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We study the universality behavior and scaling property associated with an arbitrary M-furcation
fixed point in a one-dimensional iterative map. We use both the direct-search method and the
renormalization-group method to evaluate the fixed-point function f (x) and the universal con-
stants a and 6. The agreement between these two methods is very satisfactory. The basin of attrac-
tion off (x) forms a nearly self-similar Cantor set. We use this approximate self-similarity proper-
ty to compute the capacity and the information dimensions of the attractor. We summarize M-
furcation results for all M (7 basic cycles in several tables.

I. INTRODUCTION

The one-dimensional iterative map'

x„+~ f(x„)——
forms the simplest deterministic system which gives rise
to chaotic behavior. It also reveals many interesting
phase-transition phenomena as the system becomes chaot-
ic. ' In addition- to its rich structure, the iterative map
also appears naturally in many branches of physics such
as condensed matter physics, fiuid physics (turbulence in
particular), accelerator physics, and others.

Transition to chaos is one of the outstanding problems
in turbulence. Many processes appear to be important as
a fiuid on its way to chaos: onset of instability, period
doubling, quasiperiodicity, period locking, intermittency,
etc. Some of the processes involve several relevant degrees
of freedom and are intrinsically multidimensional. These
multidimensional behaviors cannot be imitated in a one-
dimensional map. On the other hand, we can understand
certain aspects of the period-doubling and the intermitten-
cy phenomena by studying one-dimensional map. Feigen-
baum has investigated the universality behavior of period
doublings in one-dimensional. maps. Loosely speaking,
intermittency describes the fact that the total volume oc-
cupied by the small vortices goes to zero as the vortex size
goes to zero. Empirically, the space occupied by these
small vortices can be described as a fractal with a fractal
dimension -2.5. If we look at a given volume in a fluid,
the vortices will appear and disappear intermittenly. Hy-
drodynamics intermittency described above occurs for a
range of parameters. In a one-dimensional map (1D), "in-
termittency" describes the short interruptions of an other-
wise approximately periodic behavior. Instead of appear-
ing for a continuous range of control parameter, the inter-
mittency in a 1D map occurs only near the onset of
tangent bifurcations. The other aspect of the hydro-
dynamics intermittency, namely, the realization of a frac-
tal, also occurs in the one-dimensional iterative system:
As we change a control parameter in f (x), the system can
go through a sequence of M-furcations and become chaot-
ic (Feigenbaum-type transition). At the transition point,
the basin of attraction also becomes a fractal. The analog

described here. is very crude. The fractal attractors in 1D
maps occur only at isolated (but infinite in number) pa-
rameter values while, as mentioned earlier, the hydro-
dynamics intermittency occurs over a range of control pa-
rameter. This difference is probably related to the fact
that we work on a 10 system. Nevertheless, we hope
that, by studying the fractals in 1D maps, we may gain
some insights for understanding the fractals in the hydro-
dynamics intermittency.

In this paper, we present a systematic study of all one-
dimensional M-furcation transitions and their associated
attractors with basic cycles M (7. %"e obtain the critical
exponents both numerically, and by renormalization-
group calculations. We also obtain the fractal dimensions
associated with these attractors. It is our hope and expec-
tation that a thorough study of the simple system will
teach us how to handle real turbulence in the future. A
summary of our results has appeared previously.

In Sec. II we give a review of Feigenbaum universality
behavior associated with bifurcation, and then extend it to
include arbitrary M-furcations. In particular, we work
out the trifurcation in details. In Sec. III we study the
behavior of an M-furcation transition by a direct numeri-
cal search of the associated M"-cycles. In Sec. IV we ob-
tain the universal behavior of M-furcations by
renormalization-group calculations. It is pleasing to see
that the results in Secs. III and IV agree perfectly with
each other. In Sec. V we compute the fractal dimensions
associated with the M-furcation attractors. We include
some of the technical results in the Appendixes.

II. UNIVERSAL BEHAVIOR ASSOCIATED
WITH AN ARBITRARY U SEQUENCE

Metropolis, Stein, and Stein discovered the universality
of the U sequence for single-hump one-dimensional
maps. ' Feigenbaum made the important discovery that
all single-hump one-dimensional maps with quadratic
maxima have the same universality behaviors near the in-
finite bifurcation (2"-cycle) limit. " He showed that one
may understand this universal behavior quantitatively by
a renormalization-group analysis. %'e can summarize
some of the important behaviors as follows.
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(1) The U sequence' P„ for a 2"-cycle can be defined
iteratively via the e product' as

Pn+i=Pn+R =—Pn Q'Pn (2.1)

where Q=R or L depending on whether the number of
R's in P„ is even or odd. We may express P„symbolical-
ly as R(eR)"

(2) The control parameter a„associated with the 2"-
cycle approaches the limit a geometrically, i.e., at large
n, we have

a„=a „+const/5" (2.2)

or

an +n —15= lim
an+i —&n

=const . (2.3)

For the bifurcation sequence, 5=4.669202 is a universal
number, but a is not.

