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Projection-operator method for the nonlinear three-wave interaction
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A theory of nonlinear three-wave interaction is presented, where a finite bandwidth of the in-

teracting waves is considered (Aco&O). Dissipative processes are neglected, and a Hamiltonian for-
mulation is used. The evolution equations for the wave intensities are obtained with the aid of a
projection-operator method, similar to those used in nonequilibrium statistical mechanics, but our
formulation is deterministic and no statistical hypothesis is needed. These equations generalize the
well-known fixed-phase equations (Am=0) and are formally analogous to them, if the ballistic and

memory effects are neglected.

I. INTRODUCTION

The nonlinear evolution of a wave in a plasma is
governed by two different processes: the wave-particle in-
teractions and the wave-wave interactions. ' The dom-
inant aspect of the wave-wave interaction is the so-called
three-wave interaction. In many situations, where the
wave-particle effects are negligible, the wave evolution
mainly depends on the three-wave interaction processes.
This is relevant, for instance, for the stimulated Brillouin
and Raman scattering leading to anomalous reflection and
absorption of a laser beam interacting with a plasma.

The study of nonlinear three-wave interaction is usually
done using two different approximations. The first one is
called the fixed-phase approximation and was first
developed in the field of nonlinear optics. Its use can be
justified when the spectral width b, ro of the waves in-
volved in the interaction is much less than the inverse of
the characteristic time ~ for the energy exchanged between
them. This approximation deals with coherent waves
propagating with a slowly modulated amplitude. The
second approximation is known as the random-phase ap-
proximation and it was developed in the framework of the
weak-turbulence theories. ' ' lt deals with a large num-
ber of plane waves with random phases and its use can be
accepted in the reverse situation, when the wave spectral
width Aco is much larger than r

When applied to particular problems these two dif-
ferent theories can lead to qualitatively different con-
clusions. Recently, attention has been given to the insta-
bility saturation of waves by subharmonic generation or
more generally by three-wave decay into stable waves.
This is pertinent to the estimation of drift wave saturation
levels. In this-case the fixed-phase theory sho~s that a
strange attractor can occur and the amplitude of the un-
stable wave can behave chaotically. ' But it is easy to
show, using the random-phase approximation, that in
quite general conditions the unstable wave amplitude.
tends to a well-defined saturation level and no chaos is ob-
served. ' Similar qualitative differences between the
random- and fixed-phase results have already been noted
in the study of stimulated rescattering. "

To our knowledge there is no consistent theory for the
wave interactions with arbitrary spectral width Ace, in-
cluding the intermediate case hco=z '. Most of the time,
finite spectral width effects are added to the fixed-phase
equations, introducing phenomenological phase fluctua-
tions' or considering a finite number of wave triplets. '

As an exception we refer the work of Nishikawa and
Fried' which presents a wave-packet formulation of elec-
trostatic turbulence.

In the present work we describe a different, and we
hope more consistent, approach to the study of nonlinear
three-wave interaction, considering an arbitrary spectral
width which includes the case Ace=~ '. This approach is
based on a projection-operator technique. Projection
operators are commonly used in nonequilibrium statistical
mechanics in order to derive macroscopic transport equa-
tions from the microscopic dynamical equations. ' The
statistical properties of the systems are usually included in
the definition of the projection operators, but we show in
this work that the same kind of techniques can be useful
in the frame of a deterministic description and no statisti-
cal hypothesis is needed.

The evolution equations for the wave amplitude and
phases obtained with our projection-operator method take
the form of generalized I.angevin equations. They con-
tain three different terms. The first one, which we call
the macroscopic term, is formally analogous to that ap-
pearing in the fixed-phase equations and reduces to it in
the limit Aco~o. However, the two other terms have no
equivalent in the fixed-phase equations. One of them is a
time integral which is associated with memory effects. Its
presence means that the wave-wave interaction in a plas-
ma is not a Markovian process and it cannot be described
as instantaneous collisions of wave quanta (plasmons,
photons, or phonons) as is usually done in the weak-
turbulence theory. The third term is associated with the
evolution of the initial perturbations and can be called the
ballistic term.

