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The excitation and decay of autoionizing states of multiply charged ions in plasmas can play an
important role in the determination of both the distribution of the various charge states and the
spectrum of the emitted radiation. All previous theoretical treatments for low-density plasmas are
based on the con'ventional expressions for the Auger and fluorescence branching ratios, in which the
autoionization and radiative decay rates are assumed to be additive. Using a two-level atom model,
Armstrong, Theodosiou, and Wall and also Haan and Cooper have investigated the effects of the in-

teraction between the final continuum states which result from the autoionization and radiative de-

cay modes. They have shown that this interaction produces an interference which can alter the rela-
tive probabilities for decay into the two alternative continuum channels. In the present investiga-
tion, the general properties of angular momentum and spherical tensor operators are employed to
extend the theory of this interference to the case in which each of the atomic levels consists of a set
of 2J +1 degenerate magnetic sublevels, where J is the total electronic angular momentum. In the
case where this interference involves only a single term in the partial-wave expansion for the
electron-continuum state, the expressions obtained for the Auger and fluorescence branching ratios
are in agreement with those derived in the previous investigations. When several terms in the
electron-continuum partial-wave expansion are involved, the Auger and fluorescence branching ra-
tios contain terms corresponding to the interference between different partial-wave components
analogous to those which occur in the expression for the photoelectron angular distribution asym-
metry parameter. The electromagnetic interaction between the final continuum states of the com-
bined atom plus quantized radiation field system may be expressed in terms of the matrix elements
for either the photoelectric transition or the inverse radiative recombination process connecting the
final atomic states. Finally, the corrected expressions are' obtained for the resonant electron-impact
excitation rates and the intensities of the dielectronic satellite lines resulting from the decay of au-

toionizing states of multiply charged ions in plasmas. The modifications to the conventional expres-
sion for the satellite line intensities may be interpreted as terms corresponding to the interference be-

tween the direct radiative recombination and dielectronic recombination processes together with ra-
diative corrections to the dielectronic recombination process.

I. INTRODUCTION

The process of dielectronic recombination has been the
subject of intense theoretical interest ever since the
discovery by Burgess' that this process is often the dom-
inant recombination mechanism for multiply charged
atomic ions in low-density high-temperature laboratory
and astrophysical plasmas. Several attempts have been
made to determine experimentally both the dielectronic
recombination cross sections describing crossed electron-
ion beam interactions and the effective recombination
rates of impurity ions in hydrogen plasmas. The satel-
lite lines (associated with the resonance lines) which are
produced by the dielectronic recombination process are
often prominent features in the far-ultraviolet and x-ray
emission spectra of both low-density ' and high-
density"' plasmas, and the analysis of the satellite spec-
tra has been found to be of great value in the spectroscop-
ic determination of temperatures, densities, and depar-
tures from ionization equilibrium.

In order to provide a complete description of both the
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electron-ion beam interaction and the effective recombina-
tion process which occurs in a plasma, it has been neces-
sary to generalize the conventional theory of dielectronic
recombination' to include the effects of electrostatic
fields' ' and charged-particle collisions. ' ' The tradi-
tional theory of dielectronic satellite line intensities' has
also been extended' to include the effects of electron-
induced collisional transitions between the autoionixing
states. Motivated by the various possibilities for making a
reliable experimental determination of the cross section or
rate coefficient for a dielectronic recombination process,
the present investigation is an attempt to develop a
rigorous quantum-mechanical theory of this resonant
electron-ion recombination process. In order to accom-
plish this objective, it is necessary to employ the methods
of multichannel collision theory ' and quantum electro-
dynamics.

The basic theoretical description of the autoionization
process in the absence of spontaneous radiative decay has
been firmly established as a result of the asymmetric line-
shape theory developed by Fano together with the
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projection-operator formalism introduced by Fesh-
bach. ' ' The first quantum-mechanical theory for the
spontaneous radiative decay of excited atomic states was
presented by Weisskopf and Wigner, ' who showed that
the spectral line shape can be represented in the Lorentzi-
an form. The theory of spontaneous radiative emission
has been reformulated in very general terms by Heitler
and by Goldberger and Watson. To these formulations
must be added the important work of Low, who applied
the S-matrix theory developed by Feynman ' and
Dyson ' to obtain radiative corrections to the spectral
line shape. Only a very limited number of theoretical
analyses have been reported in which the autoionization
and radiative decay processes are treated in a unified
manner. The methods of multichannel collision theory
and quantum electrodynamics have been employed by
Shore in a quantum-mechanical treatment of the effects
of autoionizing levels on spectral line shapes. However,
only the lowest-order nonvanishing terms were retained in
his results for the T matrix, . leading to expressions in
which the autoionization and radiative decay rates are ad-
ditive.

Although the interference between the autoionization
and radiative decay processes is in principle included in
the theories of dielectronic recombination presented by
Davies and Seaton and by Trefftz, ' Armstrong, Theo-
dosiou, and Wall were the first to report a comprehen-
sive investigation of the effects of the electromagnetic in-
teraction between the final continuum states resulting
from these two alternative decay modes. Using a two-
level atom model, they demonstrated that the final-state
interaction can alter the relative probabilities for decay
into the two alternative continuum channels. They also
obtained expressions for the Auger and fluorescence
branching ratios for the case in which spontaneous radia-
tive transitions can occur into a set of lower atomic states
or when autoionization into a set of states of the' residual
ion is permissible. However, the realistic case of angular
momentum degeneracy was not considered, and their
analysis was presented using the energy and angular
momentum representation of the continuum states, which
does not yield results for the angular distributions of the
emitted electrons and photons. Finally, they derived ap-
proximate expressions for the Auger and fluorescence
yields which they believed were valid only when the
final-state continuum-continuum coupling is weak.

