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Solitons and the cominensurate-incommensurate transition in a convecting nematic fluid
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Quasiperiodic (incommensurate) patterns consisting of an array of solitous are found in a convect-
ing nematic fluid subjected to spatially periodic forcing. The solitons are regions of local compres-
sion of the convective rolls and are well described by solutions to the sine-Gordon equation. The
commensurate-incommensurate transition is continuous for weak forcing, but becomes discontinu-
ous as the forcing amplitude increases. This behavior indicates the existence of a tricritical point on
the phase transition line.

I. INTRODUCTION

Hydrodynamic instabilities generally give rise to spa-
tially periodic patterns in systems with translational in-
variance, such as Taylor-Couette flow or Rayleigh-Benard
convection. The selection of a particular wave number
from the band of possible wave numbers is a process that
is not well understood. ' The dynamics of pattern selec-
tion can be elucidated by examining the response of the
system to forcing at a wave number that may be different
from the naturally selected one. We have performed such
an investigation for a convecting fluid. We find that the
competition between the natural and imposed periodicities
leads to an incommensurate structure in which the roll
period is spatially modulated. A suitably defined phase
variable shows regions of rapid phase change, periodically
arranged to form a soliton lattice, in a way that can be
quantitatively described by solutions to the time-
independent sine-Gordon equation.

Solitons are known to mediate the transition between
commensurate and incommensurate phases in a variety of
condensed matter systems (for example, atoms adsorbed
on crystalline substrates) and corresponding theoretical
models. However, solitons have not previously been
observed in connection with the selection of patterns re-
sulting from hydrodynamic instabilities, nor have they
been predicted.

%'e discovered a transition from incommensurate states
(soliton lattices) in a convecting fluid to nearby commen-
surate states by varying the ratio of the competing period-
icities. We found that the transition is continuous for
weak external forcing, but becomes discontinuous as the
forcing amplitude is increased. This behavior implies the
existence of a tricritical point (in the parameter space
formed by the forcing amplitude and the ratio of the com-
peting periodicities) at which the order of the transition
changes. Several other novel states were also discovered,
including high-order commensurate states and disordered
patterns containing dislocation pairs; these will be
described briefly.

In order to obtain a system with up to 360 convective
rolls that can be conveniently subjected to external forc-
ing, we have utilized an electrohydrodynamic instability

in a nematic liquid crystal. (The Rayleigh-Benard system
is less suitable because the period cannot be made as
small. ) The system consists of a nematic liquid-crystal
layer [4-methoxybenzylidene-4'- n-butylaniline (MBBA)]
confined between two transparent conductive electrodes
with an adjustable separation of 20—120 pm. A potential
difference of about 6 V across the layer induces a roll pat-
tern similar to that resulting from the Rayleigh-Benard in-
stability. To impose a spatially periodic forcing, one of
the electrodes is photolithographically separated into two
interdigitated regions that are maintained at different po-
tentials. This allows us to create a voltage across the layer
that has a component with spatial period l&

——200 pm.
The director orientation of the nematic is aligned parallel
to the plates and perpendicular to the electrode fingers by
a polymer coating. This causes the rolls to be aligned
predominantly parallel to the electrode fingers so that the
patterns are essentially one-dimensional. Further infor-
mation on the experimental arrangement has been given
previously.

Two important control parameters are defined as fol-
lows. The strength of the external forcing is n =26,V/V„
where 5V is the amplitude of the spatially periodic com-
ponent of the voltage across the plates, and V, is the
threshold for the convective instability. (The average
voltage across the cell is maintained at 1.057V„' AV is
small enough that V, is exceeded everywhere. ) The
second important parameter is lc, the period of the insta-
bility (width of two rolls) when unforced. It is approxi-
mately equal to twice the layer depth and can be adjusted
continuously over a wide range.

II. PHASE DIAGRAM AND SGLITON LATTICES

The overall behavior of the system as a function of a
and lo is shown in Fig. l. Various commensurate states
are seen. For example, in the region labeled 2/3, two
periods of the external forcing correspond exactly to three
hydrodynamic periods (six rolls). (For values of lo small-
er than those in the diagram, commensurate states at ra-
tios 1/3, 5/14, 2/5, 3/7, and 1/2 are also seen. )

The largest commensurate (C) region in. the phase dia-
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FIG. 1. Phase diagram as a function of the dimensionless
modulation strength u and the ratio of competing lengths lo/l~.
The horizontally shaded regions represent commensurate (C)
states. Solitons are found in a portion of the incommensurate
(I) region. The dot on the C-I boundary is a tricritical point
above which the C-I transition is discontinuous.
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gram corresponds to the 1/1 C state. A photograph (tak-
en in transmitted light polarized perpendicular to the elec-
trode fingers) is shown in Fig. 2(a). The electrode fingers
are oriented vertically and are not directly visible. Each
pair of bright stripes corresponds to a pair of convective
rolls. (The long axis of the nematic molecules is tilted out
of the plane of the layer by the convection, giving rise to a
spatial modulation of the refractive index. ) In the 1/1 C
state, the interaction between the natural period and the
imposed one leads to perfect phase locking over the entire
electrode. The rolls are aligned parallel to the fingers, and
the roll period (two rolls) is equal to the electrode periodi-
city. The 1/1 C region in Fig. 1 has a finite width even
for a=0, because the etched line on the electrode causes a
residual perturbation in the electric field with a period of
100 pm.