(3) We choose the parametrization f(x) of the map
such that it has its peak at x =0. Then, the function

f„(x)=—f„,of„,=f
at a„ is self-similar near x =0 at large n. Indeed, for a
properly chosen scaling factor

a = —2.502 908,

the limit

(3.1) to be studied in Sec. III. The advantage of the
present form is that the quadratic term has a fixed coeffi-
cient. We can see the tangent bifurcation even in the basic
1-cycle. Map (2.9) has no basin of attraction for a & 0.25.
At a =0.25, the map develops a tangent bifurcation for
the basic 1-cycle [Fig. 1(a)]. As a decreases, this basic 1-
cycle goes through the superstable stage at a =0 [Fig.
l(b)], becomes unstable at a = —0.75, and is followed by a
sequence of bifurcations. As we increase —a further, we
go through an infinite number of different cycles and fi-
nally becomes a single chaotic band at a = —2 [Fig. 1(c)].
Beyond a = —2, there are no more stable attractors. We
may view this whole region, —2 & a &0.25, as the window
of stability associated with the l-cycle.

Within this 1-cycle window, a 3-cycle window appears
and disappears. Other than the bifurcation phenomena,
the 3-cycle window is probably the most dominant feature
of the single-hump map. The easiest way to see the 3-
cycle window is to look at the map f (x). In Fig. 2 we see
the tangent bifurcation at a = —1.75 signaling the first
appearance of 3-cycles [Figs. 2(a) and 2(b)], the super-
stable 3-cycle at a = —1.754 878 [Figs. 2(c) and 2(d)], and
three chaotic bands at a = —1.790327 describing the end
of the 3-cycle window [Figs. 2(e) and 2(f)]. We can see the
similarity between the 3-cycle window and the original 1-
cycle window.

(2.4)

exists and obeys the functional relation

af' (x/a)=f (x) . (2.5)

The function f'(x) is unique up to a trivial scale transfor-
mation, and is independent of the detailed behavior of
f(x). We usually fix the scale of f'(x) by f*(0)= l.

(4) In the neighborhood of the universal function f*, (a)

f(x) =f*(x)+5f(x),
the operation of (2.5) gives

~f'(x/a) =f'(x)+5f'(x),
where 5f' is related to 5f via

5f'=A5f+&((5f)') .

(2.6)

(2.7)

(2.8)

2=x„+,= —a —xn= f(xn) . (2.9)

To within a trivial scaling, map (2.9) is identical to map

Of all the eigenvalues of A, only one eigenvalue has a
magnitude larger than 1. This eigenvalue is 6. All other
eigenvalues have magnitudes smaller than 1. According
to critical phenomena terminology, these other eigendirec-
tions are irrelevant. One can use relations (2.5)—(2.8) to
compute f*,a, and 5.

To see the generalization of Feigenbaum universality
behavior from a bifurcation sequence (2"-cycles) to an ar-
bitrary M-furcation sequence (M"-cycles), we work out
the period tripling in details. For definiteness, we consid-
er the map

(c)
FIG. 1. Window of stability for map (2.9). (a) First appear-

ance of stable 1-cycles through a tangent bifurcation at
a =0.25. (b) Superstable 1-cycle at a = —0.75. (c) Chaotic
band at a = —2 describing the end of the 1-cycle window.
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an odd number of R. We can write down the U sequences
and the parameters a„associated with the superstable 3"-
cycles of the trifurcation series as
3 RL —1.754 877 666
9 RLLRLRRL =P2 —1.785 865 645
27 P2RP2LP2 =P3 —1.786 429 857

-81 P3LP3RP3 =—P4 —1.786440066

(b)
f (x)„

00 —1.786 440 255.
This sequence was first studied by Derrida et al. As we
have shown in Figs. 1 and 2, this sequence is self-similar,
and gives a Feigenbaum-type fixed point with a new set of
universal constants

a = —9.277 341,
5=5.524703 X 10'

and a new universal function f'(x) obeying

af"(x/a) =f*(x) .