The plan of this paper is the following. In Sec. II we
describe our model for the three-wave interaction and
show how a suitable projection operator can be defined.
The model mainly consists of three waves, each one con-
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taining a large number of monochromatic modes. Each
mode is allowed to interact with all the other modes, ex-
cept those belonging to the same wave. Dissipation is
neglected and a Hamiltonian description is used. In Sec.
III we derive the evolution equations for the total intensi-
ty and phase of the three waves. Section IV is devoted to
the discussion of the macroscopic dynamics and to the ex-
plicit calculation of the macroscopic terms. In Sec. V we
consider the memory effects in detail and discuss the im-
plications of these effects to the overall consistency of the
theory. Finally, in Sec. VI we state the conclusions.

II. PROJECTION OPERATORS

Let us consider three waves, each one containing a large
number of modes, n »1 (see Fig. 1). Each mode is
monochromatic, having a frequency cojk where j=1,2,3
and k =1,2, . . . , n. Its evolution is described with the
aid of two variables: the photon number, or wave action,
Njk and the Phase Ojk. Actually, the modes (j, k) are only
nearly monochromatic, in the sense that their amplitude
and phase are allowed to slowly vary in time. They are
very narrow wave packets, as defined by Nishikawa and
Fried. ' The spectral width of the three waves
hcoj-cojl —coj„ is assumed arbitrary but small enough to
prevent nonlinear three-wave interactions inside the spec-
trum of one wave. Then, each mode (j,k) exchanges ener-

gy via the three-wave coupling process with all the other
modes (i, 1),(i,2), . . . , (i,n) (with i&j). If dissipation is
neglected, the evolution of such a system can be described
with the aid of the following Hamiltonian:

3 n

H ( Njk Ojk ) y y coj kNjk
j=l k=1

n n

+2w g g g V NlplI2kN3!slnOpkl ~

FIG. 1. Model for the three-wave nonlinear interaction. The
frequency spectrum is composed by three distinct waves
(j=1,2,3) with a finite bandwidth. Each waVe contains n &&1
internal modes.

on the frequencies of each mode triplet (1p,2k, 3l). This is
only approximately true and requires that hcoj are very
small. However, this assumption is not a limitation to the
theory bemuse the generalization to the case where
w =w (co Ip copk c031 ) is straightforward.

When the nonlinear coupling is absent ( w =0) the equa-
tions of motion reduce to

Njk =collstr Ojk coJk t + (bjk

where Pjk=const. Clearly, Njk and Ojk are the action-
angle variables describing an ensemble of 3n independent
harmonic oscillators. In the general case ( w&0), howev-
er, the canonical equation of motion for the Hamiltonian
(1) became quite complicated and can be written as

n n
p

dt
= —2W g g QNIp N2kN3l cosOp kl

k=1 1=1

where

p=1 k=1 1=1
dN2k

dt

n n

= +2W g g QNIpN2k N3! CosOpk'l
p=l 1=1

(4)

pkl = lp 2k 31 (2)

Here we have assumed for simplicity that the nonlinear
coupling coefficient w is a constant and does not depend and

dX3l
dt

=+2w g g QN»NIkN» cosOpkl,
p=l k=1

d p'k'l'

dt

n n

=~~ kr+W X
t k=1 l =1 lp

sint9p kl

p = 1 l =1 2k

' 1/2
n n

S111Opk l-
p=1 k=1 31'

1/2

slnt9pkl ~

Here we have used the frequency mismatch

~~pkl ~ lp ~2k ~3l (6)

Obviously, Eqs. (4) and (5) could be obtained directly

from the Maxwell's equations and the (kinetic or hydro-
dynamic) plasma equations. But the Hamiltonian deriva-
tion used here is more convenient for our purposes. The
wave action Xjk is related to the electric field E~k of the
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plasma eigenmode (j,k) through the expression

1 BD
&Jk =—

4 c)co

where D=D(co, k)=0 is the dispersion relation pertinent
for this mode.

When we make n= 1 in Eqs. (4) and (5) we obtain the
fixed-phase equations, which have already been studied in
detail. In the general case, n &&1, the system of 3n
modes evolves in a 6n-dimensional phase space. We will
call it the microscopic phase space, because it contains all
the information about the internal structure of the three
groups of n modes each.

