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Annihilation kinetics in the one-dimensional ideal gas
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We consider the annihilation reaction A +3 —+0 on the real line with an initial equilibrium distri-

bution of particles 3 (points or rods); the particles move freely before annihilating, with independent

initial velocities. For the dichotomic distribution of velocities P(v =c)=1—P(v = —c)=p, we

determine the fraction S(t) of particles surviving at time t: (1) If p = 2, S(t)-t ' by a central-

limit effect; (2) if p& 2, S(t)-
~
2p —1

~

+At ~ exp( Bt) with —known constants A and B. We

also determine the asymptotic spatial distribution of surviving particles. From these results we

derive some bounds on the decay of S(t) for other velocity distributions, and we compare them to
the decay of S(t) for diffusive (Brownian) motion.

I. INTRODUCTION II. THE MODEL

The dependence of chemical kinetics on the motion of
the reacting particles has recently attracted much atten-
tion, with the discussion of geometrical and dimensional
effects on diffusion-limited reactions in various media. '

As one assumes in these papers that particles move at ran-
dom before they interact, it seems desirable to determine
also how the laws of motion influence the space-time evo-
lutions of the species concentrations. In this article we ex-
amine the case of free motion for point particles on the in-
finite line, with annihilation kinetics A +A~0; the dif-
fusive analog of this model was solved analytically by
Torney and McConnell.

Starting from an initial equilibrium state, in which par-
ticles, uniformly distributed, have independent velocities
with a common distribution F(u), and assuming that par-
ticles immediately annihilate when they meet, what will
be the fraction surviving at time t, S(t), and what (non-
equilibrium) measure will describe the gas at this time?
We discuss these questions for the two-velocity case

F(u)=qX(u & —c)+pX(u &c), q =1—p

with the characteristic function g(A) =1 if A is true and
X(A }=0 otherwise.

The model is elaborated in Sec. II. In Sec. III we calcu-
late the surviving fraction and the asymptotic spatial dis-
tribution of surviving particles for an initial Poissonian
distribution in space. These results are generalized in Sec.
IV to an arbitrary initial spatial distribution with the
renewal property (see Sec. II) and to the case of rodlike
particles. In Sec. V we use our results to derive (poor) in-
equalities for the case of general velocity distributions, but
no exact estimate is obtained for the decay of S(t). Con-
clusions are stated in the final section. We treat the
mean-field analog of our model in Appendix A.

At initial time, particles are distributed on the real line
with positions xk and velocities Uk, their label indicating
their order. The positions have a Poissonian distribution
with density o. and the velocities are independent. This
initial distribution forms a rene'/ process, viz. the whole
distribution to the right of particle k is independent of the
whole distribution to its left, and this renewal process is
translation invariant (thus homogeneous). As particles
cannot cross each other s trajectories, this remains true
during the annihilation process, and the distribution to the
right of a surviving particle (k) is completely character-
ized by the distribution function

Q(x, u, t u')=P(xz ~,~(t) xk(t) &x a—nd uz„~,~&u
~

uk &u'}

for the distance x and velocity u of the first neighbor (at
time t) to the right of a particle moving at a smaller velo-
city than u'. Here Rk(t) is the index of the first surviving
particle to the right of particle k, and xk(t) =xk+ ukt. Of
course Q vanishes if x &O.

At initial time

Q(x, u, O
i
u') =Go(x)F(u),

where Go(x)=P(xk+t —xk &x) and F(u)=P(uk &u) At.
later times, other functions of interest (derived from Q)
are the suruiua/ probability S(t;u) for particles with given
velocity u, and its average S(t)= f" S(t;u)aF(u). In
our case, S(t) completely determines S(t;+c) by the sum
rules

pS(t;c)+qS(t; —c)=S(t),
pS(t;c) qS(t; —c)=p —q . —
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N.B., by symmetry, we need only to consider the cases

p ) 2 through the computations.

III. THE POISSONIAN CASE

A. Annihilation dynamics

With the dichotomic velocity distributio~, a particle,
can annihilate only a particle moving with the opposite
velocity. Thus, if particle k=0 has velocity Uo

——c, it an-
nihilates with a particle k' coming from its right; and all
particles between them must already have disappeared.
%'e decompose the evaluation of the survival probability
S(t;c) into two operations.

If particle k=O has velocity c, denote by ak the proba-
bility that it finally annihilates with particle k(&0). As
ak =0 if k is even, let aq„+~ qb„:——b„ is the probability
that all particles (1&k &2n) annihilate each other, with
bo ——1. But the particle k=1 annihilates the particle
k =2m with probability pqb ~. Summing over all pos-
sibilities (m=1 to n) gives a recursive relation for b„,
n)1,

n —1

b„= g p(qb )b„

Introducing the generating function

B(s)= g b„s"
n=0

yields

1 —V 1 —4pqs „(2rt)!
2pqs

' " n!(n + 1)!
The final survival probability for a particle with veloci-

ty c and the average surviving fraction are thus
I

For short times, S(t)=. 1 2—pqoct+, while for long
times it decays to

~ p —q ~

.
If p = —,', the integral is calculated analytically and

shown in Fig. 1:

S(t)=S(t;+c)=e "[Io(2crct)+I~(2oct)] .