(2.10)

(2.11)

(2.12)
(c) (d)

f (x)„
The factor a describes the scaling needed to bring f' (x)
into f*(x). A negative a indicates that the map f* is in-
verted. See Fig. 2 for a qualitative realization.

We can generalize all these properties to an arbitrary
M-cycle with U sequence U=S&S2 . SM &, S;=R or
L. To define M-furcation, we also need to introduce a
complementary sequence U by interchanging R and L in
U. The U sequence P„associated with the nth M-
furcation is U( e U)" ' which can be expressed iteratively
as

(e) (f)
FIG. 2. 3-cycle window of stability for map (2.9). (a) First

appearance of 3 cycles through tangent bifurcations at
a = —1.75. (b) Enlarged center part of (a). (c) Superstable 3-
cycle at a = —1.754878. (d) Enlarged center part of (c). (e)
Chaotic 3-cycle bands at a = —1.790327 describing the end of
the 3-cycle window. (f) Enlarged center of part of (e) containing
the middle chaotic band.

If we look carefully, we can see the 9-cycle window in-
side the 3-cycle window, the 27-cycle window inside the
9-cycle window, etc. Since there is only one 3-cycle in a
single-hump map, there are no ambiguities to find these
windows. However, when we search for M-furcation win-
dows associated with a 5-cycle or above, we need a more
precise description of these cycles and their windows.

A precise way to describe an M-furcation is through
the U sequence. In the case of trifurcation, the basic 3-
cycle has the U sequence U =RL. It is easy to verify that
the 9-cycle mentioned earlier has the U sequence
U=RLLRLRRL. We underline the L and R in the U
sequence to indicate that these form the U sequence of
f (x) as we observe the map every third time. Between
these observations, the Inap behaves approximately as the
original 3-cycle with U=RL. The sequence associated
with f (x), LR, is the original U sequence with L and R
interchanged. This interchange of L and R is due to the
fact that the map f near the center is inverted. Since
f'(x) (0 on the right of the peak, we always encounter the
inversion if the U sequence of the original map contains

Pn+i=Pn+ U

=P„QtP„Qq ' ' '
QM iP„, (2.13)

af™(x/a) =f'(x) . (2.14)

The scale parameter n is another universal constant which
is also the property of the particular cycle.

Perturbing around the fixed-point function f*, we ob-
tain a linearized equation as in (2.8). Just as in the bifur-
cation case, all but one of the eigenvalues of A have mag-
nitudes smaller than 1. We shall illustrate these proper-
ties in a renormalization-group calculation in Sec. IV.

III. NUMERICAL RESULTS OF DIRECT SEARCHES

In this section, we illustrate how to search for the su-
perstable cycles numerically for an S-unimodal map such
as

where Q; =S; or its complement depending on whether
P„has an even or odd number of R, respectively. We call
the original M-cycle with sequence U the basic M-cycle.
Given the basic cycle, we obtain all M-furcation se-
quences trivially.

In fact, all M-furcations converge to Feigenbaum-type
fixed points. The parameter a„associated with the M"-
cycle approaches a limit a„as in Eqs. (2.2) and (2.3).
The new universal constant 5 is the property of the partic-
ular cycle. Analogous to the trifurcation case, iteration
and scaling at a lead to a universal function f" which
obeys the functional relation



3794 SHAU-JIN CHANG AND JOHN McCOWN 31

x„+) f——(x„)= 1+ax„. (3.1)

We then obtain the limit point a, the universal constant
5, and a for all M-furcations with M (7.

By unimodal, we mean that the map is continuous and
has a single peak. The function f(x) is increasing on one
side of the peak and decreasing on the other side of the
peak. For an S-unimodal map, we require further that
the Schwarzian derivative of f(x) is everywhere negative.
For an S-unimodal map, there is at most one stable cycle,
and when such a stable cycle exists, the peak is always in
the basin of attraction. Following the images of the peak
under repeated mappings, we always approach the attrac-
tor. In analogous to a U sequence, we introduce a se-
quence of R and L according to whether the successive
rnappings of the peak are on the right or the left of the
peak. This sequence is called the kneading sequence of
the map. Following the kneading sequence, we can deter-
mine whether the map has a stable cycle or not. If such a
stable cycle exists, we can determine the U sequence of
the stable cycle.

Since there are a large number of M" cycles for a given
M and n, it is important to keep track of the U sequence
of the cycle to ensure that the cycle obtained is the correct
one. For map such as (3.1), the kneading sequence is
properly ordered according to the control parameter Q.