We now look for the representation of the motion in a
reduced phase space with six dimensions, where we try to
represent the evolution of the three waves as a whole.
This space will be called the macroscopic phase space, and
the corresponding six macroscopic variables are defined as

Ni= g NJk, 8J ——g 8)k
k=1 k=1

u ( N, 8)=Pu (x) . (10)

with j=1,2,3. It is obvious that XJ and 0~ are linearly in-
dependent variables and can be used as a basis in the mac-
roscopic phase space, which is a subspace of the micro-
scopic one. X~ is the total number of photons, or the total
action, associated with the wave j and is related to the to-
tal wave intensity by IJ ——co&X&, where the mean frequency
roJ is defined by

1
re= g rnjkNJ'k .

&J k=1

The wave intensity IJ, or the mean number of photons
NJ NJln——, could also be used to replace NJ as macro-
scopic variables. The physical meaning of 49J is somewhat
less clear than that of X&, but we can call it the total
phase for the wave j. It could also be replaced by the
mean phase: Oz

——OJ. /n.
In order to obtain a subdynamics in this six-

dimensional phase space we have to define a suitable pro-
jection operator P. Let u(x) be an arbitrary dynamical
variable defined on the microscopic phase space, denoting
by x the ensemble of the 6n canonical variables Nzk and
8Jk. The projection operator P acts on every u (x), reduc-
ing it to a function of the six macroscopic variables,
u(N, 8), where N:—(N&, N2, N3) and 8=—(8&,82, 83):

S(N, 8) is a normalization coefficient defined as

S(N, 8)= f 5(N(x) —N)5(8(x) —8)dx . (13)

Its presence in Eq. (11) is necessary to assure that P is a
true projection operator: P =P. Let us explain in more
detail the meaning of this projection operator. The prod-
uct of the two Dirac 5 functions appearing in Eq. (11)
represents in fact a product of six 5 functions of the form
5(NJ(x) NJ), or 5—(81(x)—8J), with j=l,2,3. By NJ(x),
or 8J.(x), in these expressions we want to represent NJ, or
8J, as functions of the microscopic variables, as defined by
Eqs. (8). And by NJ, or 8J, we represent the actual value
of the macroscopic variables. Then, each of the six 5
functions defines a hyperplane in the microscopic space,
as represented in Fig. 2. The macroscopic variables are
then the coordinates which parametrize these hyperplanes.
And the projection of the dynamic variable u (x) is the
amount of u (x) contained on the hyperplane defined by
the macroscopic variables (N, 8). On the other hand, the
normalization coefficient S(N, 8) can be seen as the area
of this hypersurface. '

A simpler projection operator P' could be defined,
which is a mere integration over 6( n —1) of the 6n micro-
scopic variables, if we make a suitable orthogonal canoni-
cal transformation over the Hamiltonian (1), in such a
way that the variables NJ and 8i defined by Eq. (8) appear
now as microscopic variables (see Appendix A). But this
new form of projection operator is less suited for the ex-
plicit calculations described in Secs. IV and V, because the
domains of integration on the hyperplanes are not so
clearly defined. For this reason we conserve the form
(11).

FIG. 2. Schematic representation of the microscopic
( Nj ] Xj2 Xj ) and macroscopic ( Xj ) variables. The pro-
jection operator P integrates each dynamic variable u over the
plane g N, k =N, =const represented here.

k

We define P in the following way III. EVOLUTION EQUATIONS

Pu (x)= f u (x)5(N(x) —N)5(8(x) —8)dx,1

S(N, 8)

where

Using well-established results of the Hamiltonian
dynamics we can now derive an evolution equation for the
dynamical variable u(x). If u(x) does not depend expli-
citly on time we can write'

3 lf

dx =—+ + dN, kd8, k .
j=l k=1

(12)
u (x)=it.u (x),

dt

where L, is the Liouvillian operator:

(14)
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iL= —IH, I .

