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The effect of stochastic laser phase fluctuations on nonlinear optical phenomena are investigated
within the phase-diffusion model. Averaged equations of motion are derived in the limit of infinite-
ly short correlation times and the results are applied to multiphoton absorption and to four-wave
mixing. The effect of the stochastic phase fluctuations is shown to be equivalent to a T, dephasing
process, and a procedure is described for the inclusion of this equivalence in many nonlinear-optical
problems. When a given mode contributes n photons to a multiphoton absorption process, its con-
tribution to the width of the multiphoton transition is n? times its own stochastic width. When
correlated lasers are used as the excitation sources in four-wave-mixing experiments, (new)
stochastic-fluctuation-induced extra resonances in four-wave mixing (SFIER4) will be observed, in
complete analogy to the extra resonances induced by collisions [pressure-induced extra resonances in

form-wave mixing (PIER4)].

I. INTRODUCTION

The interaction of multilevel atomic and molecular sys-
tems with coherent light was extensively investigated
theoretically and experimentally during the last few
years.!™ The lasers currently utilized for the nonlinear
excitation of atoms and molecules are by no means ideal,
i.e., single-frequency amplitude and phase stabilized
sources; and the dynamics of the excitation may be affect-
ed by the phase and amplitude fluctuations of the elec-
tromagnetic fields. In order to describe these fluctuations,
a stochastic description for the relevant parameters has
been invoked.>"'® In this context, Haken® and Cohen-
Tannoudji® considered a laser beam which is characterized
by a stabilized amplitude and a fluctuating phase. The
fluctuation phase has been assumed to obey the Langevin
equation and to be driven by a fluctuating force which is
assumed to have a zero mean. As is discussed by these
authors, this is a reasonable description for a single-mode
dye laser operating far from its threshold. Since the gain
bandwidth of the dye is considerably larger than the laser
linewidth, one may separate the time scales of the very
fast fluctuations of the phase and the “slow” phase-
diffusion time.

The phase-diffusion model (PDM) has been applied to
the description of the fluorescence spectrum of a saturated
two-level atom,® to multiphoton transitions,!>! to the
dynamics of three-photon ionization,”>'%17-1° and to mul-
tiphoton excitation of molecular multilevel systems.'®!
These studies of ionization and excitation. in multilevel
systems provided novel information concerning the extrin-
sic erosion of phase coherence effects in multiphoton exci-
tation within a sparse level structure of collisionless mole-
cules, 13:1420,21

Coherent nonlinear optical phenomena in fluctuating
laser fields are of considerable current interest. In this
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context, the problem of coherent wave mixing should be
investigated in detail, as it may suggest ways to test the
predictions and applicability of the phase-diffusion model.
In a four-wave-mixing experiment, three input fields in-
teract with a multilevel system to generate a fourth
coherent beam which is emitted at well-defined frequency
and direction. The general formalism for treating
coherent nonlinear optical interactions is well developed.
The perturbative expansion in ascending order of non-
linear susceptibilities, as established more than 20 years
ago,?>?* has proven itself as a very powerful tool, and a
good basis for the treatment of most such problems.
More recently, diagrammatic derivations of the higher-
order susceptibilities have also proven useful. >~

In all these treatments, molecular relaxation processes
are.included phenomenologically, in much the same way
they have been included in NMR.*® The problem of laser
linewidth is usually ignored, or if considered, is discussed
only in a general phenomenological way.?! More recently,
the proper phenomenological treatment of collisional re-
laxation, either by perturbative expansion or diagrammat-
ic treatment of the density matrix, led to the observation
of a new family of effects’®® that was termed PIER4
(pressure-induced extra resonances in four-wave mixing).
Such dephasing-induced phenomena have also been seen
in molecular crystals at low temperatures, where dephas-
ing was induced by lattice phonons.>* A significant step
towards the elucidation of the effects of fluctuating laser
fields on PIER4 was undertaken by Agarwal et al.,>>=%’
who had considered the influence of laser fluctuations on
pressure-induced resonances.

