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Most developments of Cerenkov radiation are in terms of the Fourier components of the fields
and power emitted by a single electron. When many electrons in a compact bunch are emitted from
an accelerator, the bunch radiates coherently and at a lower frequency than for a single electron.
The theory for the time structure of the fields arising from a charge bunch is developed, and it is
shown that the source of the radiation is di/dt. Present detector technology should be able to
resolve these fields.

TIME DEVELOPMENT OF CERENKOV
RADIATION INTRODUCTION

V'

Cerenkov radiation, produced by a charge or group of
charges, moving faster than the speed of electromagnetic
radiation in a medium, has been investigated, starting
with the experiments of Cerenkov' in 1934 and the ex-
planation by Frank and Tamm in 1937. Since power ra-
diated by a single charged particle is proportional to the
frequency, most of the research effort has been devoted to
the relatively intense optical radiation which is favored
over the microwave region by a factor of about 10 . The
optical results ' are given in terms of the Fourier com-
ponents of the fields and the radiated power.

In our previous work ' it was noted that microwave ra-
diation can be significant because all the electrons in an
accelerator bunch (about 10 ) radiate coherently; an effect
which more than offsets the single particle increase in ra-
diated power with frequency. For an electron beam gen-
erated by a traveling wave Linac and passing through air,
it was shown that the various harmonics of the basis fre-
quency up to about the tenth are emitted. (In the case of
an L, or S band Linac, these correspond to 10 and 30
GHz, respectively. )

The time structure of Cerenkov radiation fields in the
optical and even in the higher frequency microwave re-
gions is difficult to observe because the detectors register
power. One of the few treatments of the time dependence,
by Tamm in 1939, showed that the optical radiation by
an electron is singular on the Cerenkov front. Here we
consider the time structure of fields generated when elec-
tron bunches radiate coherently; in a development which
complements the frequency domain analysis of our earlier
work. ' The fields should be observable for beams from
induction accelerators which produce bunches much
longer than those produced by S- or I.-band linear ac-
celerators.

MAGNETIC RADIATION FIELD

The purpose of this paper is to present a development
of the time dependence of the electric field generated by
the Cerenkov mechanism. The method is first to deter-
mine the potentials from the moving charge distribution,
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and subsequently to obtain the fields (in cgs units) from
the potentials by

p(z, t) =ioo(z —Ut) . (4)

Note that p, and j„represent the usual charge and current
densities, while p and po throughout this paper are charge
per unit length. The velocity of light is c and co in the
medium and free space, respectively.

The potentials are found by taking the usual retarded
solutions to the wave equations; which become under the
assumption of a line distribution of charge (3),

@(r,t) =e ' f R 'p(r', t') zd', (5)

A(r, t) = f R 'p(r', t')dz',
Co

where R=r —r' and t' is the retarded time

t'=t —
(
r —r'~ /c .

Now (4), the assumption of rigid motion of the charge dis-
tribution, can be incorporated into the potentials, and a
new variable u (z')=z' Ut' can be introduced s—o that the
potentials (5) and (6) become

N(r, t)=e ' f R 'po(u)dz',

A(r, t) = f R 'po(u)dz' .
Co

(9)

Also, since the charge is confined to the z' axis, the new
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We assume a charge density function p„and a current
density j,=p, v/co with the velocity U in the plus z direc-
tion. The charge and current are assumed to be concen-
trated along the z axis such that

p„(r, t) =p(z, t)5(x)5(y)

and the charge is assumed to move with no change in
shape so that the z and t dependence of the charge is
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variable u (z') can be written more explicitly,

u (z') =z' ut—+—[x +y'+(z —z') ]' ' .
c

(10)

B~= po u z
CCp R

(12)

where po(u) is the derivative of po with respect to its argu-
ment u. The corresponding expression for B„has y re-
placed by ( —x). These two components can be combined
to give the total magnetic radiation field B. In the
cylindrical coordinates, (s,8,z) where s is the radius vec-
tor s =(x +y )'~, 8 is tangential (i.e., in the 0 direction)
with a magnitude given by

B = J po(u)dz' .
CCo R

(13)

TIME DEVELOPMENT

In order to evaluate (13) for B, it is necessary to consid-
er the dependence of u on z' as given in (10). In the u-z'
plane, the first two terms are a straight line with unit
slope and an intercept which changes with time, while the
third term is a hyperbola opening in the + u direction
with asymptotic slopes of +u/c. The sum of these two
curves is u(z'). In the Cerenkov case with u ~c, the re-
sult is a curve whose ends boih point upward as shown in
Fig. 1. As time increases, the entire curve will translate
downward to smaller u values as a result of the negative
second term in (10).