Equation (14) can be formally integrated to give

u(x)=e" u(0),

(15)

(16)
(22)

This is equivalent to assuming a Markovian process, and
the memory reduces to

tf M(s)NJ(t s—)ds=y(t)NJ(t),

where u (0)—=u(x (r =0)) is the initial value of u (x).
Taking the total derivative of Eq. (16) with respect to time
we obtain a different evolution equation, which is
equivalent to (14):

u(x)= e" u(0) .
dt dt

Now we can use the following operator identity

where y(t) is some macroscopic dissipation. In a similar
attempt to simplify we can see that NJ(0) depend on a
great number of microscopic initial values which will
evolve independently from each other, and we can imag-
ine that the free streaming of these initial conditions cor-
responds to very complicated oscillations. We can then
eventually replace B(t)Ni(0) by some random variable
R(t). Then, Eqs. (20) are replaced by evolution equations
of the form

is(L —L ).e" =e" iLo+ e'" ' iLoe i (L —L )ds
dX) dX)' =P ' +y(t)X, +R(t) .
dt dt

(23)

it(L —Lo) .+e ' i(L —Lo),

where Lo is an arbitrary operator. In our problem it is
convenient to define Lo as the projection of the Liouvilli-
an operator on the macroscopic phase space;

Lo ——PL . (19)

M (t) =PLB (t),

B(r) eit(1 P)Li ( 1 P)L— (21)

Let us make some comments on Eqs. (20). These equa-
tions show that the total evolution of Ni and 8~ is deter-
mined by three different terms. The first term is just the
projection of such an evolution on the macroscopic phase
space. We can call it the macroscopic term. The second
one describes the influence of the past on the actual value
of NJ and for this reason is called the memory term. The
third term shows that the actual value of NJ also depends
explicity on the free streaming of the initial conditions.
In a certain sense it is also a memory term because it con-
tains the memory of the initial perturbation. But it is not
a cumulative term as the previous one and we can call it
the ballistic term. For the same reasons we refer to M(t)
and B(t) as the memory. and the ballistic operators,
respectively.

If we want to have a simplified description of Eqs. (20)
we can assume, for a moment, that ¹»do not significant-
ly change during the characteristic time for the nonlinear
wave interaction:

NJ(t —s)=Ni(t) for s (r .

Using Eqs. (18) and (19) in Eq. (17) and replacing u (x) by
X) and 0», we obtain the evolution equations for the total
number of photons and the total phase of the three in-
teracting waves:

dX) d¹»=P + f M(s)NJ(t s)ds+B(t—)N (0J),
dt dt

(20)
d19) do»

dt dt 0
' =P ' + f M(s)8, (i —)ds+sB(t)8 (0i),

with j=1,2,3. There we have used two new operators,
M(t) and B(t), which depend on P and L:

IV. MACROSCOPIC DYNAMICS

We now present explicit calculations of the macroscop-
ic terms appearing in Eqs. (20). Replacing NJ by (8) in
the arguments of the Dirac 5 functions which are present
in the definition of P, and after some rearrangements, we
can write the following expression for the macroscopic
terms of Nl ..

where we define
3

A, =1

and

3

BJ,&(8)= f + Bq cos8,„d8&,d82, d83, ,
A, =1

n

A) ——f +N)J5(N)(x) —N)) + dN(k .

(25)

(26)

The expressions for A z and A 3 can be obtained by replac-
ing in this expression the subscripts 1 and j by (2, s) and
(3, t), respectively. The coefficients B~ are defined by

This is analogous to the usual Langevin equation of
motion for a Brownian particle in a fluid. The deter-
ministic term, or the macroscopic projection, represents
now the external forces acting on the particle, for in-
stance, gravity or the interacting forces due to other
Brownian particles. The memory effect is here the
viscous damping due to the mean friction of the fiuid on
the particle. And the ballistic term is the random force
due to the collisions with the molecules of the fluid.

In our problem the Brownian particle is the wave j and
the molecules are the microscopic modes (i,k), with
k =1,2, . . . , n and i&j. But in general the nonlinear
wave interaction is not Markovian, because by definition
NJ change significantly during a time interval of the order
of r, and (22) is not valid. On the other hand, it is not ob-
vious that the ballistic term B(t)N (0i) can be simply as-
similated to a random force.



