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The location of the zeros in dipole matrix elements for photoionizing transitions (Cooper minima)
in ground states of atoms has been calculated for all subshells over the entire periodic system. These
zeros occur for all subshells whose wave functions have nodes, except the 2s subshell. The behavior
of these zeros, as a fun}ction of the atomic number Z, has been examined and their “trajectories” are
rather complicated. The trajectories are explained primarily in terms of initial-state quantum de-
fects and final-state phase shifts. All atoms with Z > 10 have at least one zero, and some have as

many as five zeros.

I. INTRODUCTION

Over the past two decades our understanding of the
atomic photoionization process has increased dramatical-
ly.!=3 The cross sections, photoelectron angular distribu-
tions, and spin-polarization parameters are indicators of
fundamental interactions within the atom and, thus, are
important in their own right. However the cross sections;
which are related to optical oscillator strengths in the con-
tinuum by a simple multiplicative constant, are of still
greater importance since many atomic (and atomic ion)
properties are derivable from these oscillator-strength dis-
tributions;® among these are polarizabilities, Lamb shifts,
and stopping power of matter for fast charged particles,
to name a few. For these reasons then, an understanding
of the details of atomic photoionization cross sections is
very desirable.

In the nonrelativistic dipole approximation, which is
excellent for photoionization cross sections below #v~ 10
keV,!=> the cross section is proportional to a weighted
sum of the absolute squares of the /—/—1 and [—/41
dipole matrix elements; only a single /—/+1 in the case
of s-electron photoionization, of course. An extremely in-
teresting feature of the /—/-+1 dipole matrix element is
the existence of zeros in a large number of cases. These
occur over the entire Periodic Table for all outer and
near-outer subshells whose wave functions have nodes, ex-
cept for the 2s state. These zeros profoundly affect the
shape of the cross section, i.e., the spectral distribution of
oscillator strength. In addition, they also affect the pho-
toelectron angular distribution and spin polarization very
significantly. They were first discovered experimentally
in the photoionization of alkali-metal atoms.” The basic
explanation for the phenomenon in the alkali-metal atoms
was given by Bates®’ and extended to include relativistic
interactions by Seaton.!’ Later Cooper showed that this
phenomenon was not limited to the outer shells of the
alkali-metal atoms but was a very general occurrence.!! ~13
These zeros have, thus, come to be called Cooper minima.
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A myriad of Cooper minima have been uncovered both
theoretically and experimentally.!=> Despite this wealth
of data, there has been no systematic study of their
behavior across the Periodic Table. This work is a first
attempt in that direction. Simple central-field Hartree-
Slater wave functions'* have been used in our calculations;
these wave functions have been shown to be good qualita-
tive and fair quantitative predictors of atomic properties.
Thus, while we do not expect that the positions of the
zeros is terribly accurate, we believe that the systematic
trends are correct.

Calculations have been performed over the entire range
of the periodic system for all subshells which exhibit
Cooper minima, i.e., all but the 1s, 2s, 2p, 3d, and 4f.
Over half of all the elements have been considered. In
Sec. II a brief review of the theoretical methodology is
given. The results and discussion are given in Sec. III and
a summary and conclusions are presented in Sec. IV.

II. BRIEF REVIEW OF THEORY
Within the framework of the central-field approxima-

tion, the photoionization cross section for an nl/ subshell
of an atom is given in dipole approximation by!—*

47%a3a N,yle—ey)
3 21 +1
X AR _ (P4 + D[R, 1)}, M

where a( is the Bohr radius, a the fine-structure constant,
N,; the occupation number of the subshell, € the pho-
toelectron energy, and €,; the (intrinsically negative) sub-
shell binding energy. The dipole matrix elements are
given by
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with P, /r and P ;.,/r, the radial parts of the discrete
and continuum wave functions, respectively; the discrete
wave function is normalized to unity and the continuum
to unit energy in rydbergs, i.e.,

O'nl("-)=

sin[e!?r — > lm—e~12(In2€'/%r) +0,(€)+8;(€)] as r— oo 3)
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with o,(€)=arg(l +1—ie~'/?), the Coulomb phase shift,
and §,(¢), the non-Coulomb phase shift.