In this paper we consider a multilevel (molecular) sys-
tem driven by several laser fields, which are characterized
by fluctuating phases. The equations of motion are solved
for the PDM. The results are utilized to study the effect
of laser phase fluctuations on multiphoton absorption and
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on four-wave mixing. In the case of n-photon absorption,
the stochastic contribution to the linewidth induced by a
single laser is n? times the width of the laser itself, in ac-
cord with the analysis of Mollow'® and Agrawal.!® For
four-wave mixing we predict the possibility of observing
extra resonances, which are induced by the stochastic
fluctuations in the laser field. These new extra resonances
bear a close analogy to the PIER4, being amenable to ex-
perimental observation even in the absence of collision or
other (molecular) dephasing processes.

II. THEORY

In this section the interaction of an electromagnetic
field (consisting of several modes) and a multilevel molec-
ular system is considered. The treatment is semiclassical,
where the molecular level system is quantized, and the
electromagnetic (EM) field is treated classically. The ef-
fect of the phase of each mode is discussed explicitly
within the semiclassical description.

A multimode electromagnetic field, which is emitted by
several uncorrelated laser sources, is given by

E(t)= E,(t)exp{ —i[wst +d,(1)]} +c.c. , (2.1)

where E,(t) denotes the generally time-dependent field
amplitude, w, is the mean frequency, and ¢,(¢) is the fluc-
tuating phase of the ath mode. The phases {¢,} and the
assumptions involved in their inclusion will be discussed
in detail. Throughout this calculation, the slowly varying
amplitude approximation will be assumed, namely, the
rate of change of the amplitude E,(t) is slow compared to
all the relevant time scales of the problem and the ampli-
tude may be assumed constant.

The molecular level structure is specified in terms of
the N eigenkets { |k)} of the molecular Hamiltonian
H,,, with corresponding energies {E;}. The radiation-
molecule interaction is electric dipolar

"Hiyn=pE(1), (2.2)

where p is the molecular dipole moment operator. The
equation of motion of the molecular density matrix p is
given by

i}ip’:[H,p]__%(T“p—i—pT‘) . (2.3)

H=H,, +H;,, denotes the full Hamiltonian of the system
and T is a phenomenological decay operator having the
elements

T“k1=I‘k6k, +F£‘Ii . (2.4)

The diagonal contribution, I'y is the nonadiabatic decay
rate (e.g., due to spontaneous emission from level |k))
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whereas T} is the rate of proper dephasing of the element
pr; of the density matrix, which may be caused by such
physical processes as collisions in a fluid or interactions
with the lattice in a solid. This form of phenomenological
relaxation rates can be justified whenever the spectral dis-
tributions of the random perturbations are broad enough
so that the typical correlation time is very short compared
to other relevant time scales of the molecular dynamics.

In the case of a gaseous sample, this limit implies an in-
finitely short collision, or the impact approximation. For
a collision of duration 7p, this approximation is valid for
detunings Aw such that Aw 7p << 1, and under these con-
ditions the molecule “forgets” its own coherent informa-
tion immediately after the collision.

Electromagnetic fields with fluctuating phases have
been discussed by several authors.’~>!3!4 A single-mode
dye laser may be described by one mode of the radiation
field as written above. It is assumed that the phases {d,}
obey separate equations of motion, and in the irreversible
Wiener-Levy limit’ their rates of change {¢,] are charac-
terized by narrow correlation functions. A useful form
involves the exponential correlation function

(o )bplt —7)) =ao¥ 0€Xp(— Vo | 7| Wagp » 2.5

where 75! is a typical time for change of the fluctuating
force which derives the time-development of the phase
and a, is the slow phase-diffusion width. The term 8,z
assures the uncorrelation of the various modes. As is dis-
cussed by Cohen-Tannoudji,® this description is adequate
for a dye laser operating high above threshold. In order
to solve Eq. (2.3), we define a transformation to the rotat-
ing frame, setting :

Pkl =Pri€Xp

lezI(a)at +¢a) ] ’ (2.6)
p .

where Af; is an integer which counts the number of pho-
tons of the ath mode which participate in the molecular
|k)<=|1) transition. This transformation is useful for
resonant cases, where a particular combination of frequen-
cies is nearly resonant with a transition. Note that the
frequency of the rotating frame includes the random
phases of the modes involved.

In a similar manner, define the corresponding detun-
ings,

A =(Ex—E)/fi— 3 A0, 2.7)
a

where now, for reasons to become clear later, the phases
have been left out.