3902 A. M. MARTINS AND J. T. MENDONQA 31

n

B = f 5(8„(x)—8)+dg
k=1
k&j

(27)

Taking into account the hyperplanes determined by (8)

and schematized in Fig. 2 we can write explicitly the lim-
its of integration for the integrals appearing in Eqs. (26)
and (27). We only retain in the integration that portion of
the hyperplanes corresponding to positive values of Nj
and 81. Equation (26) then becomes

N1 %1—i1„
Ai ——f dNi„ f dNi „ i f

n

(x= 2
aQj

dN)) N) —g N(~
a=1
a+j

(28)

with similar expressions for A2 and A3. In the same way
we get from Eq. (27)

M(8) =&i(f2f3 g2g3) fl ($2f3+g3f2)
(35)

B,= f dg, „ f "dg, „, f
ex=2

d0.2

(29)

N(8) =fi(f2f3 g2g3)+gi(g2f3+g2f2)

f~ and g~ are well-known integrals defined by

8
2 COSQ

t u X- . -Xd&.
0 s1nQ

(36)

2n —1

Ag ——

Q (2p+1)
p=1

(g g )fl 2

~n —1/2

(n —2)!
(30)

Replacing these results in Eqs. (25) we can write
3

Ap, (N)=
2n —1

n —1+ (2p+1)
p=1

(N, N, N, )"-'" (31)

After carrying out the ( n —1) integrations for A~ and the
(n —2) integrations for B~, we obtain

3

S = +D(g„)D(N, ), (37)

where

We see from Eqs. (32) and (34) that the functions AJ„(N)
and Bz„(8), which determine the action and angle depen-
dence of the macroscopic projection of the time derivative
of Nz, are independent of the subscripts. This means that
we only have to calculate the normalization factor S in
order to evaluate the macroscopic terms of (20). Rear-
ranging the integrals of Eq. (13) we obtain

and
n

D(N )=fd(N( ) —N )gdN„ (38)

BJ„(8)= 1

[(n —2)!]
0 0 0

dx dy dz cos 0—x+y+z
1 2 3

x (xy~)" (32)

and D(8~):D(N~~g~). Us—ing the same limits of in-
tegration as before, we get

D(N )= f dN „f dNg„
Nz — g W~

a (+1)

where we have defined a macroscopic phase difference 8
and used auxiliary variables x, y, and z such that

0—01 02 03 x —01 01j
(n —1)!

The normalization factor then becomes

(39)

3' =02—02s z =03—03~ ~

(33)

The phase difference 8 is not to be confused with the vec-
tor 8=—(8&,82, 8&). Developing the cosine in (32) we can
write BJ„(8)in a more appropriate form:

3

S + Nlf —1 gll —1

[(n —1)!]', i

(40)

Now, using Eqs. (31), (34), and (40) we can write (14) in
the final desired form,

B;,(g) = [M(8) sing —N(8)cosg],1

[(n —2)!]
where the expressions for M(8) and N(8) are

(34) F1P = —2w+N)N2N3F(8),
dt

where F(8) contains all the phase dependence:

(41)
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F(8)= [M(8) sine —N(8) cose],F(n)
(e,e,e,)"-'

3
(42)

F(n)=
2n —1~ 2

n —1

+ (2p+1)
p=1

(n —I )!

F2 F3 d%1
P =P (43)

We can also make the same kind of calculation for 8&, 82,
and 83. The integrals are somewhat different but the pro-
cedure is straightforward (see Appendix B). The final re-
sult is

P- =Ah)+Wd8
dt X2

N3
6(8), (44)

where we have defined a new angular function:

Similar calculations can be made for the macroscopic
time evolution of N2 and N3. The results are

order correction to the Hamiltonian (1), with nonlinear
terms proportional to NJ instead of ~NJ.

V. MEMORY EFFECTS

Let us now discuss in detail the memory terms con-
tained in the evolution equation (20). These terms
describe (with the ballistic ones) the subdynamics on the
6(n —1) space which is complementary to the macroscop-
ic phase space. But, contrary to the ballistic terms which
cannot be described in macroscopic "language, " the
memory terms can be written as functions of the macro-
scopic variables. This is a great advantage of the method
because it allows us to keep in the macroscopic phase
space part of the evolution of the system which occurs
outside of this space.