The asymptotic empty state is attained at an algebraic
rate:

S (t)=(~oct)

which can be motivated by a central-limit argument: S(t)
is grossly determined by the imbalance between particles
of the two "velocity species" in an interval of size 2ct; as
the initial distribution is independent, with density o, this
imbalance is of order (2oct)'~ for a population of order
2o.ct.

If p ) —,, the density of majoritarian particles does not
decay to zero, so that particles with U = —c more easily
find their annihilation companion (Fig. 2):

—2rcrct

S(t)—S(~)=(pq)' ' (oct)
8vrr

with r = 1 —2V pq . Note that, with the long-time
behavior of the annihilation rate —dS/dt being nonuni-
form with respect to p, this asymptotic form of S(t) does
not converge to the inverse-square expression as ~~0
(i.e., p~ —,

' ).
These asymptotic decays do not depend on the Pois-

sonian nature of the initial spatial distribution (see Sec.
IV): they arise from the purely combinatorial problem of
determining the annihilation companion s index k—its
actual initial position having expectation ko. and vari-
ance ko

B. The spatial distribution of surviving particles

S(oo.,c)=1—g qb„= '

n=0

Oifp& —,

(p —q)/p if p & —,
'

The distribution of particles at any time t forms a
renewal process in space, characterized by the functions

S(oo)=
~ p —q (

Annihilation for two particles separated by an initial
distance x occurs at t =x/2c. The survival probability
S(t;c) at time t is thus

0.8

S(t;c)= g a2„+&P (x2„+~
—xo & 2ct) o.e

and for the initial Poisson distribution

~ e
P(x2„+~ &x)= (oy) "crdy ."+ x (2n)I

Hence

2ct
S(t;c)=1 &q/p J e ~I—, (2~pq oy)0 3'

0.4

0.2

I

a-ct

with I& the modified Bessel function. The total surviving
fraction is

2ct
S(t)=1—2vpq J e rI&(2&pqoy)

0 3'

FIG. 1. Surviving fraction as a function of time in the bal-
anced case (p =

2 ). The dotted line corresponds to the rnean-

field model; the broken line to the Brownian motion of Torney
and McConnell (Ref. 3) with coefficient D =c/o. .
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0.8

g(x, c, oo, c)=— 1 dS
(t)

4qc dt
'

1/2
e

—O'X

x I)(2+pq crx) .

0.4

0.2—

I I

10

FIG-. 2. Surviving fraction as a function of time in the unbal-

anced case (p& 2 ). The dotted line is the mean-field solution;

the broken-dotted line is the asymptote. This function also
determines the asymptotic spatial distribution (Secs. IIIB and
V).

Q(x, u, t
~

u'). With the dichotomic distribution F(v) we
prefer the densities

g(x, u, t;u')

p(xRk(t)(t) xk(t) +x and uRk(t)=v I
uk=v')

for the two velocities u'=+c. Of course, g=O if x & 0.
The initial spatial distribution has no correlations:

g (x,c,O;uo ) =pere

g (x, —c,O;uo) =qoe

for both values of Uo. If the spatial distribution remained
Poissonian, g(x, u, t;u') would exhibit the same form with
density oS (t) and probabilities pS (t;c)IS (t) and
qS(t;c)/S(t). This in turn would justify the mean-field
picture, which we show in Appendix A to be wrong.

The functions g(x, c, t;vo) can be determined by argu-
ments similar to those for S(t;c); here we shall only give
the asymptotic functions g (x, u, oo, v'). Then
g(xr~ur~ oo~uo) =0 for any xr~ur~uo if p = —,'.

For p ~ —,, g (x, u, oo, —c) is irrelevant and

g(x, —c, oo', c)=0: the first right neighbor of particle 0
(with vo ——c) at t = oo also moves at c. Now, particle k
becomes the first right neighbor of particle 0 at t = ao if
and only if it survives and all intermediate particles an-
nihilate:

For this spatial distribution:

cr(x) =(p —q)

cr (5x ) =(p —q)

The average interparticle distance at t = ao must be the
inverse surviving density. The variance (5x ) indicates a
departure from the Poissonian distribution inversely pro-
portional to the imbalance p —q. Indeed the chances for a
particle to survive are enhanced if it is preceded by parti-
cles with the same velocity: this larger variance denotes
the presence of clusters and holes in the asymptotic distri-
bution of comoving (surviving) particles.

IV. OTHER INITIAL CONDITIONS

Our combinatorial arguments apply equally well to any
distribution of the initial interparticle distances, provided
the spatial distribution remains a renewal process:

g (x,c,O; vo ) =h (x)p,

g (x, —c,O;uo) =h (x)q,
I

for uo ——+c. Actually h (x) and g may even be singular as
long as h(x)dx defines a probability measure on [O, oo],
with a finite expectation x=«r '. We denote by H(w)
the Laplace transform of h:

H(w)= f e "h(x)dx .