The choice of {A%;} is arbitrary in the general case, but
is obvious for reSonant transitions, and for exact ‘“on-
resonance” conditions the corresponding detunings van-
ish. In this rotating frame the explicit equation of motion
[Eq. (2.3)] becomes
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+i (ZI)p,ﬂkaZEa exp ——tE(k +8,p) gt +dg) | +exp —i%(kﬂ ~8p)wpt +g)
i

In Eq. (2.8), the first two terms come from taking time
derivatives and from the transformation into the rotating
frame, the two sums are the detailed expressions for the
commutator [H,p], and the last term is the relaxation.

So far the semiclassical approximation for the EM field
and the dipolar interaction were utilized. We invoke now
the rotating-wave approximation (RWA) and out of all
the exponential terms only the dc terms survive, whereas
the highly oscillatory terms are averaged to zero. Conse-
quently, the sole terms p;p;E, which survive are those
which multiply the exponential products which contain
the terms

% t1=0,
(2.9)
M =0, B#a.

The first condition is derived from terms containing the
+8,p contributions. In this case the ath mode induces a
single-photon transition between the levels |j) and | k)
and the set { Eg} (Bs4a) does not induce this transition.
The RWA actually takes into consideration only single-
photon connected transitions.

The stochastic contribution due to the fluctuating
phases is diagonal in the sense that the rate of change of
P is connected by this stochastic term only to gy, itself:

S A (1) (2.10)

a

=i
stochastic

d -
[dtpkl(t) Pra(t) .

If the possibility of absorption into a virtual state fol-
lowed by immediate reemission induced by the same field
is ignored (since this is a higher-order process), one is left
with A, =0, namely, the diagonal elements of the density
matrix {Pyx} are not influenced directly by the fluctuating
phases.

In order to proceed it is conven1ent13 to arrange the ele-
ments of the density matrix in an N -dimensional column
vector X. The transposed vector (XT) being

)ﬁNN) .
(2.11)

X' =B10P12 - - o PINPasPr2 - - 2 Py - - -

With this arrangement the dynamics of the density matrix
is expressed in a dyadic, rather than in a tetradic, form:

4 () =L(X(1) .

di (2.12)

The dyadié Liouville operator is divided into two parts:
L(t)=L o+L (1) . (2.13)

The matrix L g is the time-independent nonstochastic con-
tribution and L ; is the time-dependent stochastic contri-
bution due to the rates of change of the fluctuating
phases. Both matrices L o and L ; are obtained from the
tetradic equation of motion [Eq. (2.8)] (which is reduced
in the RWA to the simpler form), according to the ar-
rangement of the elements of the density matrix in the
vector X(t) [Eq. (2.11)]. The stochastic term L ; is writ-
ten in terms of the corresponding contributions of the
various laser modes

L =i L $du1) (2.14)
a .

{L T} are time-dependent diagonal matrices, each one is

obtained from the corresponding tetradic matrices, which

are related to the ath mode, as given in Eq. (2.10) for the

stochastic contribution to the rate of change of gy;.

The stochastic equation of motion, Eq. (2.12), is aver-
aged over the ensemble of various phases, in order to ob-
tain an explicit expression for the equation of motion of
the averaged (over the fluctuating phases) elements of the
density matrix. Thus, an “effective” equation of motion
is obtained:

—(X(t)) L (X)) . (2.15)

In the cumulant expansion method, which rests on a
second-order cumulant series,® the effective propagator is

given by
L (1)
=L o+ f dr{{L 1(D)exp(L o7)L 1(t —T)exp(—L o7) ) ,
(2.16)
where ( )) denotes the cumulant average. This pro-

cedure is justified when the correlation times 7, of the
fluctuating phases are short enough. In this case,!® the
relative errors increase according to 7-.

Since the fluctuating phases of the various laser modes
are not correlated, Eq. (2.2), L . reduces to

Leff————L O—EI dTL 1exp( ()T)L lexp( 07')

X {balt)balt —7)) . (2.17)
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Consequently, the various modes contribute separately to
the effective propagator. All the cross mode-mode terms
drop out due to the noncorrelation of the various laser
modes.