Thus, by comparing the kneading sequence associated
with an arbitrary parameter a and the desired U sequence
of a superstable M" cycle, we can decide whether the pa-
rameter a is larger or smaller than the desired a„. We can
then increase or decrease the parameter a by a proper
amount and repeat the search. We have written a pro-
gram to do this search automatically.

After we obtain the sequence a„, we can obtain a and
5 via

a~ —Q~6= lim
Pl —moo Q&+]—Q&

(3.2)

Q = llm
n~co

Qn + 15—Qn

5—1
(3.3)

To determine a, we need to iterate f(x)=—I+a x M"
times and obtain

a= lim (P„/P„+,) (3.4)

with

P„—:f„(0),
f (x ) f (x )

—fM tll( x)—

(3.5)

(3.6)

From f„(x), we can obtain the fixed-point function f*(x)
as

f*(x)= lim [f„(xP„)IP„]. (3.7)

IV. RENORMALIZATION-GROUP CALCULATION

Self-similarity of f(x) and f (x) near the M-furcation
limit point is important. It enables us to study the univer-
sality behavior of M-furcation from renormalization-
group calculations. As mentioned in Sec. III, the M-
furcation sequence leads to a fixed-point function f'(x),

f*(x)= lim [a"fn™(xla")].

Note that f*(0)= 1, and that P„cca" as n ~ oo. Hence,
f (x) defined here is the same one as described in Sec. II
with the desired normalization f"(0)=1. In Table I we
present a, a, and 5 for all basic M-cycles with M (7.
These exponents represent the exact numerical values.

TABLE I. Limit points a„and critical exponents 6 and a for all M &7 Feigenbaum attractors by
direct searches of M-furcations in the map x„+&——1+ax„.

Basic
cycle M

6
7
5
7
3
6
7
5
7
6
7

7
6
7
5
7
6
7

sequence

R
RLR
RLR
RLR'

RL
RL RL
RL RLR
RL R
RL R

RL 2R 2L

RL
RL RL
RL R
RL'R'
RL
RL R
RL
RL'

M-furcation
limit point a„
—1.401 155 189
—1.483 181 830
—1.575 982 795
—1.631 926 654
—1.674 812 389
—1.786 440 255
—1.781 216 806
—1.832 495 509
—1.862 224 022

— —1.884 886 087
—1.907 504 193
—1.927 202 424
—1.942 704 355
—1.953 736 536
—1.966 843 202
—1.977 191407
—1.985 539 529
—1.991 818 256
—1.996 383 246
—1.999096 124

4.6692
2.1841 X 10
1.4464 X 10'
2.5555 X 10'
2.2538 X 10'
5.5247 X 10'
2.1841 X 102

1.0170X 10
1.2871 X 10
2.2840 X 10
8.5078 x 10'
3.5306X 10
9.8160X 10
6.3629x 10"
2.8024 X 104

1.6716X 10
1.6931x 10'
4-8735 X 10
2.7913X 10'
4.5120X 10'

—2.5029
2.0929X 10'

—4.9166X 10'
—2.0128 X 10'

5.8627 X 10'
—9.2773

2 0929 X 10'
—1.3137X 10'

4.5804 X 10'
1.9154X 102

—1.1501X 10
—2.3009X 10
—3.8819X 10'

3.1710X 102

2.0759 X 10
—5.0393X 10
—1.6003 X 10

8.5818X 10'
—6.4794X 10'
—2.6026 x 10
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The fixed-point function f is self-similar under M itera-
tions,

f'(0) =1 (4.11)

af™(x/a)=f(x) . (4.1)

Just as in the bifurcation case described in Sec. II, we
have, in the neighborhood of f*,

a —1 fM(0) (4.12)

The universal behavior of an M-furcation sequence is as-
sociated with the fixed point of (4.3), namely,

(4.2) f*(x)=af™(x/a). (4.1)

f'(x) =af (xla) =f'+5f', (4.3)

5f'=A5f+O((5f) ), (4 4,)

where A is a linear operator.
In the linear approximation, further M-iterations give f(x)=1+a)x +a2x +a3x + (4.13)

To describe the functional dependence of (4.3), we need to
parametrize f(x) and f'(x) in (4.3) by a set of coeffi-
cients. Since the maps are self-similar near the peak
x =0, we use the Taylor-expansion coefficients as the
parametrization coefficients. In the following, we shall
restrict ourselves to even functions

f(n) af (n —l)M(x /a) fn +5f(n) (4.5)

f'(x) = 1+a ', x 2+a,'x ~+a 3x 6+ (4.14)