The wave functions used were Hartree-Slater (HS)
central-field functions for the initial discrete (ground)
state and continuum functions which were solutions to the
radial Schrddinger equation in the same central potential
as the ground state, i.e., no core relaxation was considered.

III. RESULTS AND DISCUSSION

Calculations were performed from Z=11 to Z=103
for ns(n=3-7), np(n=3—6), nd(n=4—6), and 5f
subshells. ‘Before presenting the detailed results, however,
it is useful to discuss the general characteristics of Cooper
minima. Generally both discrete and continuum states
have wave functions which are oscillatory. In addition,
the continuum wave function becomes more compact with
increasing energy, i.e., its nodes move in towards the nu-
cleus. In the complicated overlap of positive and negative
amplitudes which go into the dipole matrix element, it
may be that at some energy the positive and negative com-
ponents just cancel giving a zero in the dipole matrix ele-
ment. This is the Cooper minimum.

For atoms in their ground state, zeros are found only in
the /—1 +1 transitions, never in the /—I/ —1. There is,
at most, one zero for a given /—/ +1 transition, in addi-
tion. Furthermore, the hydrogen atom shows no zeros in
any state. This shows that the zeros must be due to devia-
tions of the wave functions from hydrogenlike behavior.
The dipole matrix element can be divided into two parts;
the first is the contribution of the outer region where the
potential has gone asymptotic and is purely Coulomb. In
this region, then, the wave functions are hydrogenic with
phase shifts (or quantum defects for discrete states) and
the contribution of this region to the matrix element can
be characterized by the continuum phase shift, and
discrete quantum defect in a manner much like the
Bates-Damgaard method.!> The second is the contribu-
tion of the inner region where the potential is completely
non-Coulomb. The contribution of this region to the ma-
trix element is complex and not described by simple pa-
rameters. For most Cooper minima, the contributions of
both regions are of importance, but the above separation
will still be of use in analyzing the systematics of the
zeros as a function of Z. ‘

A. ns subshells

The calculated “trajectory” of each of the ns—ep
Cooper minima is shown in Fig. 1. In each case, the zero
is in evidence as soon as the subshell becomes bound in
the ground state, i.e., at each of the alkali-metal atoms.
As Z increases the zero moves out, away from threshold,
in all cases. Increasing Z further, this trend reverses and
the zeros move to lower photoelectron energies, eventually
moving below threshold (into the discrete spectrum) at
high enough Z; this move back to lower energies is not
seen for 7s because we run out of Z before this happens.
Sample calculations for unphysical high-Z atoms
(Z > 110) confirm this point.
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FIG. 1. Location of the zero (Cooper minimum) in the dipole
matrix element for ns—ep ionizing transitions in energy in ryd-
bergs above threshold (E,;,) vs atomic number Z for ground-
state atoms.

To account for this behavior, recall, as discussed above,
that deviations (phase shifts, quantum defects) of the
wave functions from hydrogenic are required to produce
zeros. Roughly speaking, if the hydrogenic wave func-
tions are thought of as being “in-phase” sinusoids, then a
relative phase shift between the initial- and final-state
wave functions of about 77/2 is needed to produce a zero.
This, of course, ignores both the fact that the wave func-
tions are not sinusoids and the effect of the inner region,
but it is a useful zeroth approximation. The quantum de-
fect of a bound state can be simply calculated from its
binding energy'® and phase shifts for Hartree-Slater con-
tinuum states are known.!” Looking at Z =11, the rela-
tive phase difference between the bound 3s state and the
threshold function is just about /2. Thus, a zero is ex-
pected in the 35— €p matrix element right near threshold,
which is just what is seen. Going up to Z =12, the rela-
tive phase difference increases (the 3s quantum defect in-
creases more than the ep threshold phase shift) so that the
zero occurs at higher energy where the ep has moved in
enough for just the correct overlap.