The results obtained by Armstrong, Theodosiou, and
Wall have been recently rederived by Haan and Cooper
using elegant techniques from multichannel scattering
theory. ' By taking advantage of the separable form of
the final-state continuum-continuum coupling, they were
able to obtain an exact closed-form solution for the two-
level atom problem. In addition, they demonstrated that
the approximate expressions for the Auger and fluores-
cence branching ratios first obtained by Armstrong, Theo-
dosiou, and Wall remain valid even when the
continuum-continuum coupling is strong and, therefore,
have a wider region of validity than originally recognized.

The remainder of this paper is organized in the follow-
ing manner. In Sec. II the two-level atom model is ex-
tended to the case in which each of the atomic levels con-

sists. of a set of degenerate magnetic sublevels and the
electron- and photon-continuum states are specified by
giving the momentum in the propagation direction and
the spin projection or polarization. This extension is fa-
cilitated by using the general angular momentum and
spherical-tensor-operator techniques ' which have been
employed in the theory of the angular distribution and
spin polarization of photoelectrons. Assuming that the
limited number of eigenstates of the unperturbed Hamil-
tonian without the atom field interaction forms an ade-
quate basis set, an exact diagonalization of the complete
Hamiltonian for the combined atom plus quantized radia-
tion field system is carried out by utilizing a method
based on the Mgller scattering operator. Assuming that
the atom field system has been initially prepared in the
autoionizing state, closed-form expressions are obtained
for the exact autoionization and radiative decay ampli-
tudes. In Sec. III approximate expressions are derived for
the Auger and fluorescence branching ratios, and the
cases of multichannel electron and photon continua are
treated. The resonant electron-impact excitation and
dielectronic recombination rates in the presence of the
final-state continuum-continuum interaction are obtained
for low-density plasmas. Finally, the conclusions are
presented in Sec. IV.

II. THE TW'0-LEVEL ATOM MODEL

A. Unperturbed eigenstates and their interactions

As a first step in generalizing the theory of the interfer-
ence between autoionization and spontaneous radiative de-
cay to realistic atomic problems, the two-level atom model
employed by, Armstrong, Theodosiou, and Wall" and by

,Haan and Cooper must be extended to the case in which
each of the atomic levels consists of a set of degenerate
magnetic sublevels. In order to make possible the in-
clusion of relativistic effects in the atomic wave functions,
the atomic states will be assumed to be eigenstates of the
total electronic angular momentum J only rather than of
both the orbital and spin angular momenta L, and S. In
this paper the word "atom" will be used to indicate either
a neutral atom or a positive ion, whereas the word "ion"
will be used to refer to the residual atomic system result-
ing from autoionization. Finally, both the emitted elec-
tron and photon states will be specified by giving the
momentum in the propagation direction and by giving the
spin projection or polarization. This allows the deter-
mination of the angular distributions if desired.

Consider an excited state
~

a) of an atom which can
decay either by an autoionization process to the state

~

i )
of the ion, emitting an electron with momentum p, or by
a spontaneous radiative transition to a state

~ f), emitting
a photon with momentum k. The direct-product states
denoted by

~
a, O),

~
ip, O), and

~ f, k) may then be treat-
ed as eigenstates of the Hamiltonian

H =Hg+H~,

consisting of the unperturbed atomic Harniltonian Hq
and the Hamiltonian Hz for the free radiation field. Us-
ing this set of states as a basis, the solution of the model
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problem involves the diagonalization of the complete
Hamiltonian

H =Hg +H~+Hgr (2)

( f ) = [yf JfMf)
where J, and Jf are the total electronic angular momenta,
M, and Mf are the angular momentum components
along the direction of quantization, and all additional
quantum numbers are represented by y, and yf. A
rigorous description of the autoionization process is pro-
vided by the Feshbach projection-operator formalism,
according to which the autoionizing state

~

a ) is not an
exact eigenstate of the full atomic Hamiltonian Hz but
may instead be taken to be an eigenstate of the projected
Hamiltonian (1—P)H~(1 P), where P—is the projection
operator onto the subspace of the open electron-
continuum channel

~
i, p). The interaction which gives

rise to autoionization is yrecisely given by the projected
interaction (1—P)HzP, but the projection operators will
not be explicitly indicated in the following discussion.

Denoting the electron-spin projection quantum number
by m„ the continuum state of the ejected-electron
residual-ion system will be specified by

for the combined atom plus radiation field system, includ-
ing the atom field interaction H„F. The relevant atomic
levels are schematically illustrated in Fig. 1, which shows
the interactions which occur between the eigenstates of
H . The interference between the autoionization and ra-
diative decay processes is a consequence of the elec-
tromagnetic interaction coupling the final continuum
states which result from the two alternative decay modes.
The corresponding interaction matrix element occurs in
the cross section for photoionization from the state

~ f )
and also for the inverse radiative recombination process

ip O)
Before describing the diagonalization of the complete

Hamiltonian H, it is necessary to specify the atomic states
in greater detail and to evaluate the matrix elements of the
interactions. The autoionizing state

~

a ) and the final
atomic state

~ f ) will be specified by

~a)= ~y, J,M, )