Only changing currents (those with a nonzero po) will
contribute to the magnetic radiation field (13). To
proceed and demonstrate the method, a ramp-front
current pulse is chosen as a simple example. Assuming
that the front end of a current pulse increases linearly up
to a constant value, the derivative po(u) will be a constant
valued square pulse of magnitude p~ as is also shown in
Fig. 1. The corresponding negative po(u) pulse occurring
at the tail of a current pulse is not shown and its effect is
considered separately.

For large negative times, the u (z') curve (t~ ) is com-
pletely above the pulselike nonzero portion of the po(u')
curve so that the contribution in (13) to B from po(u) is
zero and therefore, B is zero. As time increases, the u (z')
curve moves downward until the B pulse begins when

The magnetic field 8 may be calculated from (1) and
since A had only a z component, 8 has only the x and y
components, B„=(B/By)A, and B~ = —(8/Bx)A, . Carry-
ing out the differentiation for the x component gives

Bx —— f R 'po(u )dz'
co ~y

+ f R ' po(u)dz' .
Co Bp

For radiation, the first integral, falling off as R at large
distances, will be neglected and only the second term will
be considered further. From (10), it is seen that u is a
function of x and y so that the second integral can be
written

z' 1'o

FICk. 1. Function u =z' —vt', defined in the text is plotted
for increasing times t&, t2, t3 at the point of observation. The
corresponding current derivative profile, on the right, is a func-
tion of u only and remains fixed in ti~e. Field signal pulse
starts at t2, and reaches a maximum at t3.

U2
zo ———s — —1

c2

~ —1/2

+Z f

. +2
.

, +1/2

(14)

U
u (zo ) =s —1 +z —Ut,

C

zu 1 c2 U2 —1
BZ '=g' & U C

3/2

(16)

so that u can be expressed as a power series about the
m1Q1.mum

u =u(zo)+A(z' —zo) (17)

The limits z1 and z2 can be written in terms of the
minimum value as z2 ——zo+M' and z1 ——zo —lL', where

is the value of z' —zo such that the difference
u (z') —u (zo ) =a, the width of the current derivative
pulse po. Then from (17), a =A (M') or

Using this value, the maximum magnetic i'adiation field
for the rising front of the magnetic field pulse is easily

u(z') is tangent [curve (t2)] to the upper portion of the
po(u) pulse. The value of the integral in (13) increases as
u(z) continues its constant downward motion with in-
creasing time until u(z') becomes tangent [curve (t3)]
with the lower part of the po(u) pulse. At this time the
nonzero part of the integral has the largest extent —from
z1 to zz. At later times, the integral breaks into two re-
gions of the z' axis and if po(u) is constant, the value of
the integral decreases with increasing time because the ex-
tent of the integral in the two regions continues to de-
crease as a result of the upward turn of u (z').

This calculation may be carried further to determine
the time structure (shape) of the resulting B pulse. Al-
though the expression (13) for B can be integrated directly
in the case where the slope po(u) is constant, it is instruc-
tive to carry out the calculation by developing u in a
power series. Denoting zo as the value of z' at which
u(z') has zero slope, the values of zo, u(zo) and the
second derivative are
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evaluated from (13) under the assumption that s and R
are slowly varying to give

1/2

U f Rc v 1,
( )d,

cp Rcp cp R
(21)

V S, Q
+max 2 Pm

ccp
(19)

where a is the length of the linear rise of the current pulse
and A is given by (16).

Values of 8 for the rise up to the peak value given
above are found by the same process but using appropri-
ately smaller values of M'. The result is that the integral
(and therefore B) increases as t'~ after the onset of the
pulse. After the maximum magnetic field is reached, the
integral splits into two parts. If the expression on the
right side of (19) is called I(a), the value of B at later
times becomes

B =I(a'+a) —I(a'), (20)

ELECTRIC RADIATION FIELD

In a manner similar to the derivation of (13), the elec-
tric radiation field may be found from (2), (8), and (9).
The details are omitted, but the result is

l.0

0 5.

where a' is the distance by which the minimum in u (z')
is below the lower step of the po pulse in Fig. 1. Th'e first
term in (20) increases slowly with a', but the second term
decreases as (a')'~ leading to the sharp falloff of the
magnetic field after the maximum as shown in Fig. 2.