In order to obtain simple expressions for the memory
terms, we develop the operator M (t) defined in Eq. (21) as
a series expansion in powers of the Liouvillian operator I.
and retain only the first term in the expansion. The
operator L is equivalent to a total time differentiation and
the neglect of the higher-order terms corresponds to the
neglect of the high-frequency oscillations. ' The memory
operator is now reduced to

M(t)=iPL PLPL . — (47)

6 (8)= [M(8)cose —N(8) sine] .F(n)
(e,e,e, )"-' (45)

Making the explicit operations associated with PI. , we
obtain, after carrying out lengthy but straightforward cal-
culations,

The macroscopic frequency mismatch appearing in Eq.
(44) is determined by

n

g (~ik —~2k —~3k)
7l k=1

(46)

Equations (41)—(44) give the macroscopic evolution equa-
tion for the three interacting waves in closed form. They
give a rough description of the nonlinear interaction. A
complete description is contained in Eqs. (20), which are
equivalent to the microscopic evolution equations (4) and
(5).

It is interesting to compare Eqs. (41)—(44) with the so-
called fixed-phase equations, which correspond to the case
n= 1 in Eqs. (4) and (5). Such comparison leads us to the
striking conclusions that P(dN2/dt) for the general case
(n »1) and (dN2/dt) for the fixed-phase case (n= I) are
described by the same equations, excepting the phase
dependence. The cosO and sin8 appearing in the fixed-
phase equations ' are replaced by F(8) and 6(8) in the
general case. Of course, when we make n=1 in Eqs.
(41)—(44) we obtain F(8)=cose and 6(8)=sine, as it
should be. This means that Eqs. (41)—(44) contain the
fixed-phase equations as a limiting case.

In the opposite limit of very large n, we can see from
(42) and (45) that F(8) and 6(8) become very rapidly os-
cillating functions of 8. This suggests that the mean
values of F(8}and 6(8}tend to zero, even for short time
intervals, and the nonlinear interaction becomes less effec-
tive than it was for small n. This is also the expected
behavior in the limit of large Acoj (or large n), when the
random-phase approximation becomes valid. Again, we
note that the random-phase equations require a second-

N1 2w [NIN2F3(8)+NlN3F2(8} N2N3F1(8)]

2w b,G, (8)QN, —N2N3, (48)

where the angular functions 6~(8) and FJ(8), with
j= 1,2,3, contain a large number of terms similar to 6 (8)
and F(8). For simplicity their explicit definition is omit-
ted here.

When the frequency mismatch b, is nonzero and the
coupling coefficient is very small, w &~ 1, we can eventu-
ally neglect the first term on the right-hand side of Eq.
(48). In this case the first memory contribution to the
evolution of N

&
is formally analogous to the macroscopic

term, apart from the time integral. But, in the general
case we have to retain the first term in (48). It is remark-
able that this term is formally analogous to those appear-
ing in the random-phase equations, excepting again the
time integral. This can be seen more clearly when we as-
sume that F&(8)=F2(8)=F3(8). Assuming further that
w lb, » 1, we can write Eq. (48) in the approximate form

APL N) ———2w F)(8)(N)N2+N)N3 N2N3) . (49)—

The expression inside the parentheses represents the typi-
cal behavior of the nonlinear interaction in the random-
phase approximation. ' This is a remarkable result be-
cause we know that the Hamiltonian (1) from which we
started is not able to describe the nonhnear wave interac-
tion in the random-phase approximation. We can then
conclude that the first contribution to the memory effects,
described by the time integral of Eq. (48), consists on two
terms, one of the random-phase type and the other of the
fixed-phase type.
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BF1—N2N3 G(8)
1

BE) BF2
QN—)N2N3 co( +co2

1, 2

BF3
+ 3

Bg
(50)

It is clear that the same qualitative dependence on the ac-
tion variables Nj appears. The first term is of the
random-phase type and the second one is of the fixed-
phase type. Integration of (48) and (50) in time gives the
memory contribution to the evolution of N&, to first order
in the operator I.. Similar expressions can be obtained for
the evolution of %2 and X3.