5f(n) A 5f (n —() An 5f (4.6)

5f =pc;U; (4.g)

and

(4.9)

Discussions given below are well-known in the critical
phenomena. The system with all

~

A,; ~
& 1 is noninterest-

ing: All f (x) in the neighborhood of f would converge
to f* under M-iterations. The eigenvectors v; with

~

A,; ~
& 1 are called irrelevant directions. The system with

5&1, but with all other
I
~

I
&1 has a umque

nontrivial direction U). After a large number of M-
iterations and ignoring terms A,,"., i & 2, we have

It is advantageous to introduce the eigenvectors U; of A,

(4.7)

as a set of basis vectors where A,; are the eigenvalues. Ex-
panding 5f as linear combinations of U;, we have

Equation (4.3) determines coefficients Ia ] as functions
of Ia; I.

In an actual calculation, we cannot keep an infinite set
of coefficients. We need to make some truncation. In
this paper, we keep only three coefficients a „az, and a3,
and ignore terms x and higher. As we shall see, this ap-
proximation gives very satisfactory results.

To obtain I a„' J, we need to evaluate f (x). We can ac-
complish this by repeated applications of

f(g (x) )=1+a ) [g (x)] + a& [g (x)] +a 3 [g (x)] (4.15)

with g(x) being f(x),f (x), . . . ,f '(x), respectively.
Knowing the coefficients of g (x) as

g(x)=bo+b(x +b2x +b3x + (4.16)

we can use (4.15) to obtain the coefficients of f(g(x)).
We have described an algorithm for computing these
truncated coefficients explicitly in Appendix A. With the
help of a computer, we can work out the coefficients of
f (x) and consequently those of f'(x).

In terms of the coefficient relations
5f'"'=c, 5"u) . (4.10)

a =f;(a),a2, a3), i =1,2, 3 (4.17)

f'(x) =af (xla),
where the scale factor a is chosen to give

(4.3)

Thus, all f (x) [or 5f(x)] with the same c) but with dif-
ferent c;, i &2 converge to the same iterated function
f'"'(x). As we shall see, all our fixed-point functions have
only one relevant direction and belong to this category.
For maps with a single control parameter a, cI is propor-
tional to a —a, and f'"'(x) depends asymptotically only
on (a —a )5. This is the origin of the Feigenbaum
universality and the convergence factor 5. The other
eigenvalues A,; (i &2) describe the convergent rate of
f'"'(x) to f*(x) at a„.

We are now in a position to carry out the renormaliza-
tion calculation explicitly. For definiteness, we scale the
map off(x) such that f(0)= 1. Its M-iterated map after
proper scaling is

we can express the fixed-point condition (4.1) as

aP =f; (a*),a 2,a 3 ) . (4.18)

For a given M, there are many fixed-point solutions.
However, we are able to reach the desired fixed points by
Newton's method starting from f= 1+a x .

In the neighborhood of a,*, we can expand 6a
=a —a,* as linear combinations of 6a; =—a; —a,*, giving

5a = 5aJ+O((5a) ) .
aj

(4.19)

By diagonalizing the matrix ()f;/Baj, we obtain three
eigenvalues X~, A,2, and A, 3. It is pleasing to see that, for all
fixed points that we have studied, only one (chosen as A, ) )
of the three eigenvalues is larger than I. We can identify
this relevant eigenvalue as 5. The fact that we only have
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V. FRACTAL DIMENSIONS

It is known that the basin of attraction associated with
a Feigenbaum fixed point forms a Cantor set. In the fol-
lowing, we shall describe briefly how to construct this
Cantor set geometrically. ' This construction provides us
with a method for computing the fractal dimensions effi-
ciently. '

CA

PI p&
I I

I

I I

B D

I
I'

I I

I I

I I

I I

I I

I I

I I

I I

CA

one relevant eigenvalue is responsible for the universality
behavior of M-furcation fixed points. In Table II, we
present for all M & 7 cycles the numerical results of I a;* I,
u, and 5. These exponents are only approximate because
we have truncated the Taylor series to include x or lower
terms.

d.g q, '=1. (5.1)

Consider an f (x) obtained as the bifurcation limit of 2"
cycles. For the simplest quadratic map, this Feigenbaum
limit map is given by

xi+i= f(xn):1+a x„
with a = —1.401 155. For x lying in the interval
( —1.273 929, 1.273 929),f (x) will remain in the above in-
terval. In Fig. 3(a), we have plotted this f(x). The sim-
plest way to describe the attractor is to follow the
itinerary of the peak at x =0: I' —+A —+B—+C~D —+
where A,B,C, . . . denote f (0),f (0),f (0), . . . . It is easy
to see that all points inside the interval
( —1.273929, 1.273929) but outside the line interval BA
wi11 eventually map into the interval BA. Thus, the at-
tractor must lie in the closed interval BA.