For these cases, the 3s wave function is quite diffuse (as
newly bound wave functions generally are) so that most of
the overlap in the dipole matrix element occurs in the re-
gion of space where the atomic potential is effectively
Coulomb. Going up in Z to Z =13, the zero moves to



3700 STEVEN T. MANSON 31

lower energy, towards threshold, despite the fact that the
relative phase difference is actually very slightly larger.
This is due to the overlap in the inner, non-Coulomb, re-
gion. More of the amplitude of the 3s wave function has
moved to the inner region, with increasing Z, and the
phase shifts (quantum defects) are smaller in this region
(they are zero at r =0) as the phase-amplitude analysis
shows.!® Smaller phases translate to smaller relative
phase differences which mitigates against zeros. This ef-
fect becomes even more pronounced by Z =14 where the
zero has moved down almost to threshold; by Z =15 the
inner region dominates and the zero is below threshold
and remains there for all higher Z’s. Thus it is the draw-
ing in of the discrete wave function with increasing Z that
ultimately causes the Cooper minimum to move below
threshold.

This same analysis applies to the other ns states as well.
The 2s, which has no Cooper minima, becomes bound at
such a low Z (Z =3) that the relative phase difference is
only about 0.37, which is too small to cause a zero; for
larger Z, where the relative phase difference is large
enough, the 2s wave function is quite compact and the
inner region is dominant.

The 4s-—ep Cooper minimum behaves in substantially
the same manner as 3s, but with two important differ-
ences; for the 4s the increase from the location of the zero
where it is first bound at Z =19 occurs over a much
larger range of Z, and it moves out much further, ~0.5
Ry as opposed to ~0.1 Ry. Both of these differences are
caused by the binding of the 3d subshell in the ground
state at Z =21. In the 3s case, subsequent elements add-
ed electrons in the same n =3 shell, but in the 4s case, the
3d electrons that are added are inside the major portion of
the 4s amplitude. Thus, in going up in Z from 20 to 21,
the nuclear charge is increased by one and an electron is
added in an orbital inside the 4s which essentially totally
screens the 4s subshell from the increase in nuclear
charge. The 4s wave function remains diffuse for all of
the elements in which the 3d subshell is filling. This,
combined with a small steady increase in the relative
phase difference, means that the Cooper minimum moves
further from threshold with increasing Z, as is seen in
Fig. 1. This continues until the 3d subshell is filled at
Z=29; the Cooper minimum moves rapidly towards
threshold for still higher 'Z, disappearing into the discrete
above Z =35.

The zero in the 55 —€p channel virtually duplicates the
behavior of the 4s Cooper minimum, first appearing at
Z =37, moving away from threshold until Z =47 where
the 4d becomes filled then moving closer to the threshold
and moving into the discrete above Z =53.

The 6s—ep Cooper minimum is quite similar to the 4s
and 5s except that it is moving away from threshold from
Z =55 where it first appears (and the 6s is first bound in
the ground state) until Z =79 which is more than double
the range of Z’s for which the 4s and S5s Cooper minima
move away from threshold. This is the result of not only
the 5d electrons becoming bound inside of the 6s subshell,
but the 4f electrons as well. Since there are 14 f electrons
in a filled shell, it would be expected that the range of Z’s
at which the 6s Cooper minimum is moving away from

threshold is increased by 14 from the ranges of 4s and 5s;
this is exactly what is found.

Another difference, albeit slight, between the 6s Cooper
minimum on the one hand, and the 4s and 5s on the oth-
er, is that the highest Z at which the minimum appears in
the continuum is the noble gas for the 6s (Z =86). Since,
however, the 65 zero is so close to threshold for Z =86,
we would hesitate to make too much of this point since, as
discussed above, the position of the zero results from a
balance of several effects and more exact calculations
could well show that balance altered and obviate the
difference.

The trajectory of the 7s—ep Cooper minimum looks,
at first glance, rather different from the others. This is
due primarily to the fact that we come to the end of the
known elements while still only on the part of the trajec-
tory that is moving away from threshold. In addition, a
finer mesh of Z’s is used here than for the other ns’s
which shows some of the nonmonotonic behavior of the
trajectory. Basically, the wiggles are due to nonmonoton-
ic filling of the 5f and 6d subshells and the completion
between them. Calculations assuming only 5f electrons
showed no structure in the trajectory. It appears that ac-
tinide elements having only 5f electrons have Cooper
minima further away from threshold than those with 5f
and 6d electrons. The 5f screens the 7s slightly better
than the 6d does and this screening, as discussed in con-

! nection with the 4s, is what leads to the movement of the
zero away from threshold with increasing Z in the first

place. Had such a fine mesh been employed in studying
the 6s over the range of the lanthanides, it is expected that
similar structure would have emerged.