Incommmensurate or quasiperiodic states containing
solitons [see Fig. 2(b)] are found over a substantial range
in a and Io, for example, between the 3/4 and 1/1 C
phase boundaries. Over most of the pattern, the rolls are
nearly commensurate with the external forcing. Between
these regions, the rolls are locally compressed. Figure 2(b)
contains three of these compressed regions (marked by ar-
rows), which may be usefully described as solitons. They
are equally spaced and form a lattice that is nearly paral-
lel to the rolls.

These patterns are studied quantitatively by digital
analysis of the images. We determine the width of each
roll by locating the maxima of the light intensity as the
pattern is traversed in a direction perpendicular to the
electrode. (To obtain good accuracy, parabolas are fitted
to the light intensity function near the peaks. ) The ex-
istence of solitons is demonstrated quantitatively by this
technique in Fig. 3. The roll size, shown in Fig. 3(a),
varies periodically across the sample, nearly attaining the

„ll
FIG. 2. (a) Photograph of a 1/1 commensurate state. The

convective rolls are aligned parallel to the electrode fingers, with
two rolls for every period of the modulation. The unforced
length ratio is lo/l] =0.941, and the forcing strength is o;=0.03.
(b) Photograph of a quasiperiodic structure at lo/l& ——0.866 and
+=0.03. The solitons (indicated by arrows) are regions of
compression of the rolls.

commensurate value of 100 pm in some regions. The
areas of localized compression are the solitons (sometimes
called domain walls or discommensurations).

A phase variable P„may be defined to denote the loca-
tion x„ofthe nth roll pair. with respect to the external
forcing: P„/2'=(x„/l&)—n. The phase is plotted as a
function of position in Fig. 3(b). Each soliton corresponds
to a phase change of 2m, or the insertion of an extra roll
pair. Most of the phase change occurs over a distance
that is small compared to the distance between the soli-
tons, but large compared to Io. A second example of a
quasiperiodic structure with more closely spaced solitons
is given in Fig. 4. There are eleven solitons across the
sample, of which three are shown in the graph. The solid
lines in Figs. 3(b) and 4 are fitted solutions to the sine-
Gordon equation, and are described in Sec. IV.
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FIG. 5. Variation of the soliton spacing s (in units of ll) as a
function of the unforced ratio of competing lengths Ip/ll (at
a=0.03). The curved portion corresponds to the soliton lattices.
The nearly flat portion at Ip/ll &0.79 is the commensurate 3/4
state.
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FIG. 3. (a) Variation of the rol. size (in units of ll) across the
sample, for the pattern of Fig. 2(b). (b) Variation of the phase
of the rolls across the sample. The solid line is a fitted solution
of the sine-Gordon equation (see text). Each "step" corresponds
to an insertion of two extra rolls and a phase change of 2a.

III. COMMENSURATE-INCOMMENSURATE
TRANSITION

This system is ideal for studies of the transition from
the commensurate to the incommensurate state as the ra-
tio of the competing periodicities is varied, because the
structural changes in the soliton lattice can be seen direct-
ly. The soliton spacing s is shown as a function of lo/I&
for a=0.03 in Fig 5. It .varies smoothly over the range
0.79 & lo/l~ &0.92. Outside this region, the transition to
a C state occurs as follows: (a) s becomes infinite as the
system enters the 1/1 C state for lo/l»0. 92; and (b) s
becomes commensurate with l

&
(in fact s = 3l ~) as the sys-

tem enters the 3/4 C phase for lo/l& &0.79. This is the
a = o.oo

1.0- a= 0.05

flat region of Fig. 5. Thus the C-I transition can be
described in terms of the soliton spacing.

We find that the nature of the C-I transition changes as
the strength o. of the periodic potential is varied: the tran-
sition occurs continuously for smail a, and discontinuous-
ly for large a. This behavior can be most easily demon-
strated by introducing a variable l„which is the inverse of
the mean wave number of the pattern. We determine this
quantity by Fourier analysis of digitized images of the
patterns, and its behavior as a function of the unforced
period lo is shown in Fig. 6, for various values of a. In
the figure, both l and lo are measured in units of the forc-
ing period l&. When +=0, l is proportional to lo. As o. is
increased, a step appears at the 1/1 C state, but the curve
apparently remains continuous. Finally for a )0.05, the
variation of l with lo becomes discontinuous at the step,
and the size of the jump increases with n. We conclude
that there is a point on the boundary of the 1/1 C state in
the phase diagram of Fig. 1 where the transition changes
from second order (low a) to first order (high a). This is
the signature of a tricriticai point.
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FIG. 4. Variation of the phase of the rolls across the sample
farther from the C-I transition (lp/li ——0.816 and a =0.03).

