of
Eq. (4) that is poportional to the squared "noise plasma
frequency" 6co&. The presence of the Dirac 6 function
5(co —kvp) on the right-hand side (the source term) stems
from our assumption that the laser beams are coherent
and do not contain noise. Thus, the source term produces
a sharp (5-function) beat velocity at the photon group
velocity in Eq. (15).

of Eq. (15). The secular terms contain the highest-degree
multiple pole in Lo(k, co):0 in —each order of the pertur-
bation expansion, and their contribution can be summed
to all orders as given by Horton and Choi. ' The resulting
renormalized propagator, L (k, co ) =La —(5L L 0 '5L ), is
given by' '
L(k ~)kk =I ~'+~p'+l(~~p)'ik i~vk}k—k.

=W(k, co, v ), (16)

where the frequency shift t(scop) jk and the stochastic
damping vj, are given by

In order to solve Eq. (15) for the longitudinal electron
displacement gk, we have to invert the integral operator
on the left-hand side of Eq. (15). An approximate method
to accomplish this is to iterate the inversion process by
starting from the unperturbed propagator Lo(k, co)
= —co +cop for Langmuir waves.2 2

We obtain the dominant effect of the stochastic density
fluctuations by summing to all orders the most secular
terms in the perturbation expansion

4 =(Lo+5L) '~k
=Lp (1 5LLO —'+5LLO 5LLO + . . )Pk

dk)dco,
~
5n(k), )c)o~

t(~cop) )k tcovk =—
c I) +~@+I(~~p) ik —k ~ (~ ~1)vk —k

I

(17)

+ (5n (x, t + r)6n (x, t) )
&~g =

Qo +2
Evaluating the denominator of the right-hand side of

Eq. (17) at co=cop leads to resonances of the interaction
term at col(2cop —co~)=0. The co& ——2cop is a parametric
resonance that leads to backscatter in go(x, t). Although
we do not expect fluctuations at 2cop, we show the effect
of noise at 2coz ——2hkuz in Sec. IV. Thus, in the following
we consider contributions from the low-frequency reso-
nance. Reducing Eq. (17) for co& (cop and defining I(co)
=f (dk/2m. ) t

5n (k, co)
~

/N we obtain

dk, dco,
~

5n (k),cot)
~

5(co~) . (20)
(2~) X

Since the source W(k, co, v ) is peaked along co =kvp the de-

cay rate v defines the effective growth length
L,tt=ypvp/v(cT) in the beat-wave frame.

The growth of the plasma wave limited by the scatter-
ing rate v follows from Eq. (16) and is given by

g( x, t) =g(x vpt)—cop + ca dcoiI (co i )
3

( scop ) —t cop v =— —~ co, +(b.cop) /2cop iv/2—
(18)

For a broad frequency spectrum centered about ~&/u~ -O
we obtain

(scop) = copP f dcoiI(c—oi)/[coi+(scop) /2cop j=0 .

The damping rate obtained is

7TQPp + oo

V= dcoi5(coi)I(coi) = Tcopr, cr . (19)

The damping of the mean wave is due to the diffusion of
the wave phase by the density fluctuations. In rewriting
Eq. (19) we have used the definitions of the dimensionless
variance o. and the autocorrelation time ~, of the density
Auctuations

(21)2' (kv ) +ivkvp —cop

S(k)=f dx e '~S(x)sin(bk x+a). For
S(x)=0 for x ~0, S(k) is analytic in the upper half of
the k plane, and g(x') =0 for x'&0. For a box of length
I for the laser envelope function and v=O the integral
(21) reproduces the ideal solution (9). For finite v the
plasma poles are displaced to

k =+ (22)
Up 2'

and the resonance Akv =cuz becomes broadened. The de-
tails of the response function g'(x) are complicated and de-
pend on the choice of the envelope function. The formu-
las given here apply when the rise time ~„of the laser
pulse is short compared with the growth length, e.g.,
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cozen„« 3/A, from Eq. (12). Some examples are evaluat-
ed in Sec. IV.

The general features of the plasma response are that for
~

x'
~

&L',ff(o):yz—uz/v(o) the growth of the Langmuir
wave continues as

g(x')= cos(k~x'+P)c ix'/A,

p~p
(23)

for yzuz/co& «
~

x'
~

&L,'ff(o). The noise limits the
growth when L,ff(o ) &L' which occurs for the regime

(24)

where L, =u~r, . For L,'ff(o)& ~x'.
~

&L' the amplitude
is saturated at the value

cL,ff(o )A,
(25)

Up
Leff

1

((5k) )L,
4Up

2
COpLc O

(27)

For strong noise the growth length for g(x) can be es-
tirnated from renormalized turbulence theory using Eq.