The surviving fraction is then
2ct

S (t) = 1 —f h (x)dx

and the asymptotic spatial distribution is

h(x)
g(x, c, oo,'c) =

2g

where h has the generating function

00 1 —1 —4 H''"
H(w) = g 2pqb„H "+'(w) =

n=0 H

The moments of h(x) and its behavior for large x are de-
duced from this expression in Appendix B. In particular,
the asymptotic decay of S (t) assumes the same form for
any initial distribution h (x):

if p = —,': S(t)=(~act)

P(Ro( oo ) =k) = S(oo,c) p
S(oo,'c) q if p) —,': S(t)=~p —q ~+

47Tr c t

1/2
—2ract+. . .

where we divided by the survival probability of particle 0
which conditions the statement. Moreover, the distance
between the particles moving at c is constant and equals
2c times the time it would have taken them to annihilate
if they had had opposite velocities:

with h-dependent constants o, a, and r. This was expect-
ed since the asymptotic decay of S (t) mainly depends on
the combinatorial properties of the initial distribution of
left- and right-moving particles.
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Extending our results to hard rods is formally trivial.
Let d be the diameter of the rods and g(x, u, t;uo) be the
center-to-center spatial function. Then g (x,u, t;uo) and
the initial function h(x) vanish if x &d. On the other
hand, annihilation is assumed to occur immediately on
contact:

2ct +d
S (t) = 1 —f h (x)dx,

where h is the same function as for d=0. For an initial
Poissonian distribution (with the excluded volume effect
x =o '+d):

h(x)=oe '" "' X(x &d),
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—UJd

H(w)= 1+w/o.

H (w) = 1+—e""—
0

1+— e "—4pq
W

I /2

APPENDIX A: THE MEAN-FIELD EQUATIONS

The macroscopic analog of our model is a two-species
annihilation kinetics described by two densities n+, n
with the rate equations

For any renewal initial distribution with finite expecta-
tion, the decay of S (t) is clearly the same as for the point
particles —up to a shift of t by d/2c.

V. NONDICHOTOMIC VELOCITY DISTRIBUTIONS

For a general velocity distribution, the annihilation
companion cannot be determined by our combinatorial ar-
guments. But we can use them to derive estimates of the
annihilation rate: if the velocity distribution function
F(v) is such that P(uoc &u &uo+c)=0 for some uoER,
c ~0, let

p =p(v &uo+c), q =p(u &uo —c) .

The annihilation proceeds more slowly for the dichotomic
distribution F2 with parameters c and p = 1 —q than for
the actual distribution F. Therefore

U —C0f S~(t;u)dF(u) & qS~ (t; c), —

f S~(t;v)dF(u) &pSF (t;c),
0

S~(t) &SF,(t) ~

ri +(t) =ri (t) = cn+—n

and the rate constant c. These densities play a role simi-
lar to opS(t;c) and oqS (t; —c) and may be considered as
a mean-field description of our model.

With the initial conditions n+( 0)= opand n (0)=crq,
one finds if p~ —,',

n+(p —q)o
2

pe Zcrct (p —q) +
n (t) =o(p —q)

and 1f p= —,',

0cI;+2
These expressions have the same asymptotic values as

opS(t;c) and crqS(t; —c), to conform with the sum rules,
but they decay at faster rates because no retardating effect
(such as cluster formation) is admitted in the mean-field
picture. In a mean-field system, the spatial distribution
would always be Poissonian, with decaying densities
n+(t).

The case of continuous distributions is, however, not
covered by these considerations.

VI. CONCLUSIONS

For the dichotomic distribution with p = —,, the surviv-

ing fraction decays asymptotically like t ' as it does
when the particles have a Brownian motion. But here the
decay results from a central limit effect, while in the dif-
fusive case it would rather be related to the scaling con-
nection of lengths with time. Furthermore, the asymptot-
ic decay proved very sensitive to the actual velocity distri-
bution, exhibiting an exponential behavior for p& —,. A
further study of nondichotomic (especially continuous)
velocity distributions is very desirable to complete our
understanding of these one-dimensional reaction dynam-
1cs.

APPENDIX 8: ASYMPTOTIC BEHAVIORS

The asymptotic evolution of the surviving fraction S(t)
and the density h(x) are determined by the small-w
behavior of the Laplace transform H(w). Since
x= xh(x)dx & oo, one has

0

H(w)=1 —xw+o(w) .

If p = —,', elementary algebra yields

H(w) =1—(xw)' +o(w)'

with o-=x —'.
For p & —,', the asymptotic behavior of S(t) depends on

the branch-point singularity of H located at m =r:
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H(w) =V 2pq —(8pqa)'~ (w r)—'~ +o(w r)—'~

where r and a are such that

H(r)= 1

2 pq

2v'pqH(w) = l —a(w r)+—o(w r)—.

The moments of the asymptotic spatial distribution
g(x, c, oo', c), i e., the derivatives (x")=H'" I( 0)/2q, are
easily expressed in terms of x"=H'"'(0) = x "h (x)dx:

0

(x)=
s' —q

X —X
( 2) ( )2 x —x 4pq

p —q (p —q)

The relation between H and H makes clear that the
asymptotic moment (x") exists only if the initial moment
x" does.
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