FIG. 6. Variation of the inverse l of the mean wave number
with the unperturbed roll size lp (in units of .'1), for various forc-
ing strengths cx. The C-I transition is continuous for u &0.05,
and discontinuous for o.)0.05.
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For values of the forcing strength cx &0.05, where the
C-I transition is continuous, / varies with /o approximate-
ly as a power law:

t / l i
——1.—2 [(I, —l0 ) /1 i ]~,

where l, is the unforced roll period at the edge of the step.
We estimate that P=0.4+0. 1 near the tricritical point
(a=0.05). For +=0.03, the exponent P increases to
0.6+0.1. Unfortunately, the precision of the data at
present does not allow accurate determination of the ex-
ponents to be made.

If the variation of / with lo is examined over a wide
range (i.e., from about lo/Ii ——0.33 to 1.0), a graph resem-
bling the "devil's staircase' is obtained with steps at the
commensurate values listed earlier.

IV. DISCUSSION AND COMPARISON
WITH THEORETICAL MODELS

The patterns described in Secs. II and III are essentially
one dimensional. However, it is important to recognize
that defects do occur in the soliton lattices. Sometimes
the solitons are not parallel to the rolls, and they occasion-
ally end at dislocations in the roll pattern. An example of
this phenomenon is'shown in Fig. 7. In some regions of
the phase diagram (for example, the diagonally shaded re-
gion of Fig. 1), the dislocations are so numerous that we
classify the patterns as disordered. These states wi11 be
described elsewhere.

Even though these experiments are conducted on a con-
vecting nematic liquid crystal, we believe that, neglecting
experimental difficulties, similar phenomena would also
be obtained in spatially modulated Rayleigh-Benard con-
vection. There has been some consideration of the prob-
lem of periodically forced thermal convection from the
standpoint of linear stability theory. However, only com-
mensurate states were considered. (It is possible that the
phase modulation seen in our experiments is related to the
phase modulation expected for the Eckhaus instability of
convection rolls. '

) This problem is worthy of further
theoretical work based either on the full hydrodynamic

I II

PEG. 7. Photograph of a dislocation pair that -is a defect in
the soliton lattice (lo/ll ——0.834 and o, =0.03).

equations, or on simplified model equations of the type
that have been devised to study convective patterns.

Although a theoretical treatment applicable to the
present experiments is lacking, we have found a strong
correspondence between our observations and the behavior
of the Frenkel-Kontorova (FK) model, in which a one-
dimensional array of particles is connected by harmonic
forces in the presence of a spatially periodic external po-
tential. It is known that for suitable potentials, solitons
mediate the C-I transition in this model. Since the con-
vective rolls are characterized by a preferred size, it is not
implausible to suppose that compression of the rolls
might be resisted by elastic forces. (Of course the dissipa-
tion present in our convective system will certainly limit
the applicability of the model to steady-state phenomena.
Relaxation in the roll positions would not be properly
described by the FK model. )

We have quantitatively compared our observations with
the behavior of the FK model for a weak sinusoidal po-
tential. In this limit, the phase variable P„may be regard-
ed as a continuous function of position, P(x). Frank and
van der Merwe showed that in this continuum limit,
P(x) is a solution of a sine-Gordon equation. We found
that excellent nonlinear fits to our data can be constructed
using general solutions to the one-dimensional time-
independent sine-Gordon equation. These solutions have
the form

$(x) 2E x+5

where am(u) is the amplitude of an elliptic integral of the
first kind. In. this expression, s is the distance between
solitons, and E, a&, and 6 are constants. The minus sign
is chosen to describe compression of the rolls. The solid
lines in Figs. 3(b) and 4 represent nonlinear least-squares
fits to our measured phase variation. We find that the
data are quantitatively described by this function for
a&0.05, thus supporting the use of the term "soliton"
and the applicability of the FK model for weak external
for clng.

For strong external forcing, it is unclear whether the
FK model is relevant. It is perhaps worth noting that the
C-I transition in the FK model does become discontinu-
ous as the forcing strength is increased. Multicritical
points have also been noted in a theoretical model of sys-
tems exhibiting transitions between disordered and incom-
mensurate states.

It would be desirable to compare the widths of the com-
mensurate regions observed experimentally with the FK
(and other) models. These widths have been calculated for
the FK model with a piecewise parabolic potential.
Presumably the results for a sinusoidal potential would be
similar for strong forcing, where the masses are confined
near the minima of the potential. Both the model and our
experiments show a wide 1/1 commensuration and a nar-
rower 3/4 commensuration at high n. Commensurate
states between these should be too narrow to observe if the
forcing is strong, as we find experimentally. In order to
make a quantitative comparison of commensurate widths
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with model predictions, it would be necessary to make
much more detailed (and time-consuming) measurements
of the shapes of the commensurate boundaries. However,
the quantitative description of the structure of the soliton
lattice (for weak forcing) by solutions to the sine-Gordon
equation suggests that models of this type may be ap-
propriate, despite the fact that they were intended to
describe equilibrium systems.

The primary result of this investigation, the discovery
of soliton lattices in a periodically forced convecting fluid,

is of course independent of any particular theoretical
model.
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