I a,O&

&a IHAlip &

AUTQIONIZATION

lip, O&

, &a,OIHAF If,k&

RADIATIVE DECAY IHAFI ip, O&

IZATION AND

ECOMB INATION

~ipm, )= (yJM;, pm, )

and will be assumed to have the asymptotic farm cdrre-
sponding to a Coulomb-modified plane wave and an in-
coming spherical wave. The electron-continuum states
will also be assumed to satisfy the 5-function normaliza-
tion and orthogonality property

(ipm,
~

&p 'm, ' ) =5 (p —p ')Q
s' s

In order to evaluate the matrix elements of the interac-
tion, it will be necessary to make a transformation to a
representation in which the ejected-electron states are
specified by the relative orbital angular momentum quan-
tum numbers I and m. The ejected-electron angular mo-
menta l and s are then coupled to the total angular
momentum J; of the residual ion to form the total elec-
tronic angular momentum J of the electron-ion system.
Using the angular momentum coupling scheme intro-
duced by Blatt and Biedenharn and the signer 3-j sym-
bols, whose properties may be found in the book by
deShalit and Talmi, the electron-continuum partial-wave
expansion can be expressed in the form46

If,k&

FIG. 1. The eigenstates of the Hamiltonian H =H&+HF
and the interactions between them which occur in the diagonali-
zation of the complete Hamiltonian H =H&+HF+Hq~ for the
two-level atom model.

~i pm, ) =

+exp[i�

(lm I2 o()]Yf~(p). —
I, m

s —J;—%+K —I —M J s E I E J
X g g ( —1) ' [(2K+1)(2J+1)]'~

~
y;J;,Kpl;JM),

KW JM

where o.
~ denotes the Coulomb phase shift. The continu-

um states represented by this partial-wave expansion
describe electron-ion scattering in the absence of the
electron-electron interaction which gives rise to autoioni-
zation and in the absence of the electromagnetic interac-
tion which leads to spontaneous radiative decay. In the
terminalogy of the Feshbach projection-operator formal-

I

ism, ' ' these states correspond to the nonresonant
scattering states which are the exact .eigenstates of the
projected Hamiltonian PHzP, defined within the open
electron-continuum channel subspace. The 3-j selection
rules together with the Wigner-Eckart ' theorem,
which will be employed in the evaluation of the various
interaction matrix elements, restrict the range of the angu-
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—=E 5'(p —p ')5 (9)

(f, kA, IH I f, k'A, ') =(Ef+ficok)5 (k —k')5gq

3=Ek5 (k —k')5gg, (10)

lar momentum summations in Eq. (7) to a very small
number of terms.

In the diagonalization of the complete Hamiltonian H,
the eigenstates of H will be assumed to satisfy the condi-
tions

( a, O
I
H

I
a, O) =E. ,

( i pm„O I
H

I
i p 'm,', 0) = (E; +e~ )5 ( p —p ')5

where A, denotes the photon polarization (A, = 1,2 for each
value of k). The photon-continuum state is specified in
the occupation number representation by the direct-
product states

I f, kA. ) which, according to Eq. (10), have
an orthonormality property analogous to that for the
electron-continuum state given by Eq. (6). Note that only
the two Fock-space state vectors

I
0) and

I
kk) of the

quantized radiation field are considered in the present in-
vestigation. They correspond to the vacuum state and the
state with one emitted photon, respectively.

The partial-wave expansion (7) for the electron-
continuum state together with the %'igner-Eckart
theorem ' allows the interaction matrix element respon-
sible for autoionization to be expressed in the form

(a
I
H~ li pm, ) = +exp[i(lm. /2 —oi)]F1* (p)

I, m

J; s K / K J~
x g ( —1)' ' + '[(2I~ +1)]'" M ~ ~ M &)'.~a I IH~ II)'i~. i &S l J.&'

K, N M; I, —X m X —M,

I /2
A f A 0fC(a- e- —a- e- ),

kA, kA, kA, kA,

2m.e ficuk
2

Hgp —eD.E= —D——g i
V

(12)
7

where e- are the unit polarization vectors and a - and a are the photon annihilation and creation operators, respec-
kA, kA, kA,

tively. The atomic dipole-moment operator denoted by D has the dimensions of length.
The interaction matrix element describing the spontaneous radiative decay process is given by

2m.e Rcuk
&a oIH~~ If k~&= —i ~ Q+-„,)p( —» ' '

M „M &)'.~. IIDII1'f~f &

P

where p denotes the spherical tensor components of. the unit polarization vector e- . Note that the complex conjugation
kA,

arises from the definition of the scalar product in spherical components and not from the creation-operator term in Eq.
(12).

Finally, the final-state continuum-continuum interaction matrix element is obtained in the separable form

where the double bars denote the reduced matrix element of Hz.
Using temporarily the finite-volume quantization for the radiation field, the electromagnetic interaction in the electric

dipole approximation can be written as

&; pm„o I H„, lf, kz) = gf„*(p,m, )g„(k,~), (14)

where

fz(p, m, )=(ipm,
I D& I f)=f„*(M;pm„Mf)—

= +exp[ i (ln. /2 —cri)]Xi (p)—
I,m

x g g ( —1) ' [(2%+1)(21+1)]'i'
IC, X J,M

XMm —~ m~ M-p (15)

and

22ne fun

V

j/2

(e-„)„' . (16)
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8; Diagona1ization of the complete Hamiltoniaa H

The transition amplitudes describing autoionization and spontaneous radiative decay will be obtained in Sec. IIC by
employing the method of diagonalization involving the MaAler scattering operator 0 [defined in Eqs. (3S) and (36) of
See. IIC], which provides a transformation from the continuum eigenstates of the unperturbed Hamiltonian M to the
continuum eigenstates of the complete Hamiltonian H satisfying the required asymptotic boundary conditions. The
Misller scattering operator 0 can in turn be expressed in terms of the resolvent or Green s operator G(z) which satisfies
the equation