Next, we note that f (x) has the same basin of attrac-
tion as that of f(x). We have plotted f (x) in Fig. 3(b).
The f (x) map consists of two disjoint single-hump maps
as denoted in the smaller boxes. The maps inside these
boxes are analogous to the original map f (x). Thus we
conclude that the attractor must lie inside two disjoint in-
tervals BD and CA. We may construct these two subin-
tervals by removing DC from BA. This procedure is pre-
cisely the geometric construction of a Cantor set.

In our Cantor set, the ratios BF:FH HD and
CG:GE:EA are not the same. Thus the Cantor set that
we have constructed is not exactly self-similar. Numeri-
cally, we find that the deviation of our Cantor set from a
self-similar Cantor set is small.

It is easy to obtain the capacity dimensions d, and the
information dimension dl for a self-similar Cantor set. '

Consider a Cantor set constructed as follows: We first
delete portions of the interval [0,1] to give n subintervals
of lengths q~, qz, . . . , q„. Next, we delete the same frac-
tions of intervals out of each of the intervals
q&, q2, . . . , q„. Repeating this construction, we obtain as
a limit a self-similar Cantor set. The capacity dimension
d, for this Cantor set is given by

D CA

To determine the information dimension dl, we also need
to know the relative probability p; of the attractor to be in
the subinterval q;. If p; is the same in each level of its
construction, the information dimension is given by

g p, ln( 1/p, )

0)= (5.2)g p, ln( 1/q, )

BFHD cf(n,

FIG. 3. (a) Iterative images of the peak P. All points inside
the box but outside the interval BA will eventually map into
BA. (b) Map f consists of two independent small boxes which
map into themselves. Inside these boxes, all points will eventu-
ally map into intervals BD and CA. (c}By removing the regions
in which the attractor does not reside, we arrive at a geometrical
construction of a Cantor set.

It is important to point out that we can apply Eqs. (5.1)
and (5.2) to a self-similar Cantor set at any stage of its
construction and obtain the same results. For complete-
ness, we include a simple derivation of these formulas in
Appendix B.

In an actual calculation, we first iterate f (x) at a to
obtain the universal function f*(x). We then apply the
geometrica1 construction method discussed earlier to ob-
tain the Cantor set. By treating these subintervals at vari-
ous levels as the beginning of a self-similar Cantor set, we
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TABLE III. Calculation of fractal dimensions for a Feigenbaum attractor approximated by self-
similar Cantor sets.

No. of initial
subintervals

( =2")

4
8

16
32
64

d, (n)

0.537 474 6
0.537 688 3
0.537 772 2
0.537 827 5

0.537 863 7

nd, (n) —(n —1)d, (n —1)

0.538 116
0.538 024
0.538 049
0.538 045

di(n)

0.517 300 4
0.517274 7
0.517 219 2
0.517 195 0
0.517 178 7

ndi(n) —(n —1)di(n —1)

0.517 223
0.517053
0.517098
0.517097

TABLE IV. Fractal dimensions for all M(7 Feigenbaum
at tractors.

Basic
cycle sequence

R
RLR
RLR
RLR
RLR 2LR

RL
RL'RL
RL 2RLR
RL R
RL R

RL R L
RL
RL RL
RL R
RL R
RL
RL R
RL4
RL'

0.5171
0.4036
0.3425
0.3676
0.3254
0.3354
0.4036
0.2732
0.2894
0.2560
0.2610
0.2448
0.2567
0.2314
0.2316
0.2167
0.2145
0.1987
0.1870
0.1670

dc

0.5380
0.4209
0.3577
0.3835
0.3398
0.3500
0.4209
0.2858
0.3029
0.2682
0.2735
0.2561
0.2689
0.2423
0.2434
0.2280
0.2253
0.2094
0.1968
0.1760

can compute the approximate information and capacity
dimensions of this Cantor set. ' In Table III, we have
-shown the numerical results associated with Feigenbaum
bifurcation attractor. As we can see, the self-similarity
assumption becomes better as one increases the number of
initial subintervals. The difference between d, (n) [or
di(n)] and d, (oo) is approximately proportional to I/n.
The expression nd, (x)—(n —1)d, (n —1) converges to
d, ( oo ) very rapidly. We thus obtain

d, =0.538045,

dr =0.517097

These numbers agree with those obtained earlier by
Grassberger. '

We can generalize the method to M-furcations easily.
We have summarized the capacity and information di-
mensions associated with all M & 7 M-furcation attractors
in Table IV.