Since [L §,L ¢]50, there is no simple expression for the
operator integral. In Appendix A an explicit expression
for L . is obtained for the case where an exponential
correlation function, Eq. (2.2), is used for {¢,(z)}. When
the width y,, is set to infinity, the correlation function Eq.
(2.2) becomes a 6 function:

(¢'a(t)¢.a(t —7))=2a,8(7) .
In this limit the effective propagator, Eq. (2.17), becomes
L er=L o— X a.(L{)*. (2.19)
a

(2.18)

Equations (2.17) and (2.19) are the main result of this
work. Equation (2.16) is a convolution integral applicable
in the general case. In many practical cases simplifying
assumptions (i.e., impact approximation) are made regard-
ing the correlation time, and Eq. (2.19) is the result for in-
finitely short correlations. In this case the effect of laser
phase fluctuations may be analyzed directly, and the re-
sults of such analysis are given in the next sections.

III. MULTIPHOTON LINE SHAPE

The result of Sec. II is an effective equation of motion
(2.15) with an effective propagator. For an extremely
short phase correlation time, this propagator was shown
to be of the form (2.19). Thus L. is “diagonal” in the
sense that each element of the vector X (an element of the
density matrix) decays at a rate proportional to its value,
where the rate is given by a deterministic rate L (, and a
stochastic contribution SR

a=Saa(Af)? . 3.1

A% is the number of photons of the ath mode which par-
ticipate in the |k)=>|/) transition. The present defini-
tion of ay; is a generalization of the result obtained previ-
ously for a two-level system and a single radiation
mode.!>1*

As explained above, only off-diagonal elements of the
density matrix {p;;} are affected by this decay and it can
clearly be seen that this decay is exponential. Thus, ay; is
equivalent to a transverse dephasing process like 7,. The
rate ay is a sum of uncorrelated contributions, each one
being a correlated contribution of a single mode. This
partial correlation is manifested by the term (A%)?, which

results from the fact that all the photons of the ath mode

are completely correlated.

A careful examination of a;; reveals the interesting re-
sult that if a given radiation mode has contributed »n pho-
tons to the kl transition, its contribution to the dephasing
rate of this transition is n2a,. Expressed in even simpler
terms, if a two-photon transition is induced by two un-

correlated lasers, the stochastic contribution to the ob-

served width is the sum of the individual contributions,
but if only one laser has been used, the width is four times
the individual width. This conclusion concurs with the

prediction of Mollow!® and with the subsequent treatment
of Agarwal.!6

An intuitive analogy to this result may be drawn from
the theory of superradiance.*® For an inverted system, all
the n dipoles which constitute the giant dipole moment
are aligned (correlated), and the decay (radiation) rate is
proportional to n2. In the other limit, of nearly equal
populations, the dipole moments are not aligned (correlat-
ed) and the radiation rate is proportional to n.

The explicit prediction that the stochastic contribution
to the width of two- (multi-) photon transition induced by
one laser is 4 (n?) times the stochastic contribution of the
laser width itself, was very recently confirmed in the
beautiful experimental work of Elliot et al.** which was
published after this work had been completed.

IV. FOUR-WAVE MIXING
AND EXTRA RESONANCES

The third-order susceptibility X3 is the lowest nonvan-
ishing nonlinear susceptibility for free atoms and mole-
cules, or for any other medium with center of inversion
symmetry, and thus, the study of four-wave mixing has
become the mainstream of nonlinear (NL) optics.

A very satisfactory approach to the treatment of four-
wave mixing (FWM) has been a perturbative solution of
Eq. (2.3). Such a solution has been derived by explicit
iterative integration (for a particular Fourier component)
of the relevant density matrix element*??3 or directly by
the use of double-sided Feynman diagrams,?*~2° and both
approaches yield the same result.*! Following the detailed
derivation of Bloembergen and Shen,?? one notices im-
mediately that relaxation processes are included
phenomenologically by introducing 1/7T, and 1/7T; terms.
Moreover, these terms are included in each step of the
perturbative expansion. The inclusion of a phenomeno-
logical decay rate is an implicit integration over the (fast)
interaction with the degrees of freedom of the thermal
bath. Strictly speaking, the detailed interaction with the
bath should be written down explicitly, and averages
should be performed only at the end of the calculation.
The full Hamiltonian of the interaction with the bath is
not known, nor is it relevant for our application, but since
its time scale is known, a very significant simplification
occurs. For infinitely short correlation time of these in-
teractions, one obtains exponential decay constants, and
one may average at each step of the iterative solution.
This procedure has been justified in NMR (Ref. 30) and
verified under many experimental conditions both in
NMR and in coherent optics. In what follows we will
refer to collisions as the dephasing mechanism, but the
same applies to other processes like interaction with lat-
tice phonons. Thus, as long as the collision time 7p is
short compared to all other time scales in the problem, the
impact approximation is valid. The typical time scale is
the inverse of the Rabi frequency

Q=[(Aw)?+(kE)*]'%,

where Aw is the detuning, k=2u /# is the strength of the
coupling, and E is the electric field amplitude. The expli-
cit condition for the impact approximation (Qrp<<1)
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sets an upper limit on strong fields or on large detunings,
but it has supplied a very useful framework for the discus-
sion of most problems in NL optics.