A complete current pulse may be considered as a linear
rise, followed by a constant current, and then a linear de-
crease. The latter part gives rise to a negative p'(u) and a
reversed magnetic field pulse so that the magnetic field
for a complete current pulse has the double-peaked struc-
ture shown in Fig. 2.

The direction of E may be determined from the follow-
ing considerations. If R is assumed approximately con-
stant and denoted by R in the region which contributes
most strongly to the integral, then

R Rm vE.—=E =I 1 ——cosO
R R c

(22)

where I represents the integral in (21) without the factor
in parenthesis and O is the angle between R and the z
axis. But the value of R in the region which contributes
to the integral is found by evaluating the general expres-
sion (21) at z'=zo. To simplify the expression, let the ob-
server be at z= 0 and also assume that the pp pulse is cen-
tered near u=0. Then R~ =(s +z' )'~ may be evaluat-
ed using (14) to give

' —1/2
2

1—
V2

(23)

If the usual Cerenkov angle is defined as cosOC ——c/v,
R can be written as

sRm=
sinO&

(24)

Consequently R is inclined at an angle Oc to the veloci-
ty, which is along the z axis.

From (22) it is apparent that E is perpendicular to R
when 8=8, and (24) shows that R is the value of R at
the Cerenkov angle O, . Thus, the electric field from the
front of the pulse (i.e., z'=z ) is transverse to R

To proceed, it is necessary to evaluate the magnitude of
E. Note that the square of the vector quantity in
parentheses in (21) is (c +U —2cR v/R)co . If this fac-
tor of the integrand is evaluated at the point R=R, then
(24) can be used to give R v=R~v cos8c and the magni-
tude of the parentheses in (21) is ( v/c) sinOC. Then, under
this approximation, the magnitude of E is

sinO,E=, f '
po(u)dz' .

cp
(25)

-0.5-

-l.O"

Beam Current

When R is evaluated at R this integral for E becomes
identical to (13), the one for B, but multiplied by c/co.
Thus, the usual relation for electric and magnetic radia-
tion fields holds for this case, i.e.,

Profile

0

TlME
FIG. 2. Electric field pulse, shown in the upper curve, as gen-

erated by the beam current profile, shown in the lower curve. In
the text, the electric and magnetic radiation fields are shown to
have the ratio E/B =c/co, the same as for a plane wave in the
medium. The E and B fields and the propagation direction are
mutually perpendicular.

E/B =c/co . (26)

The situation is clarified in Fig. 3. The charge, travel-
ing from left to right, emits a signal from 3, which trav-
els to the observer at 0, traversing a distance Rm. The ob-
server is at z=0 and at a- perpendicular distance s from
the path. The field E is perpendicular to R~ and lies in
the plane of R and v. Since the magnetic field B was
found to be perpendicular to that plane and therefore per-
pendicular to E, the vector product E&B is along R
The signal was emitted from A at an earlier time t' in or-
der to arrive at 0 at the time t, with c(t t')=R . By-
the time the signal reaches 0, the particle is at 8, with
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z =0 Z

FIG. 3. Geometrical relations for the Cerenkov pulse. The
source (po ) at 3 emits a signal at an early time giving the E
field at the observer position O. When the field reaches the ob-
server, the particle is at 8.

RADIATED POWER

The energy radiated may be found by calculating the
Poynting vector and integrating over a surface. If the sur-
face is a cylinder centered on the z axis, the fields at a
given time have a pattern independent of angle and a z
dependence as shown in the top curve of Fig. 2. The
Poynting vector is, of course, along R, and the outward
component may be integrated over the cylinder to give the
total power radiated. As a crude estimate for the integral,
replace the field by the peak field (19) and let the spatial
width of the rising ramp of the pulse be a. The radiated
power is then

P(approx) = 8
UIo sin 0,

C
(27)

in cgs units. In the mks system, the square bracket is re-
placed by 2@0/n.