VI. DISCUSSION

In this paper, we have studied the M-furcations for
single-hump one-dimensional maps. In order to study
M-furcations, we need an efficient algorithm for deter-
mining the locations of all superstable cycles. We find
that the most reliable algorithm is to follow the itinerary
of the peak. By comparing the itinerary with the desired
U sequence, we know immediately whether we should in-
crease or decrease the control parameter in order to reach
the required superstable cycle. For a map such as

2+n+i ——1+ann ~

we may begin at a = —1, and modify a by
+1/2, +1/4, +1/8, . . . , successively. The parameter a
converges rapidly to the desired limit. Knowing I a„ I, we
can obtain the universal constants 5 and a and the fixed-
point function f*(x) easily.

We have also studied the universal behavior through
renormalization-group calculations. The renormaliza-
tion-group calculation helps us understand why the
Feigenbaum universal behavior works so well. Even
though we use only three parameters in our calculation,
the agreement between the renormalization-group calcula-
tion and the direct search is already remarkable. It is
pleasing to see that there is only one relevant eigenvalue
(

i
A, i ~:—5) 1) for each of the M-furcation fixed points.

It is also interesting to note that for the majority of the
fixed points, the relevant eigenvalues are large ( —10 ) and
their irrelevant eigenvalues are small (10 or smaller).
This makes a complete dominance of the relevant eigen-
vectors after one or two M-fold iterations.

We have computed the fractal dimensions d, and di
numerically by approximating the attractors with self-
similar Cantor sets. There are several modifications
which may increase the convergence and the accuracy of
our fractal dimension calculation. It is easy to verify that
our attractors are not exactly self-similar. For instance, in
the bifurcation case, one sees immediately that half of the
sub-Cantor set (subset BD in Fig. 3) is similar to the origi-
nal set. The other half (subset CA in Fig. 3) is related to
the original set by a monotonic, nonlinear transformation.
If we approximate this nonlinear transformation by a
linear one, we obtain a self-similar Cantor set. On the
other hand, if we approximate the nonlinear transforma-
tion by a sequence of linear segments, we arriv'e at some
quasisimilar Cantor set. We can derive equations for dr
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and d, for these quasisimilar Cantor sets. These equa-
tions are more complicated than Eqs. (5.1) and (5.2), but
are more accurate for any given order of iterations. Thus,
for a given amount of computing time, there is a trade-off
between using lower-order accurate description of a
quasisimilar Cantor set versus the higher o-rder self-
similar Cantor set.

The fractal dimensions have iinportant physical signifi-
cance. They describe the repetitions of the structure in
finer scales. One possible application is to relate the frac-
tal behavior of an attractor to its power spectrum. ' The
N-furcation attractor and its fractal dimensions may pro-
vide useful information about the power spectra of its ¹h
harmonics.

Since self-similarity is the underlying basis of our cal-
culation, we believe that one should be able to compute d,
and di analytically through a renormalization-group cal-
culation. At the moment, we do not know how to formu-
late the problem yet.

As we have mentioned in the Introduction, there are
significant similarities between the onset of turbulence in
fluid and the transition to chaos in one-dimensional maps.
It is our hope that a thorough study of this simple one-
dimensional system may teach us valuable lessons about
how to handle the real turbulence problem in the future.
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can obtain the coefficients of f (x) by repeated applica-
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If we replace x in Eq. (Al) by g (x) and keep terms of x
and lower, we have
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APPENDIX A: ALGORITHM
FOR COMPUTING TRUNCATED COEFFICIENTS

In this appendix, we describe an algorithm for comput-
ing systematically the truncated coefficients of f (x).
This method was developed by Wright during the colla-
boration of Wortis, Wright, and one of the present au-
thors (S.J.C.) in an earlier research

Consider a one-dimensional map

f(x)=1+aix +a2x +a3x (Al)

Our goal is to compute f (x) by keeping terms up to x .
One way to do the calculation is to evaluate f (x) to all
orders, and truncate the result to the x term after the
calculation. This is a very tedious method, and it becomes
impractical to perform for M larger than 3 or 4.