(z II —)6('z)=1+ VG(z), (17)

where V represents both the electromagnetic interaction Hq~ and the projected electron-electron interaction. Taking the
matrix elements of Eq. (17) between the eigenstates of H yields a set of coupled equations for the components of 6(z).
The components which are required for the evaluation of the electron and photon transition amplitudes carried out in
Sec. II C will be denoted by (a,o

l
G (z)

l
a,o), (ipm„o

l
6 (z)

l
a,o), and (f, k A.

l
6 (z) ( a,o). Because 6 (z) is a spherical

tensor operator of rank 0, it must be diagonal in M, .
The expression obtained for (z E, )(a,o—

l
G(a)

l
a,o) can be written in the form

(z E, )(a—,o (
6(z)

l
a,o) =1+g g I d p(a, o

l
V

( ip m„o)(i pm„o l
G(z) (a,o)

M; M

/ y y y (aO( V lf kA)(f kk
l
6(z)

l
aO)

Analogous expressions are obtained for (z E~ ) ( i p —m„o
l
6(z)

l
a, o ) and (z —Ek ) (f, k A,

l
6(z) ( a,o ) . An equation relat-

ing (f, kA,
( 6(z)

( a,o) and (a,o
l
6(z) ( a,o) can be derived by eliminating (ipm„o

l
6(z)

(
ao). To extract a solution,

this equation must be multiplied by

J, 1 Jg

a PM M gp(k ~)

for some fixed IM and then summed over M~, p, A, , and k. The resulting equation can be expressed in the form

J, 1 Jy
g„(k,A)(f, kA, (6(z) (a,o)—M pM~

cr~'(MgM„z)(a, o
l
G(z)

l
a,o)—M, pMyf

+XXX':( )
J, 1 Jg

cr„'(MiM„z)(a, o( 6(z) (a,o)—M, pMI

J, 1 Jg
+gga„„(z)ggg M M crp„(MgMj, z)gag (k', A, ')(f', k'I, '(6(z) la, o) .

f k '

(19)

The vector and tensor self-energies in Eq. (19), which
are generalizations of those introduced by Haan to in-
clude the magnetic quantum numbers, are given by the
following definitions:

P'(M~M. ,z)= gg fd'p ™~"~f
M;m Z Ep

X ( i pm„O I
V

I a, O &, (2O)

gp(k, A, )(f,kA,
( V(a,o)

„'(MgM„z) = " ' ' ', (22)
z E

g~(k, A, )g'„(k, A, )
„;(z)= (23)

z Ek-
k

The transpose elements are defined by relations such as
the follovnng:

o&~(M, My, z)=y y fd p(a, o( V
l ipm„O)

o ~(M M' )=~~pv f f~z =~~ d p
Z —Ep

M; m

Xf~(M; pm„My)

Xf"„(M,pm„M'~), (21) = [ap (MgM„z*)]* . (24)
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o„g(z) =Xgg(z)5~ (25)

A substantial simplification of Eq. (19) can be achieved
by taking advantage of the properties of the tensor self-
energies crf (z) and og (z). The tensor self-energy cr g(z)
can be shown to be expressible in the diagonal form

Using the expansion (15) for f&(M; pm„Mf), the tensor
self-energy off(z) can, be reduced to the result

J 1 Jf
cr„~(MfMf', z) = g —MP Mf

where the scalar self-energy X g(z) is given by
3

2e A'

y
~ d~k~k

Xgg(z) = 3' (26)

J 1 Jf
—M M'—M VMf'

2

I 3 dcok f dAk
(2m) c

(27)

In arriving at the final expression for Xgg(z), the discrete
sum over k has been converted into an integral by making
the transformation

where

off(z) 1 P ~P
(2J+1) o (z —E )

(28)

The scalar self-energy Xgg(z) can be evaluated as a sum of
a principal-value integral and a 5-function integral. The
principal-value integral is well known to be divergent and
the technique of mass renormalization ' must be em-
ployed to obtain a finite result. In this paper the final ex-
pressions for the transition amplitudes will be presented in
the pole approximation, in which the principal-value in-
tegral is ignored.

&&++ I () cJc &pI J
I I

D
I 17'fJf & I

'.
K

(29)

The tensor self-energy off(z) is seen to be diagonal only in
the case where f is a Jf =0 state, for which Mf =Mf =0.

The properties of the tensor self-energies given by Eqs.
(25) and (28) allow Eq. (19) to be solved for
(f, kA,

I G(z)
I
a, O& to give

f kzl G(z) la, O&= (f k~
I V la &++ " [P(MfM. ,z)+& (z)c7.(M M, )]

g„*(k,A, )

z z —Ek
(30)

where

e(z) = 1 —r (z)r (z) .