Recently, this phenomenological description was car-
ried even further, and collision-induced interferences be-
tween terms of the NL susceptibility have been ob-
served.’?>33 Even within the impact approximation col-
lisions can destroy destructive interferences between terms
(diagrams) of the NL susceptibility, leading to (pressure-
induced) extra resonances between equally populated
ground states and ‘“‘unpopulated” excited states. If two or
more terms (diagrams) interfere in such a way that certain
frequency dependences are not observable, the presence of
dephasing may remove this interference allowing the ap-
pearance of such resonances. Observations in Na va-
por*?3 and in molecular crystals®* have verified the ex-
istence and nature of these extra resonances.

It should be reemphasized that these extra resonances
can be derived only if each one of the 48 terms (diagrams)
in the full expression for the susceptibility is averaged
separately, namely, if the collisions are assumed infinitely
short. The experimental observation of these effects pro-
vides an a posteriori justification for the validity of the
separate averaging procedure.

In analogy with collisions, phase fluctuations may play
the same role of destroying the interference between dif-

_ferent terms (diagrams). The assumption of an infinitely
short (8-function) correlation time for the laser phase fluc-
tuations leads to separate averaging of the different terms
of the susceptibility, and thus to the cancellation of des-
tructive interferences in exactly the same way as for col-
lisions.

In order to be specific, three diagrams in the NL sus-
ceptibility will be. considered in detail and combined to
show the new form of the “correction terms.” There are
48 different diagrams for the different ordering of terms
in the general expression for the third-order susceptibility.
For input beams at w,,0,,», which produce an output at
o, (0p =0, +0p — . ), one obtains

NL
- 2 (ngRkthjRngz(zg) 4)

3
X( )("‘wpra’a’wb,'—mc)= 3
6 &k,tj

(sum of 48 “terms”) (4.1)
where N is the number of molecules, L is the interaction
length, and A is the sum of 48 terms resulting from the
corresponding diagrams. R is the dipole moment opera-
tor connecting the corresponding levels, and the sum is
over all intermediate levels. The derivation has been given
by several authors;***? we will follow the notation of Ref.
41. :
In previous derivations complex molecular frequencies
have been used, namely w;,, is complex

(J)ImE(EI——Em )/ﬁ—tF,m N (42)

leading to a compact notation.

In the present calculation, based on the results of Sec.
I, we introduce complex frequencies for the lasers them-
selves, where the imaginary part is the averaged contribu-
tion of the phase fluctuations. Thus we use the complex
frequencies
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W, =0, —la, ,

[OF ) Ecﬁb——iab ) ( )
4.3

W, =0, —ia, ,
0, =Dy —iap ,

where @=Rew. In addition, define the width involved in
multiphoton transitions agp,a,.,a;. corresponding to
two-photon resonances (v, +®p ), (0, —@.),(wp — o, ), and
a, corresponding to the (w, +wp —®,.) transition. A cru-
cial observation to make at this point is that for uncorre-
lated lasers

Qgp =0q+ayp ,

apc =ap+ac ,
(4.4)
Qgc=0q+4ac ,

a,=aq+ap+a. ,

but for correlated lasers these relations do not hold, and
they are replaced in accordance with Eq. (2.19).

Consider, as an example, the three diagrams in Fig. 1.
These are lines 16, 17, and 18 in Ref. 41, with the laser
frequencies now being written as complex quantities
where appropriate. Following Bloembergen, Lotem, and
Lynch* this triplet is now combined to a single expres-
sion which may be written as (14 K) where K is a
“correction term” vanishing under certain circumstances.
Byua stands for the order of the polarization components
of the individual laser beams.