' (l8) with vco~ & b.co&, and it becomes limited to the corre-
lation length L, of the density fluctuations. The transi-
tion occurs at the critical noise level o., obtained from the
limit L,ff =L, in Eq. (27) which determines

4Up
0 c (28)

~@Le

as the critical noise level above which the growth is limit-
ed to

SL,
Up Q)p

C~Lc
(29)

In the extreme limit of strong Langmuir turbulence the
correlation length L, may be determined by the driver at
co, k =co /Up and would limit Leff to L, =U /~ with
no significant growth of the plasma wave
(gL —S/cop ——2A,c/co~ ).

With regard to the nature of the driven Langmuir tur-

In this regime the laser-driving force balances the scatter-
ing of the plasma wave by the density fluctuations into
secondary plasma waves. For

~

x'
~

&L' in the regime of
Eq. (24), the Langmuir wave decays due to the continued
scattering of the longitudinal plasma wave by density
fluctuations.

The dependence'of the effective growth length L,ff on
the noise is a complicated question in general. Here, we
give two approximate formulas, one for the weak-noise
limit and one for the strong-noise limit. For weak noise
the phase becomes stochastic and diffuses with the coeffi-
cient

2

D= f (5k(x')5k(0))dx'=((5k) )L, = cr (26)
p

consistent with Eq. (19). The effective growth length is
then

2/3
16
3

APE COp C
(a a )2/3

4~nm, U,
2

' 2/3
PleC

(aia2)
e

which is typically much greater than unity. The time
scale for growth of the modulational instability is suffi-
ciently rapid that it may be required to maintain kp &&k~
to retard the development of the modulational instability.
In this respect it is desirable to have the growth to
co~//c —1 in a laser pulse length L &c/co&, .

III. EFFECT OF A %'EAKLY NONUNIFORM
PLASMA

We now consider the reduction of the beat-wave arnpli-
tude due to coherent plasma density variations. In the
case in which the background plasma has slowly varying
inhomogeneities compared with the scale c/co& of the
plasma wavelength, we return to Eq. (8) and use the WKB
approximation to solve for the driven plasma wave.

In the wave frame the equation for g(x) is [Eq. (9)]

[y~u~B„+co~(x)]g(x)=S(x)sin(k~x+tI)),

where the primes have been dropped. For the scale length
over which the plasma density changes
L„=

~

cozldro&ldx
~

&&yzuz/co& in the wave frame, the
WKB solutions of the homogeneous equation are

0
. 1/2

WE,(x)=, cos f k~(x )dx

bulence the character of the spectrum will change accord-
ing to the relationship of the driven wave number
k =co /u„=ro /c and the characteristic wave number
k, =(m, /m;)' (~~, /u~). For k~ &k, there is a stron
interaction of the Langmuir turbulence with the ion-
acoustic waves. Once the typical turbulence wave number
reaches k~ the turbulence can produce a broad spectrum
of ion-acoustic and Langmuir turbulence. The Zhakharov
equations' can describe this process including the modu-
lational instability of the Langmuir waves and the excita-
tion of ion-acoustic waves during the collapsing stage of
the nonlinear Langmuir turbulence. '

For a hydrogen Plasma the condition cop
——k~Up defines

a critical electron temperature of T, =280 eV. For
T, ~ T, the threshold wave number for the modulational
instability lies below the source wave number kp. In this
case the source-generated plasma turbulence must spread
in k down from kp before reaching k, . The usual mecha-
nism for this downward spread is induced scattering from
ions. The energy density available to drive the modula-
tional instability at the Rosenbluth-Lui nonlinear limit is

8mnT, 4~nT,
2
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E,(x)=

where

kw

k„(x)

1/2
x

sin f k„(x')dx' (31)
For X isolated resonances, we define

x,[j)=f ". [k„(x')—bk]dx' with x„(—1)=0 and j =1 to
We similarly. obtain the electron displacement as a

measure of the plasma wave growth in this case as

cp~(x)
k~(x) =

vp pp
(32)

and k~ is the reference mean value of k„(x). By the
method of Green's function we obtain the solution of the
driven equation as

SOE, (x)
g( x) —

2 p g L ff(x, (j) )cos1)l
2vpkw

f"d,S (x')sin(hk x'+p)
uz 8'(E„E,)

X [E,(x')E, (x) —E,(x')E, (x)] (33)

x
Xsln(kk x +Q)cos f k dx

Ec(x) x, S(x')sin(bkx'+p)
dx

Up(k„)' ~kt (x')
x

Xs1n f k.dx"