The analogous result for (i pm„O
I
G(z)

I
a, O& is given by the expression

(i pm„O I
G(z)

I
a, O& = (i pm„O

I
V

I
a, O&

(31)

p &P» f [~a(M M ) egg( )+a(M M )j
(a,OI G(z) la, O&

f*(M; pm„M )

4(z) p f gpz + Z p f gpz
p Mf

(32)

Finally, the expression for (a,O
I
G(z)

I
a,O& is obtained in the form

[(a,O
I
G(z)

I
a, O& j '=z E, —X"(z)—

crpf(M, Mf, z )
[cr„'(MfM„z)+Xgg(z) cr„'(MfM, z ) j

p Mf

where

o.„'g(M,Mf, z)
[o„'(MfM„z ) +Xff(z)o„'(MfM„z )],

p Mf
(33)

yaa( ) y y f d3 ' P» I y y y I (a~O
I

V lf~k~& I

M m Ps M A,f k
z —Ek

(34)

Equations (30)—(34) together with the definitions of the vector and tensor self-energies provide the generalization of the
solution obtained by Haan to the case in which each of the atomic levels consists of a set of degenerate magnetic sub-
levels.
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C. Autoionization and radiative decay amplitudes

Assuming that the atom field system has been initially prepared in the eigenstate
~
a,0) of H, the spectral amplitudes

describing autoionization and spontaneous radiative decay are given by the projections of the initial state onto the eigen-
states

~
ip, O ) and

~ f, k ) of H satisfying the incoming spherical-wave boundary conditions. In terms of the Muller
scattering operator 0, the transition amplitudes for the two alternative continuum channels are given by

and

&a Olip 0 &=&a Ol II- lip 0&=&a Ol I+6(Ep —i~)Vlip 0&

&=&a OI&- If k&=&a OI l+6(Ek i~)V—lf k&

(35)

(36)

which involve matrix elements between the eigenstates of H . Introducing the magnetic quantum numbers and the pho-
ton polarization, the electron and photon amplitudes may be related to the components of 6 derived in Sec. II B by
means of the expressions

(a,O~ipm„0 )*=(ipm„0 ~a, 0&

= (i pm„0
~

V
~
a,0) (a,0

~
6(E~+i@)

~
a,0)

+g gg (ipm„0
~
V[f, kA)(f, kA,

) 6(E&+is)
~

a,0) (37)

( a,0
~
f, k A)' =, (f, k A.

~
a,0)

=&f k~l Vla o&&a oI «Ek+i&) Ia 0&

+gg J d p(f, kA,
)
V)i pm„0)(ipm„0) 6(Ek+ie) ) a,0& .

M; rpg

(38)

Using the expressions for the components of 6 given by Eqs. (30) and (32) together with the separable form (14) of the
continuum-continuum interaction matrix elements, the expressions for the electron and photon amplitudes can be re-
duced to the forms

(ipm„0 ~a0)= (ipm„0~ V~a, 0)

+g g [op~(Mfa, z )+Xgs(z)o&'(M~M„z )] & a, 0
I
6(z)

I
a, 0 &

f q(M; pm„MI )

'p(z)
p M~

(39)

(f k~ Ia,0) = (f kA
I VI a,0)+gg~(k, A, )o„'(MIM z)

gq( k, A, )oq~(MgMg, z )
+g g g " " [o,'(MgM„z)+X (z)o~ (M~M@,z)] (a,0

~

6(z)
~
a,0), (40)

M'f

which are to be evaluated at z=E~+ie and z=Ek+ie,
respectively.

Although the electron-emission amplitude given by Eq.
(39) can be seen to be in the same form as the result ob-
tained by Haan for the nondegenerate case, the photon-
emission amplitude expressed by (40) may be reduced to
the corresponding amplitude obtained by Haan only when
the tensor self-energy cr is diagonal. As discussed in
connection with Eq. (28), this is the case only when f is a
Jy ——0 state.

III. AUGER AND FLUORESCENCE YIELDS
AND DIELECTRONIC SATELLITE LINE

INTENSITIES

A. Approximate branching ratios and effective
decay rates for the two-level atom model

In this subsection the approximate expressions for the
Auger and fluorescence branching ratios obtained by
Armstrong, Theodosiou, and Wall and by Haan and
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Cooper are derived more generally to incorporate the an-
gular momentum degeneracy of the atomic levels and the
partial-wave expansion (7) for the electron-continuum
state. The density-matrix formalism which has been ap-
plied in the. theory of photoionization" allows the frac-
tional probabilities for producing the two alternative pairs
of decay products, with specific values of the magnetic
quantum numbers and photon polarization, to be present-
ed as functions of the energy and angular variables of the
emitted particles for arbitrary distributions of the initial
autoionizing state among its magnetic substates. For the
case in which the magnetic sublevels of the initial au-
toionizing state are uniformly populated and the magnetic
quantum numbers and polarizations of the final decay
products are not of interest, the total electron and photon
probabilities are obtained after performing the appropriate
averages, summations, and three-dimensional integrations:

I (ipm„O
f
a, O)

I

'
P~ ( a ~l Ep ) = g g g I d P 2J.+ l

(41)

(42)
The explicit expressions for the probabilities of autoion-

ization and radiative decay P, (a +imp) and P„(a—~f) are
most easily obtained when the vector and tensor self- '

energy occurring in the expressions for the electron and
photon amplitudes are evaluated in the pole approxima-
tion

in which the principal-value term denoted by P is neglect-
ed. The accuracy of this approximation must be carefully
considered in each separate case.

The total autoionization and spontaneous radiative de-
cay rates A, (a~imp) and A, (a~f) in the absence of the
final-state continuum-continuum interaction are given by

A, (a +i@—p) =+A, (a~i,Kepi)
x, l

2%

A(2J, +1)

(44)

4e'~' I & 7. J. IIDII ) IJI& I'
A, (a~ )=

3fic' 2Jg+1

where the electron-continuum wave function is now nor-
malized to a 5 function in the electron energy ep. It is
also convenient to introduce the partial photoionization
cross section crp(foie&, J, ) associated with the J, total-
angular-momentum component of the electron-continuum
state4'

crp(f ~imp; J, )=g crp(f ~i,Kepi; J, )
K, /

4m uk'
3(2'+ 1)

1 =P
z+ie —E i n 5(z E—)—

&&2 I &r J «pl J.IIDII1'f~f & I' (46)

i rr5-(z—E), — (43)
I

and the multichannel Fano line-profile parameter s

(2J.+1)&1'.J.flDflr fJf &

~X &1' J.IIII~ll)'J «pl J.&&) J «pl J.ffDII)'IJI&
K, l

(47)

The reduced matrix elements in the denominator of Eq.
(47) determine the partial-wave components
A, (a ~i,Kepi) and cr„(f~i,Kepi; J, ), respectively.