In the earlier calculations, ' the fields and power were
expressed in terms of Fourier amplitudes. If the same
current pulse is assumed, I' has frequency components
up to the value of ~ such that the wave 1ength of the radi-
ation is equal to the pulse length. If it is assumed that P
rises linearly up to this frequency and suddenly drops, the
total power radiated becomes (in mks units)

g P„= povIO sin 8, . — (28)

Equations (27) and (28) are both rough estimates and

D =v (t t'). Th—en R /D =c/v =cosO, as expected. D
is the path length from A to 8

From Fig. 3, one should also note that the electric field
is transverse to R~, which points from the earlier (retard-
ed time) position of the particle, and is radial relative to
the present position of the particle. The former condition
holds for typical dipole radiation, while the latter condi-
tion holds for the Lienard-Wiechart field for a particle
moving with v &c. The Lienard-Wiechart fields fall off
as the inverse square of the distance, and do not represent
radiation. In contrast, the fields discussed here fall off
more slowly than R ' and represent radiation —which is
discussed in the next section. The R dependence of 8 can
be seen from (19) where the factors except for A

cause 8 to fall off as R '. However, the 3 '~ factor
contributes a R ' factor from (16) so that 8 actually
varies as R ' as would be expected from the assumed
cylindrical symmetry of the current source.

the point is that the similarity of the results is asserted to
be confirmation that the calculations in this paper
represent the Cerenkov radiation, expressed in terms of
time dependence of the fields.

DISCUSSION

In preceding sections, the time structure of the electric
and magnetic radiation fields was developed. Only the far
fields were retained in the development leading to the 8
field (13), and the E field (21) and (25), and only the as-
sumption of a rigid charge confined to a line was intro-
duced. It is seen from these equations that the time
derivative of the current is the source function.

The simple model chosen to demonstrate the method of
developing the time structures was that of a' uniform
charge distribution with uniformly varying front and rear
sections. This model gives the square pulse charge deriva-
tive of height p' shown in Fig. 1 which is easy to use in
evaluating the integral (13). Similar remarks hold for the
power series expansion of u (z') which is an increasingly
better approximation as the time during which the current
is changing, decreases. Current variations other than
linear may be readily incorporated within the framework
given. Also it should be noted that in all cases the varia-
tion of R in (13) which was assumed constant in the ex-
ample will tend to sharpen both the leading and trailing
edges of a field pulse.

In the evaluation of the time structure of the fields, the
peak field arose when the integral (13) had the most wide-
ly spaced limits; a situation which occurs because u (z')
has a negative slope for sufficiently negative values of
(z' —z) as shown at the left side of Fig. 1. In the non-
Cerenkov case (v/c & 1) this situation does not arise since
then the slope of the u (z') function always has the same
sign. In this case (i.e., v & c) the u (z') curve bends down-
ward instead of upward for large negative values of
(z' —z) and the only contribution to the integral (13) is
from small regions of z'.

It should be noted that the radiation which is calculated
is produced by a bunch of electrons of negligible trans-
verse dimension, and with a longitudinal distribution
which does not change as the bunch travels along the z
axis. The radiated power is calculated to be proportional
to po and therefore to the square of the beam current. The
expressions are valid and the evaluation is therefore
coherent only insofar as the bunch is not distorted either
by the reaction of the radiation or by the instabilities asso-
ciated with very high current beams.

These results show how the time structure of Cerenkov
radiation arises from the time rate of change of the charge
distribution in an electron bunch. Present technology is
such that this structure is not observable in the Cerenkov
radiation from S or L band linacs because of their rela-
tively high fundamental frequency. However, induction
accelerators with their longer electron bunch structure

' should produce Cerenkov signals in air for energies
greater than about 25 MeV, which should be observable.

The extension of this method of calculation of the fields
for both Cerenkov and sub-Cerenkov charge velocities is
easily made for cases for which the charge derivative p'(u)
is not constant. A detailed report is under preparation.
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Finally, we note that although the results of other work-
ers ' often have singularities in the radiated power at the
Cerenkov angle, the present results and our previous
ones ' show that the radiated power is finite whether cal-
culated in the frequency or time domain. Also it should
be noted that causality is satisfied because the fields are

zero at times earlier than the edge of the pulse shown in
Fig. 2.
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