Thus, with the new complex laser frequency notation,
the sum of three diagrams is

1
(o — (@ — ) —iay J(wgg — )
o Brua[l+K(wp —o, ), (0, +@p))]

(4.5)
(wjg +w7) ’
where the correction term is given by
[t> <jl
¢ Jk> Bypa
b /O (ng— wg) (“‘kj‘(‘:"o“a’b)"icub) (w'?‘ +w:)
lo> <gl
[t> <il
7 Q Bypa —
c k> L~ (“’kg_wb) (wkj—(6°+z71)-—ioab) (w';d»w;)
b1
lg> <aq|
> <jl
o Bypa
Co > (“"kg'wb) (w'g—(ab—;:c)—idbc) (w’;ﬁ-wp*)
o
b1g> <q|

FIG. 1. Diagrams for three different time orderings of terms
for the third-order susceptibility. Taken from Ref. 41.
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K:m HT g —Tj+Ty)+ila, +ap —a,)

+ [i(rjg +I‘kg—~1‘k,-)+i(aa +ay—ag)]

Dyg ——(a-jb ——C—JC )—iabc

(4.6)

Wk — (@ +@p) —iagp

with similar expressions for the other diagrams. The
correction term K may be written as the sum of two parts

K=Kco]1+Kstoch ’ (47)
where
Kconz-(;};t—w; i(Fjg— ,-,+I“,g)
+ i(Ljg + g —Ty)
— (& — o, )—ia
(7 b c . be (4.8)
cokj~(5a+5b)~za,,b)
and
1 ,
Ksmch=m i(ag +ap. —ap)
+i(aa+ab—aab)
Wy —(Bp —B,)—ia
e 4.9)
o — (D +Bp)—iag

As has been discussed in great detail®*3**? in the context
of PIER4, in the absence of proper dephasing
F} —F} —F,gz() »
(4.10)
Ljg+ T —T4;=0,

and the collisional contribution (K_y;) to the extra reso-
nance vanishes.

The appearance of the laser stochastic contribution to
the extra resonance (K., ) constitutes the major result of
our analysis. When laser fluctuations are included, the
following conclusion is reached: For uncorrelated lasers
relations (4.4) hold and K, the stochastic contribution
to the correction term, vanishes. Thus relations (4.4) for
the laser fluctuation play the same role as Eq. (4.10) for
collision. If the lasers are correlated (e.g., the frequencies
w, and w, are identical and derived from the same laser),
the stochastic contribution K., to the correction term
does not vanish, and a stochastic-fluctuation-induced extra
resonance in four-wave mixing (SFIER4) may be observed.

The characteristics of the SFIER4 are as follows.

(1) It constitutes a coherent signal generated at the
difference frequency (v, +wp —w, ). ‘

(2) The appearance of the induced resonance is condi-
tional upon the existence of field fluctuations, and it will
vanish for nonfluctuating or uncorrelated laser fields, ac-
cording to Eq. (4.4).
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(3) The amplitude of the induced resonance is propor-
tional to the clustered stochastic width (a, +a, —ag), Eq.
(4.9).

(4) The contributions of laser fluctuations and collision-
al dephasing to four-wave mixing are distinct and in-
dependent. The SFIER4 exists even in the limit of zero
pressure.

(5) The features of the SFIER4 are independent of but
analogous to the PIER4,%%3% appearing at the same ener-
gy, with the clustered stochastic laser width replacing the
collisional dephasing rate.

From the point of view of general methodology we
would like to emphasize that the SFIER4 advanced by us
is distinct from the field-induced resonance considered by

- Agrawal and Kunasz.>®> The Agrawal-Kunasz resonance

is predicted to be located at the atomic frequency, not
contributing to the usual four-wave mixing. It satisfies
different phase matching conditions, and exhibits a pres-
sure dependence. The Agrawal and Kunasz resonance
arises from a different term in the explicit expression for
the third order susceptibility, and is not an ‘“‘extra” reso-
nance in the same sense as the PIER4 or SFIER4 are. In
particular, the analysis of Agrawal and Cooper®® and of