The diagonal component of the Careen's operator ex-
pressed by Eq. (33) reduces in the pole approximation to

M„(a~f)
[(a,O

I
G(z)

I
a, O)] '=z —E, +

z

iA
A, (a ~imp )a

'P(z) = 1+0(a,f)crp(f ~i E;J, )

Q flu ~f+ l

a02 2m E~ 2J, +l
(49)

It is now advantageous to express the multichannel Fano
line-profile parameter QI as a sum of partial-wave contri-
butions according to the relationship

A„(a~f) 1—iA 1

(48)

where the continuum-continuum coupling parameter is
now given by

because the squares of the partial-wave contributions are
simply given by

Qy(K, l) =
A (a~i,Kepi)Q(a, f)crp(f~i, Kepi;J )

(51)
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The shift 5, and width I', of the autoionizing level
produced by the interaction Hamiltonian may be defined
by

The autoionization and radiative decay probabilities can
now be expressed in terms of one-dimensional energy in-
tegrations in the forms

[(a,O~ G(z)
~

aO)] '=z —E, —b„+iI', /2 . (52)

fiA, (Kl)
P, (a~iE&)= g 2m'0

A,

A~ (K,i )Qf (K,1)

A,1+2
Ir't A, a'(K', l') Qf (K', I')

A,

A, (K, l)Qf(K, l )Qf

2

~ ~

de
(E E, ——b,,+i I', /2)(Ep E, ——b,, i 1—, /2)

(53)

and

AA„] dEkP(a~f)= 1+ ~ fQf~ (Ek E, b—,, +iI, /2)—(Ek E, —b—,,—iI g/2)
(54)

ere only the quantum numbers specifying the partial-wave components are indicated explicitly in the decay rates.
~ith the reasonable assumption that E, +6, is much greater than I, /2, the energy integrations in Eqs. (53) and (54)

can be evaluated by completing the corresponding complex lntegratlon along the contour shown ln Flg 2 The integral
along the semicircle vanishes in the limit R ~ oo and the integral from —R to the appropriate threshold energy can be
neglected in comparison with the contribution passing near the poles at z =E,+b,,+ iI, /2. Using the Cauchy integral
formula for the residue in the upper half of the complex plane, the energy integrations are given by the contour integral
which is evaluated as

dz

(z E, b,,+iI—, /2)(z E—,—6, iI,—/2)—
2&

RA„(a~f)
fiA, (a~i@&)+ 1 —

2q/ Q2

All previous treatments of the effects of autoionizing levels in low-density plasmas are based on the traditional expres-
sions for the Auger and fluorescence branching ratios, which are given for the two-level atom model by

and

A, (a~i ez )
P, (a

~i@~~)

=
A, (a~i@&)+A„(a~f)

A„(a~f)P„(af)=
A, (a~i@~)+A„(a~f)

(S6)

After introducing the effective decay rates

A, (a +ice) —
z

'2'PA„(a —&f) 1 A„(a ,+f)—
A~(a ~i e&) = 4 —

z +(qj —1) 1+
Qf A, (a ~ie„) Qf A, (a ~i e~ )

(58)

and

A„(a~f )
A„(a—+f)=

O' Qf
(59)

the branching ratios in the presence of the final-state in-

teraction, which will now be denoted by P, (a ~i e ) and
P„(a~f ), may be expressed in the identical forms as

and

P, (a~is&) = A, (a ~i@&)

A, (a ~iez )+A, (a ~f )
(60)

E~ + h~ —i 18/2

A, (a~f)P„(af)=
A, (a vie~)+A„(a~f—)

For the case in which the continuum-continuum cou-

FIG. 2. The contour used for the evaluation of the energy in-

tegrations occurring in the expressions for the autoionization
and radiative decay amplitudes.
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pling involves only a single term in the partial-wave ex-
pansion for the electron-continuum state, the expressions
[(58) and (59)] for the ef'fective decay rates in the presence
of the final-state interaction may be reduced to the results
obtained by Armstrong, Theodosiou, and Wall and by
Haan and Cooper. In the more general case described
by Eqs. (50) and (51) for the multichannel Pano line-
profile parameter, the Auger and fluorescence branching
ratios will contain terms corresponding to the interference
between different partial-wave components in the
electron-continuum expansion. An analogous interference
phenomenon occurs in the expression for the asymmetry
parameter which describes the angular distribution of
electrons ejected in electric dipole photoionization process-
es. Finally, the total width I „which is given by twice
the imaginary part in Eq. (48), reduces to 1/'P times the
total width obtained in the absence of the continuum-
continuum -coupling, in agreement with the result ob-
tained by Haan and Cooper. They demonstrate that this
reduction in the total width is not an indication of any
violation of the unitary condition, which involves integra-
tions over the entire range of the continuous energy vari-
ables. They emphasize that the reduction applies only in
the energy range in which the pole approximation is valid
and not over the entire continuum.