B. np subshells

The calculated trajectory of each of the np—ed Cooper
minimum is shown in Fig. 2. As in the ns cases, the
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FIG. 2. Location of the zero (Cooper minimum) in the dipole
matrix elements for np —ed ionizing transitions in energy in
rydbergs above threshold (E.;,) vs atomic number Z for
ground-state atoms.



Cooper minimum are in the continuum just as soon as the
np orbital becomes bound in the ground state of the atom.
However, the trajectories of the np’s are rather different
from the ns’s and, for that matter, from each other. In
addition, the np zeros are much further from threshold
than the ns; as high as 5 Ry above threshold for the np’s
compared with a maximum of about 0.5 Ry for the ns’s.

To understand the trajectories of the np—ed Cooper
minima, note first that while the ns and np quantum de-
fects (es and ep phase shifts at threshold) increase rather
uniformly and monotonically with Z, the d-wave thresh-
old phase shifts do not; instead they are rather constant
with Z, jumping by 7 just above each of the noble gases'’
starting with 'Z =18. As a result, the relative phase
difference for the ns-—ep transitions remain in a relative-
ly narrow range between 0.57 and 0.7, while for the
np—ed transitions the phase difference varies between
less than 7 and more than 27. From this relationship of
the relative phase differences to the position of the zeros,
discussed in Sec. A, it is clear that the largeness of these
differences in the np case, as compared to the ns, explains
why the Cooper minima are much further from threshold
for np. In addition, the much larger range of variation of
the phase differences in the np case implies rather dif-
ferent and more complicated trajectories than in the ns
case. »

For the 3p—ed Cooper minimum, at Z =13 (where
the 3p becomes bound in the ground state), the relative
phase difference is 1.37 which translates to a zero more
than 1 Ry above threshold. The zero moves out further,
with increasing Z, because the 3p quantum defect is in-
creasing, while the d-wave threshold phase shift remains
relatively constant at zero, so that the relative phase
difference increases. by Z =19, the d-phase shift jumps
to about 7/2 at threshold, with another 7/2 jump at
Z =20. These jumps are much greater than the increase
in the 3p quantum defect here, so the relative phase
difference drops and, thus, the zero moves closer to
threshold. Increasing Z further, the d-wave phase
remains at about 7 so that the relative phase difference is
increasing, but the “inner effect,” discussed in Sec. A, is
becoming more important and the balance between the
two effects keeps the zero at about the same place until
Z =31 where the inner effect dominates and the zero
moves much closer to threshold, disappearing below
threshold by Z =32.

Two anomalies occur, at Z =24 and 29, where the zero
moves markedly further out. These points are caused by
anomalous filling of the shells; in each case there are two
more 3d electrons and one less 4s than the previous Z.
This increases the screening and makes the 3p wave func-
tion less compact, thereby giving more weight to the rela-
tive phase difference which is tending to move the zero
away from threshold.

The 4p—ed Cooper minimum is seen from Fig. 2 to
behave rather differently from the 3p. At the onset,
Z =31, the zero is about 3.5 Ry above threshold, much
higher than the 3p because the relative phase difference is
1.47 here, greater than in the 3p case, and the outer shell
is more diffuse than for the 3p case since the atom is
larger, thus emphasizing the outer region in the dipole
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matrix element. With increasing Z, the zero moves out
only a small amount because the 4p quantum defect is in-
creasing only about as much as the d-wave threshold
phase shift, keeping the relative phase difference almost
constant. Above Z =35, the jumps in the d-phase shift at
Z=37 and Z=38 cause the rapid movement of the zero
towards threshold, just as in the 3p case. Beyond Z=38,
the 4p trajectory behaves in much the same way as the 3p
above Z =20, and for precisely the same reasons.