Fortunately, there is a way to compute these truncated
coefficients by keeping terms up to x in the intermediate
calculation. Assume that f(x) in Eq. (Al) is exact and
that an intermediate expression g(x) is known up to x
terms

etc. After obtaining f (x), we make a scale transforma-
tion

f'(x) =Pf (x/P)

with

P
—1 fM(0) (A10)

The new function f'(x) obeys the proper normalization
f'(0) = 1, and has the desired series expansion

f'(x) = 1+a 'ix +a zx "+a3x + (Al 1)

Coefficients ai' are the input of our renormalization-
group calculation described in Sec. IV. [See, e.g., Eq.
(4.17).]

%'e can generalize our method to an arbitrary x" trun-
cation, and to functions of several variables.

APPENDIX B: FRACTAL DIMENSIONS
FOR A SELF-SIMILAR CANTOR SET

A self-similar Cantor set S is a set whose subsets are
similar to the original set. Consider an interval [0,1] with
unit length. We remove part of the line segment, and ar-
rive at n disconnected subintervals (q i,qz, . . . , q„). If we
continue to remove part of the subintervals, and make
these subsets all similar to the original set S, then the final
construction is a self-similar Cantor set. Let
(Si,S2, . . . , S„)be the subsets associated with the subin-
tervals (qi, q2, . . . , q„). Then

g(x)=bo+bix +b2x +b3x +. (A2)
S=US,i=] (B1)
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lnlV(e)
dc 11m

o ln(1/e)
(82)

and each S; is identical to S up to a scaling factor'. We
can use the self-similarity property of S to determine its
fractal dimensions.

To measure the capacity dimension d„we count the
number of e-size boxes which the attractor visits, and ob-
tain

I(E)=gp, In(1/p, ) =dI ln(1/e)+&(e), (BS)

pa =pipai ~ (89)

where B/ln(1/e)~0 as e~O. In our case, the additive
term B(e) is bounded from both above and below.

We consider the index a as the direct sum of n indices
(a&,a2, . . . , a„) which run over boxes in the subintervals
(q&, q2, . . . , q„). For a in the ith subinterval, we write

We can rewrite (82) as

d.
1K(e) =A (E) (83)

where p„ is the relative probability of finding the attrac-
tor in the a;th box knowing that is is in the ith interval.
Probability p„obeys the normalization

where coefficient A may have a mild E dependence such
as step functions or [1n(1/e)] . To give a well-defined d„
it is only necessary to have in'/ln(1/e) =0 as e~O In.
our case, A is actually bounded from both above and
below.

We can use the self-similarity property of S to obtain
the number of boxes in a subset S; associated with the in-
terval q;:

pai =1 ~ (810)

I;(e/q;) =gp„ ln(1/p«)

=Ch 1n(qi/e)+8(e/q;) . (811)

Using the self-similarity property, we can introduce I;
associated with the ith subinterval as

qi
Ã, =A(e/q;)

E I(e)=dI ln(1/e)+8(~)

=gp, ln(1/p, )Since N =+X;,we have

d dc

A(e)
1 (85)
E

The (1/e) ' factors cancel. By considering the limit e—+0
with A(e) approaching. its upper and its lower bounds
separately, we prove easily that

q;'=1. (86)

=+A(e/q;)
E' =g g p~p„[ln(1/p;)+ln(1/p„)]

i a, i

=g p; ln(l/p;)+g p;I;(e/q;)

=g p; in(1/p;)+g p;[dI 1n(q;/e)+B(e/q;)] .

(812)

Using (89) and (811),we can relate I(e) and I;(e/q;) as
(84)

This is the required equation for d, .
To obtain the information dimension dI, we need to

know the probability distribution for finding the attractor
in each of the subintervals q;. We assume that the rela-
tive probability of the attractor in subinterval q; is p; and
that the same relative probability holds for further parti-
tions of the subsystems. In our problem, our p s are
equal to 1/n.

In terms of box counting, we may define the informa-
tion dimension dI as

The ln(1/e) terms in (812) cancel, and we obtain

g p; in(1/p;)+dI g p; lnq; =8(e)—g p;P(E/q, ) .

gp;1n(1/p;)+dI gp;lnq;=0 (814)

(813)

By considering the limit e~O with 8(e) approaching its
upper and lower bounds separately, we arrive at

dI ——lim
g~o

g p, ln(1/p, )

ln(1/e)
(87)

or

gp; ln( I/p;)
E

g p; ln(1/q;)
(815)

Index a runs over boxes which the attractor visits, and p,
is the probability for the attractor to be in box a. In anal-
ogy to our previous result, we may rewrite (87) as

Equation (815) is the desired equation of dI for a self-
similar Cantor set.
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