Agrawal and Kunasz37 predicts that no resonance will ex-

ist at the frequency 2w;—w, in the absence of collisions.
Our result is different. For correlated laser fields we
predict the existence of an extra resonance, according to.
Eqgs.” (4.4)—(4.10). The basic difference between the
present analysis and the previous approach®®®’ originates
from the incorporation of correlation effects between the
laser fields, which is explicit in our model. This inclusion
of correlation effects constitutes a central feature of our
analysis and provides a necessary condition for the ap-
pearance of the SFIER4. In addition to the appearance of
an extra resonance, our approach leads to an additional
quantitative feature. When correlation effects between the
laser fields were disregarded, Agarwal and Cooper®®
predicted that the linewidths of the two lasers simply add
to the width Ty of a resonance. We predict the existence
of a clustered stochastic width, which replaces the col-
lisional dephasing width. The crucial role of correlation
effects when applied to the closely related problem of
two-photon absorption, is corroborated by the recent ex-
periments of Elliott et al.*0

V. CONCLUSIONS

We have examined the effects of laser field fluctuations
on coherent nonlinear optical phenomena, with an em-
phasis on multiphoton absorption and on four-wave mix-
ing. We have shown that within the framework of the
phase-diffusion model fast laser phase fluctuations pro-
vide a direct stochastic dephasing contribution to the ab-
sorption coefficient and to the third-order susceptibility.
For multiphoton absorption, we utilize our scheme to
demonstrate that if a given radiation field mode has con-
tributed n photons to a certain transition, its contribution
to the dephasing rate is n? times the stochastic width of
the laser itself.!>!® For four-wave mixing the laser sto-
chastic widths are incorporated in the correction term for

the third-order susceptibility. For a system interrogated
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by correlated lasers we expect the appearance of a new
stochastic-fluctuation-induced extra resonance in four-
wave mixing. The novel aspect of our treatment involves
the separation of effects of molecular dephasing and field
fluctuations on coherent phenomena. These theoretical
predictions are amenable to experimental observation.
The very recent interrogation of two-photon absorption*®
provides an important test for the validity and applicabili-
ty of the PDM. The observation of the SFIER4 will yield
novel information on extrinsic laser-field-induced interfer-
ence effects, providing a firm experimental basis for the
analogy between interferences induced by collisions and
by stochastic field fluctuations.

Our general results for the equivalence of the dephasing
due to the laser phase fluctuations with conventional
“T,-type” mechanisms, is applicable to other experimen-
tal observables in the area of nonlinear optics. Several
pertinent examples are saturation in a two-level system,
traveling-wave amplification, and stimulated Raman os-
cillations. In all these cases the extrinsic stochastic con-
tributions to the dephasing widths have to be incorporat-
ed.

Our treatment, which provides an analysis of laser field
fluctuations in nonlinear optical phenomena, rests on the
PDM. The extension of the PDM to more refined pic-
tures for the laser phase fluctuations, going beyond simple
stochastic models for these phenomena, will be of consid-
erable interest.
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APPENDIX: EFFECTIVE PROPAGATOR
FOR EXPONENTIAL CORRELATION FUNCTION

The general expression for the effective propagator, Eq.
(2.17), is expanded in a matrix form and the exponential
correlation function, Eq. (2.2), is used. The operator L g
is diagonalized by the matrix U,

Lo=UDU"!, (A1)
where D is a diagonal matrix

Diy=Dy8y . (A2)
The (k,0) element of the product L,=L¢

><exp(L o)L fexp(—L o7) which appears in the mtegrand

of L ¢ is given by

(L :z)kl:'EGl‘clI(j’r)exp[(Dr—Dj )T] 5 (A3)
jr
where
Gl?l(j’r)= 2 (L (i!)ki(U)ij( U—l)jm(l_’ ‘Il)mn( U)nr(U_l)rI

i,m,n
(A4)

Using the exponential correlation function, Eq. (2.2), the
(k,1) element of the effective propagator is given by

(L etp)a
= (L o)u
l—exp[_('ya—Dr+Dj)t]
— G (j,r) AYa -
§12r ¢ Ya—D,+D;
(AS)

Ignoring the transwnt effects of the short duration of the

order of {75 '} this matrix element becomes time indepen-
dent:
le(J,
L I A6
(L et =L o)a — Eaanjzr YatD,—D, (A6)

In the extreme limit, where y,>>{ D;}, which is practical-
ly equivalent to referring to the exponentlal correlation
function Eq. (2.2) as to a § function Eq. (2.18), the more
general form, Eq. (A6), of the effective propagator
reduces to the simpler form, Eq. (2.19). This is a conse-
quence of the fact that

3 GaG,N =Ly
ir
which is obtained by using the definition of G¢, Eq. (A4).
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