For Ak=kw the resonant contribution

dx S(x )g(x)=—
2(ko )I/2 fp

I [k (x ~)] I
I/2

(34)

X cos f [k~(x') —Ak]dx"

(35)

The dominant contribution to g(x) arises from the neigh-
borhood resonant point(s) x„defined by the condition
k (x„)=b,k. Near and around the resonant point(s), we
evaluate the integral as

1 dkf [k (x') —bk]dx'= — (x —x„)
2 dX x=x

Performing the x' integral in Eq. (35) determines the ef-
fective growth length of the plasma beat wave L,ff for the
resonance as

L eff
dx

2m
dkw k =k (x„)

1/2 1/2

This evaluation of Eq. (35) is valid for regime

For a single resonance the plasma wave growth is ex-
pressed in terms of the displacement

SpE, (x)L,ff
g(x) =

2vp kw
cos f [k~(x') —Ak]dx'+—

0 4

(38)

with the boundary condition j(x =0)=0. The Wronskian
W(E„E,) is constant in the WKB approximation with
8'=kw. The driven wave reduces to

Es(x) " dx'S(x')
g(x) =

2(kp )I/2 f ~k ( )

where L,ff(x, (j )) is the effective growth length for the jth
resonance point x„(j). Depending on the distribution of
the resonances k~(x, ) =b,k =(cp2 —cpI)/c and magnitude
of the phase differences 5t, the summation varies between
L ffX and L,ffE with L,ff being a mean resonance1/2

length of order (AzL„)'/, where A~ =c/co~
The reduction of the beat plasma wave amplitude due

to irihomogeneity of the plasma density is by a factor of
the ratio of the geometrical mean of the plasma collision-
less skin depth Xp and the density scale length L„ to the
ideal bent-wave growth length.

IV. NUMERICAL EVALUATION OF PLASMA
BEAT WAVE

In this section several examples of the effect on the
plasma wave of the turbulent damping v and the mean
density variation (n(x)) are evaluated by numerical in-
tegration.

By virtue of the Lorentz transformation from the cold
plasma rest frame to the beat-wave frame with
vp

——Ace/Ak, the equation for the Lagrangian displace-
ment g(x, t) at fixed x becomes time independent with the
independent variable x'= —ypvpt. See Fig. 1 for this
transformation. The driving force transforms according
to S(bk(x v~t)) =S(k x') —with k„=b,k/y~. We
choose to leave the displacement g defined in the cold
plasma frame rather than introducing g'=y~g the same
displacement observed in the wave frame. We note that
the wave-breaking condition bkg=k~g'=~ is a Lorentz
scalar.

In the following figures we use the dimensionless in-
dependent variable cpzt = —coax'/Uzy~ for the distance
from the head of the laser pulse. We take g=(=0 for
x') 0 and a sharp turn-on of the beat-wave strength to
Sp ——2cco&A. for x'(0. The value of g is measured in
units of c/co& in the plasma rest frame. With these units
the value of g =max(cog/c) gives the reduction factor
of the accelerating field E compared with the field
Eo ——m, co~,c/e —= [tV(particles/cm )]'/ V/cm of the ideal
accelerator.

In the first case the relativistic detuning limit' of the
ideal accelerator is shown. The Rosenbluth-Liu solution
gRI (x') uses the approximation y&

—1+—,g /c in Eq. (4)
and solves the resulting harmonic oscillator equation for
exact resonance Aco=cop in a small A, expansion. We
show in Fig. 2(a) (1) the exact numerical solution with y&,
(2) the numerical solution with the approximation

y&
——1+—', g /c, and (3) the Rosenbluth-Liu limiting am-

plitude gRI.——4(A, /3)' (c/fp~) given in Eq. (11). In mak-
ing this comparison we define the amplitude as the max-
imum g(x') over x' and also show the value of x',„
where g(x') is maximum in Fig. 2(b).
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& a2/4P~ for (1) the exact y equation, (2) the

y =1+ 2 (g /c ) weak relativistic approximation, and (3) the

Rosenbluth-Liu formulas.

Now we consider the effect of the turbulent damping
v/co on the maximum amplitude of the plasma wave. InP
Fig. 3 we show the effect of repeating the calculation tak-
ing into account increasing values of v/co&. For this rela-
tively strong value of A. the resonance is effectively lost
for v ~ co /5. For smaller values of A, the condition on the
maximum allowable v/co& becomes progressively more
severe. Analysis of the effect of v/cd on the weakly rela-
tivistic oscillation is given by Lee et al.