Let us now consider the case of 8j. If we apply (47) to
the second equations (20) and proceed as before we obtain
a singularity. Such singular behavior of the angular
memory terms is associated with that which is already
present in the microscopic equations of motion. As we
can see from Eqs. (5) the time derivative of 8&ki goes to in-
finity when Njk tends to zero, for j=1,2,3. This lead's to
an infinite contribution to the memory effects associated
with the macroscopic variables 8j. If we add to the action
variables, appearing in the denominators of (5) a
phenomenological constant e the memory term goes like
e '. Instead of looking for some ad hoc explanation of
such phenomenological correction it is perhaps more con-
venient to investigate other Hamilonians more consistent
than the usually assumed Hamiltonian (1). This will be
done in a future work.

VI. CONCLUSIONS

We have shown in this work how a projection-operator
method can be used in order to obtain general equations
for the nonlinear interaction of waves. These equations
contain three kinds of terms: the macroscopic, the
memory, and the ballistic terms. If.we neglect the second
and the third terms, we get an approximate picture of the
interaction, which corresponds to the projection of the
dynamics into a six-dimensional subspace of the entire
phase space. In this approximation, Eqs. (41)—(44) can be
considered as a generalization of the fixed-phase equa-
tions, for the case of interacting waves with a finite band-
width (number of modes n &~1, or hco&0). The well-
known fixed-phase equations are obtained as a limit of
Eqs. (41)—(44), when the number of modes tends to 1

(n~1 or bco~0).
On the other hand, for n large, the nonlinear interac-

tion becomes less efficient due to the rapid oscillations of
the phase factors E(8) and G (8). This is compatible
with the fact that in the random-phase approximation
(n~ oo or b,co—+ oo ) there is no three-wave interaction

Let us now return to Eq. (47) and calculate the second
contribution to the memory effects. We obtain

BF3 BF2
iPLPI.N 1

———2iW Ã1N2 +%1%3
3 2

process, as long as the Hamiltonian (1) is considered.
But, in order to get a more precise description of the

three-wave interactions we must also retain the memory
effects. They describe the influence of the unwanted
6(n —1) variab'les on the retained six macroscopic ones.
The analysis of Sec. V has shown that these effects can be
explicitly calculated. It has also shown that the Hamil-
tonian (1) is not appropriate to describe these effects, be-
cause the singularities appearing in the microscopic equa-
tions of motion (5) give an infinite contribution to the an-
gular memory terms of Eq. (20).

In a future work we intend to develop the present
theory to more complete and appropriate Hamiltonians, in
order to obtain nondivergent memory terms for the angu-
lar variables and to include other nonlinear interaction
processes. The transition from the present discrete theory
(where the wave spectrum is constructed with a finite
number of monochromatic modes) to a continuum theory
where the wave spectrum is a superposition of an infinite
number of modes will also be considered. Detailed nu-
merical calculations for particular situations and small
numbers of modes are also necessary to understand the
precise meaning and the typical behavior of the ballistic
terms appearing in the evolution equations.

Finally, we recall that we have not made any restriction
to the interacting waves or to the nonlinear medium where
they propagate. This means that our calculations are not
restricted to a plasma and remain valid for other non-
linear media as well.
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APPENDIX A

IPj) = IN(, N2, N3, P4,P5, . . . , P3„I,
t

IQJ I [81 82 83 Q4 Q5 Q3

(Al)

If the canonical transformation is orthogonal, we can
write'

3' 311

Qj g +jkijk~ Pj g iijkPk
k=1 k=1

(A2)

where ajk are the elements of an orthogonal matrix A,

g +ik+jk ~ij
k

and we assume that

(A3)