B. Multichannel electron and photon continua

Before investigating resonant contributions to inelastic
electron collisions and dielectronic recombination process-
es in plasmas, it will be necessary to further extend the re-
sults obtained for the Auger and fluorescence yields to the
most general case in which the autoionizing state

~

a ) can
undergo spontaneous radiative transitions into a set of fi-
nal atomic states

~ f ) or can autoionize into a set of states
~i ) of the residual ion. All these states may consist of

degenerate magnetic substates. Since these generalizations

have been considered by Armstrong, Theodosiou, and
Wall for the case of a single electron-continuum
partial-wave component, it will be sufficient to briefly
present the results which are obtained by the appropriate
extensions of the theory described in Sec. II.

For the case of several photon-continuum states
I f, k&A, ), the continuum-continuum coupling parameter

is given in the pole approximation by

4=1+QQ(a,f)cd(f~i ez,'I, ),
f

(62)

and the Fano line-profile parameter QI for each final
atomic state

~ f) is given by Eq. (47). The Auger and
fluorescence branching ratios in the presence of the final-
state interactions are now obtained in the forms

A, (ais&)
P, (a~i@&)=

A, (a~i'~)+g A„(a~f)
f

A„(a~f)P„(a~f)=
A, (a~i@~)+g A„(a~f')

f'

(63)

(64)

and

When the continuum-continuum coupling involves only a
single partial-wave component in the expansion of the
electron-continuum state, the effective decay rates are
given by

A, (a —vie~ )
A, (a~i@~)=

gp2

A„(a —+f)
X 1+

A~ (a ~i cz ) & Q~

A„(a~f )A„(a~f)=
gy2

2'r

1, + 1+ 1 A„(a &f') QI —QI. —
Q& A, (a~i@ ) &, Q& Q&.

(66)

q'=1+Q(a, f)g cd(f ~gg, ;y, ), (67)

which involves a summation over all open electron-
continuum channels with total angular momentum J, .
The corrected expressions for the-Auger and fluorescence
yields now have the forms

For the case of several electron-continuum states
~

i p;m„O), the pole approximation for the continuum-
continuum coupling parameter becomes

For the case in which the continuum-continuum coupling
involves only a single term in the partial-wave expansion
for each electron-continuum state

~

i p; m„O), the effec-
tive decay rates are given by

A(a -+iE; )
A, (a —vie;)=

gp2

X 1+g Q(a,f )cd (f~j g. ;J, )
' 2

and

A, (a +i@;)—
P~ a~le;)=

QA, (a~i'e; )+A„(a~f)
l

A„(a~f)
P,(a~f)=

QAg (a ~i E; )+A„(a~f )

(68)

(69)

A„(a~f )2

QgA, (a~i', )

A, (a ~f)
A, (a~j e, )= '

2 Q(a,f)cd(f~j e ) 1+
f

forj &i,

(70)
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A, (a f)
A„(a—+f)= 1+

ipse

Q
(72)

where i now refers to the resonant continuum channel ob-
tained from the prediagonalization of the electron con-
tinua described by Pano.

Cq»(l E( ~a ) = ( VqcTq»(if; —+a ) )q„

3 3 3 /2 2J~ + I E~
2(2J;+ 1) kii T,

3/2

Xexp A (
'

) (7&)
kBT,

C. Resonant electron-impact excitation
and dielectronic recombination rates

The branching ratios obtained in Secs. III A and III 8
describe the autoionization and spontaneous radiative de-
cay of an atomic system prepared in an unstable state. In
order to obtain the collision rates and spectral line intensi-
ties associated with the decay of virtual autoionizing
states of atomic systems in plasmas, it is necessary to take
into account the scattering mechanisms by which these
states are prepared. Although photoexcitation can be-
come important in intense radiation fields, autoionizing
states in plasmas are excited predominantly by electron
collisions. In the isolated-resonance approximation, in
which the width is assumed to be small compared with
the energy difference between adjacent levels, the evalua-
tion of the scattering matrix for the resonant electron-
collision processes according to the procedure described
by Goldberger and Watson leads to the Breit-%'igner
one-level resonance formula. When the predominant con-
tribution to the resonant scattering cross section is associ-
ated with a single, long-lived, virtual state, the resonant
cross section can be expressed as the product of the excita-
tion cross section and the branching ratio for the ap-
propriate decay channel.

In the dielectronic recombination process the autoioniz-
ing state ~a) is excited by the radiationless electron-
capture process which corresponds to the inverse of au-
toionization. If the rate coefficient describing the radia-
tionless electron capture is denoted by C»(ie;~a), the
dielectronic-recombination rate coefficient, which gives
the photoemission rate per unit volume and electron den-
sity, is simply given in the isolated resonance approxima-
tion by

&DR(«; ~a ~f ) =C,»(is; ~a )P„(a~f), (73)

CR(ie;~a~jp. )=C, z(iE;~a)P (a~j E ) . (74)

For a plasma in thermal equilibrium, the radiationless
capture rate coefficient, which is defined as a Maxwellian
average of the corresponding capture cross section
o.„~(ie;~a), can be obtained from the autoionization rate
A, (a~is;) in the presence of the final-state interaction
by means of the detailed-balance relationship

where P„(af) is the fluorescence yield in the presence
of the fina&-state interaction. The resonant contribution
to the electron-impact excitation rate coefficient is ob-
tained from the Auger branching ratio P, (a~jr )for.
J»by

An additional production mechanism is the electron-
impact excitation of the transition b —+a from the bound
state

~
b) of the atomic system. If the electron-impact

excitation rate coefficient is denoted by C,(b~a), the
corresponding photoemission rate coefficient is obtained
as