In Figs. 4 and 5 we show the ideal plasma wave growth
(v=O) for a strongly driven system (X=0.1) first at linear
resonance 4co=~z and then near the maximum of the rel-
ativistic resonance. The relativistic velocity u„=g of the
thermal plasma is also shown and determines the detuning
of the resonance. The detuning appears in Fig. 4 as the
lengthening of the wavelength in the region near g,„.
Comparison of Figs. 4 and 5 shows that there is a gain in
the maximum amplitude by increasing (n ) and that the
location of the maximum is shifted by three wavelengths
toward the tail of the laser pulse.

Now we consider the case of nonuniform density varia-
tions in the wave frame. First we consider linearly in-
creasing and decreasing density variations with
n(x')=Ã(1+x'/L„') for

~

x'/L„'
~

&1. In the laboratory
frame the density disturbance is a pulse with scale
L„=L„'/yz and rise time L„/u~

Figure 6 shows an example in which n (x') /( n ) in-
creases from —,

' at the head to —,
' at the tail of the laser

beam with I „=50c/~&. A weak maximum appears after
In these studies we assume the shortest laser pulse

length is m& T=L~&/c =50 and allow the maximum
pulse length to increase with small a&a2 such that the
laser power is fixed by cu~Tk=co&LA, /c (5. The length
of the pulse required to reach the maximum of g(x') is
given by Fig. 2(b) and follows well Eq. (12).

In Fig. 3 we vary the driving frequency
Ace/co& k~uzy—z—leo& b.k uz/co& through the re——sonant re-
gion at fixed A.. The peak of the resonance curve is shift-
ed below Ace/co~ = I by an amount k as also reported
by Tang et al. '

x. =O. l Du)/u)p = l.O

0.8—

0—
0

l I
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I I
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~p X
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FICx. 3. Effect of turbulent damping on the maximum ampli-
tude is shown as a function of hm/co& for fixed A, and increasing
V/COp. -

FIG. 4. Ideal relativistic plasma wave for exact resonance
A~ =co~ =const.
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frequencies are injected, a substantial number of relativis-
tic electrons are produced. The process of acceleration is
mitigated by a slower rise time. However, even in cases
with a slower rise time the overall qualitative features
remain ihe same.

These findings may be interpreted in light of our
present theory. When the input laser consists of only one
frequency, the other light waves have to rise from the
noise as a result of the forward Raman instability. This
situation allows for many different modes to grow simul-
taneously and leads to a noisy plasma. In light of the
present theory, when the condition Eq. (24) is satisfied,
noise of the plasma thus generated can limit the ampli-
tude of the beat plasma wave below the trapping level (or
the wave-breaking limit). If it does, the laser light would
fail to trap electrons in the bulk and to accelerate to rela-
tivistic energies.

The application of the formulas given in Table I re-
quires knowledge of the character of the plasma tur-
bulence or plasma density variations. There would appear
to be many possible regimes of plasma noise and density
variations. Here, we only mention the one case which
would appear to be dangerous in view of the very large en-
ergy densities in the driven plasma wave EL (nmc . If
the laser power is enough so that the beat wave grows to
the wave-breaking limit (trapping level) before the laser
generates plasma noise that retards the plasma wave
growth, we predict a strong plasma wave near the head of
laser light. Even in this case, it is possible to have noise
behind the coherent region. In addition to this direct exci-
tation of noise by laser light, it is possible to have secon-
dary plasma noise generated through the modulational in-
stability. ' A second condition for coherent wave growth
is that the driven plasma avoids undergoing the modula-
tional instability. We estimate that the modulational in-

stability can be avoided provided that T, &&280 eV so
that the driven plasma wave has kp Mp /c Q) kQ
=(m, /m; )'~ co~, /v, .

In the absence of the modulational instability we may
estimate that the correlation length I., of generic plasma
noise is characterized by c/co& and the, correlation time by
v&/I, -co& in applying the formulas in Table I. For these
fluctuation scales the weak stochasticity limit would ap-
ply for density fluctuations with 0:—(5n )/% «1. The
effective interaction length is then given byl,tt=2c/coy~, o=(2c/co~)(N /(5n ) ). It should not im-
pose a serious limit to the accelerator provided
(6n ) /X & 2c/co~L. Such a condition may be realized if
two resonant lasers are applied and if they are strong
enough.

%'hen the density varies smoothly on the scale c/cuz
but contains only one resonance point where
ck (x) =co2 —co&, then the effective growth length is limit-
ed to the geometric mean of the density gradient scale
length L,„and the plasma wavelength c/co&. Sufficient
growth may occur in this regime provided L„ is suffi-
ciently large.
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