%'e show in this appendix how"to construct a projection
operator P', equivalent to (11), with the aid of an orthogo-
nal canonical transformation. Let us consider a canonical
transformation from the 6n microscopic variables
(Njk, 8jk) to other 6n variables called Pj and Qj, with
j=1,2, . . . , 3n defined in such a way that the first Pi
coincide with (or are proportional to) the macroscopic ac-
tion variables Nj, and the first Qj coincide with the mac-
roscopic angular variables 0& ..
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j'lk I I ~11 ~ ' ~ ~ln~~21 & ~ 02nr( 31» (l3n I

Ipkj IN11& . iNjnrN21 &
~ ~ )N2pgtN31) &N3pgI

(A4)
u ( N, O) =P'u (P;,Q; )

3n
' f u(P Q ) + dPkdQk . (A9)

From this we can get the general form of the matrix
A:—(a)k ):

1
I I I
A) A2 A3 (A5)

I; are 3Xn matrices with all the elements zero, except
those of the ith row which are equal to 1, and A; are
(3n —3)Xn matrices which we do not need to specify
here. The factor n '~ is necessary to guarantee the
orthogonality condition (A3). This also implies that the
definition of the macroscopic variables NJ and OJ is now

Such a projection operator is, in principle, equivalent to
the one defined in Eq. (11). Although formally simpler,
this new projection operator P' presents practical disad-
vantages with respect to P in the appropriate choice of the
limits of integration.

APPENDIX 8

For the sake of completeness we present here the
derivation of Eqs. (44) and (45). Replacing OJ by (8) in the
arguments of the Dirac 5 functions appearing in (20) we
can write

n ] n

g Np„&J —— g Hjk .
k=1

(A6)

The difference between this definition and Eqs. (8) is ir-
relevant to the theory. The inversion of (A2) leads to

dpi n n n

=~,+—g g g A;„(N)~;„(t)),
dt S.j=l s=l t=l

where col is defined by

(B1)

3n 3n

N!k =Nk+ g +ikPi~ ~1k ='gl+ g +kiQi (A7)

n

C01 = 6) lp
p=l

i=4 i=4

The generating function for this orthogonal transforma-
tion is simply written as'

3n

F =N)Bt+N282+N3B3+ g P; Q; .
i=4

(A8)

This function does not depend explicitly on time and the
new Hamiltonian H'(P;, Q; ) can easily be obtained replac-
ing (A7) in Eq. (1). Such canonical transformation has
the effect of rotating the hyperplanes shown in Fig. 2,
making them parallel to the coordinate planes. The mac-
roscopic subdynamics can then be obtained simply by in-
tegration on the 6(n —1) variables P; and Q; correspond-
ing to i &4. The corresponding projection operator P' is
now an integration operator:

Aj„(N) =A (AqA3, (B3)

where A2 and A3 are given by Eq. (26) if we replace the
subscript 1 by 2 and 3, and A 1 is defined by

n . n

A', = f N;, '"n N„+ gN, .—N, QdN, „. (B4)
a=1 k=1
a@J

More explicitly, we can write

If we assume that the energy associated with the first
wave is uniformly distributed over the n integral modes,
which means that N~k —N~/n for all k, we can see that
col is nearly equal to the mean frequency GJ defined by
(9). On the other hand, the action-dependent functions
A~'„(N) are of the form

n

N, —g x,
N

dNi„ f dN, „ , f
—1/2

dNii
a=1
a&j

(B5)

After integration we obtain

2n —1

Al ——
n —2+ (2p+1)
p=l

~p n —3/2
cV 1

Using these results we can write Eq. (B3) in the form

(B6)
AJ„(N) = 2n —1

n —l+ (2p+1)
p=l

3

N~ —3n(N N )n —iy2
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We now turn to the angle-dependent functions BJ'„(8) ap-
peartng ln (Bl): dO)

=CO&+ LO
dt

i 1/2
2 3

G(8) . (89)
3

BJ',t(8)= f +B1 cos8j.„d8,Jd82, d83, ,
A.= I

where B& are defined by Eq. (30). Using (40) and replac-
ing (87) and (88) in (Bl) we obtain

Making similar calculations for 02 and 03 we can finally
obtain the evolution equation for the phase difference
8—81 82 83 which is precisely Eq. (44), with
ACO =6) ~

—C02 —C03 ~CO
~
—C02 —C03.
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