C, (b~a~f)=C, (b~a)P„(a~f) . (76)

If the fluorescence yield in Eq. (76) is replaced by the
Auger branching ratio P, (a~is;), the resulting expres-
sion gives the resonant contribution to electron-impact
ionization, which corresponds to autoionization following
inner-shell excitation. The evaluation of the collisional
excitation rate coefficient C,(ba ) in the presence of the
final-state interaction is easily accomplished in the Bethe
approximation

3~2 2J, +1 ao
C,(b~a)=

3 2Jb+1 a

EH
)&A„(a~b)

B e

'3 2
Ea

b,E(a ~b )

b,E(ab)

(ln4)exp
v3
2m

b,E(a ~b)
kBT,

bE(a~b)+
L

(77)

which involves the spontaneous emi'ssion rate A, (a ~b )

for the electric dipole transition a —+b.
If the number densities of ions in the state

~
i ) and of

atomic systems in the state
~

b ) are denoted by N(i) and
N(b), respectively, the total dielectronic satellite line in-

tensity I(a~f) produced by both radiationless electron
captures and inner-shell excitations may be determined by
the evaluation of

I(a~f) =/N(i)Ne~DR(i~; ~af)
+QN(b)N, C,(b~a~f), (78)

where N, is the electron density. It should be emphasized
that the theory of the satellite line intensity in the pres-
ence of the final-state interaction has been developed in
the low-density corona-model approximation, in which all ..

excited states in a plasma are assumed to decay only by
autoionization or spontaneous radiative emission and all
collisional deexcitation processes are ignored. However,
the traditional theory of dielectronic satellite line intensi-
ties' in the absence of the final-state continuurn-
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continuum interaction has been extended to incorporate
electron collisional transitions between the autoionizing
levels. Finally, the total recombination rates, which enter
into the determination of the corona-equilibrium charge-
state distribution, ' are obtained by summation of the first
term in Eq. (78) over all states

~

a) and
~ f ).

IV. CONCLUSIONS

In this investigation the traditional theory of resonant
electron-impact excitation rates and- dielectronic satellite
line intensities in low-density plasmas has been extended
within a framework of the isolated-resonance approxima-
tion to incorporate the interaction between the final con-
tinuum states which result from the autoionization and
spontaneous radiative decay processes. Particular em-
phasis has been given to the detailed treatment of the an-
gular momentum degeneracy of the atomic levels and to
the consequences of several partial-wave components re-
sulting from the expansion of the electron-continuum
state.

To place this investigation in a proper perspective, it is
necessary to identify the phenomena which cannot be
treated in the isolated-resonance approximation. Strictly
speaking, the autoionizing state and the adjacent non-
resonant electron continuum should not be treated as
separate states. Consequently, the distinction between the
direct or nonresonant, radiative recombination process and
the dielectronic recombination process is in some respects
artificial. The two recombination mechanisms are treated
in a unified manner in the investigations carried out by
Shore and by Davies and Seaton, who evaluate the
scattering matrix for the complete collision process in-
volving the capture of an incident electron by the ion ac-
companied by the emission of a photon. The interference
between the transition amplitudes corresponding to radia-
tive recombination and dielectronic recombination which
is predicted by this unified treatment is also included in
the modified expression for the dielectronic recombination
rates obtained in the present investigation. The modifica-
tions to the conventional expression for the dielectronic
satellite intensities may be interpreted as terms corre-
sponding to this interference together with radiative
corrections to the dielectronic recombination process.
This interpretation is schematically illustrated for the
two-level atom model by the Feynman-type diagrams in
Fig. 3, which show how the modifications to the transi-
tion amplitude can be represented by virtual interactions
between the autoionizing state and the nonresonant elec-
t'on continuum together with virtual emissions and reab-
sorptions of a photon. For small values of the Fano line-
profile parameter Qf the nonresonant radiative recom-
bination process is expected to play an important role, and
its contribution must then be included to obtain the total
recombination rates and intensities of photoemission.
However, the validity of the pole approximation employed
in this investigation may be questionable for small values
of g~. In order to ensure that the interference between
the resonant and nonresonant processes is taken into ac-
count completely, it may be necessary to adopt the ap-
proach based on the evaluation of the scattering matrix.

FIG. 3. Feynman-type diagrams representing the convention-
al amplitude for dielectronic recombination (a) and modifica-
tions [(b), (c), and (d)] due to interference with radiative recom-
bination and radiative corrections.

Perhaps the most difficult situation, which cannot be
treated by the theory developed in this investigation, arises
when it becomes necessary to allow for strongly overlap-
ping resonances, i.e., autoionizing states whose widths far
exceed the energy-level separations. Such a situation must
u1timately occur in the dielectronic recombination process
originally described by Burgess. ' This process is viewed
as proceeding predominantly through capture of electrons
into highly excited nl states, for which the autoionization
rates as well as the energy-level separations decrease as
n . However, the dominant radiative decay rate, which
corresponds to an inner-electron transition, is independent
of n It is the.refore apparent that the spontaneous radia-
tive emission process acting alone wiH eventually cause
these resonances to strongly overlap. The description in
terms of virtual autoionizing states in this situation does
not obviously lead to any enhanced understanding of the
electron-ion recombination process, and an entirely dif-
ferent approach may be required. Prior to the develop-
ment of an entirely new theory, it appears worthwhile to
evaluate the radiative corrections to the conventional ex-
pression for the dielectronic satellite line intensities and to
make a comparison with the observed spectral intensities
from laboratory and astrophysical plasmas. This investi-
gation is now in progress, and the results will be report-
ed."
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