The 5p—e€d zero behaves, at its onset, just like the 4p
except that the zero is further out because the atoms here,
Z =49 and above, are still larger than the corresponding
4p cases. Above Z=56, however, where the minimum
has moved closer to threshold owing to the jumps in the
d-wave phase shift, the zero again moves away from
threshold, with increasing Z. This differs from the previ-
ous np zeros discussed and is due to the filling of the 4f
shell, which fills inside the 5p. Since p-waves are only
slightly penetrating, this means that their quantum defect
will increase slightly in passing through the lanthanides;
but since d waves are almost completely nonpenetrating,
the d-phase shift remains constant. The net effect is an
increase in the relative phase difference which, when com-

- bined with the screening effect of the 4/°s keeping the 5p

diffuse, moves the minimum away from threshold, as
seen. Above the rare earths, where the 5d shell is filling,
the 5p trajectory behaves just like the lower np’s. Note
that with the rare earths there are anomalies due to
anomalous filling of the 4f subshell, just as was found for
the filling of the nd shells.

The Cooper minimum in the 6p—ed channel looks
rather different from the other np’s but this is mainly be-
cause it has not yet moved into the discrete at the highest
Z considered. When that point is taken into account, it
behaves almost exactly the same as the 5p and for the
same reasons. The 6p trajectory ends while still in the ac-
tinides. The atoms here are still larger than in the 5p case
and therefore, still more diffuse, moving the zero still fur-
ther from threshold, however.

C. nd subshells

The behavior of the nd —¢ef Cooper minima are shown
in Fig. 3. It is seen that a zero appears as soon as the sub-
shell becomes bound in the ground state, as with the ns’s
and np’s. It is also seen that with increasing #n, the Coop-
er minima move further from threshold, just as the np’s
did, owing to the increasing diffuseness of the atoms.
Furthermore, the nd zeros are much further from thresh-
old than the np’s, as far out as 14 Ry.

The 4d —€f zero starts off at Z=239 at just under 5 Ry
above threshold owing to a huge relative phase difference
of more than 1.87. In fact this is a large enough differ-
ence to support two zeros in the dipole matrix element,
but the inner effect is strong enough to preclude this. In
an excited ns state of Z=39, where the inner effect is
proportionally less important then, it is possible to have
two zeros, in fact this has been reported for the excited 5d
state.!® )

With increasing Z, the 4d quantum defect increases

-while the f-wave threshold phase shift remains zero, caus-



3702 STEVEN T. MANSON 31

12.0 p——p——p—T1— 71T 3.0 T T
.
10.0 - - 120 . . 4
&
8o} e nol .
o, .
£ v £
(X153 . E 100} .
w ¢ ° w
- .
a0l PEURRE sof 4
.
. .
| 4d ] L sd .
. o
0.0 1 1 A i 1.0 7.0 1 1 1 1 A
32 40 48 56 64 72 S6 64 72 80 88 96
z z
b T T T T 18.4 T T T T T
1.0 1.8 -
f .
1354 - 16.8 |- e
£ £ 5
E wof E E 160} e
uf 6d w .
25} ° ] 5.2} E
120} - 1.4 -
1.5, 1°s 1 1 1 1 13.6 - L i I 1 1 i
"84 88 92 96 100 104 90 92 94 96 98 100 102
Y4

FIG. 3. Location of the zero (Cooper minimum) in the dipole
matrix element for nd —€f and 5f—€g ionizing transitions in
energy in rydbergs above threshold ( E,,;,) vs atomic number for
ground-state atoms.

ing the relative phase difference to increase and the zero
to move further above threshold, reaching a maximum at
Z=47. Above this, the zero starts moving back down
due to the increasing importance of the inner effect and
plummets between Z=55 and Z=56 where the f-wave
phase shift jumps from O to 7 at threshold. At still
higher Z, the rare-earth region, where 4f’s are being
bound, the zero moves out slightly. This is because the 4d
quantum defect is increasing while the f-phase shifts are
remaining constant with increasing Z, combined with the
screening effect of the 4f filling which keeps the 4d wave
function quite diffuse. The zero does not move out uni-
formally or monotonically in the rare-earth region owing
to the anomalous filling of the 4f subshell. Above the
rare earths, the inner effect starts to dominate and the
zero moves into the discrete above Z=76.

The 5d —¢€p has a trajectory very similar to the 4d with
two exceptions. The 5d is part of the ground atomic state
for Z=57, 58, 59, and 64 and for no others below Z=71.
Further, at the highest Z considered, Z=103, the 5d zero
has not yet moved below threshold. Aside from these, we
see the same rise, drop, and subsequent meandering of the
5d zero for exactly the same reasons for that behavior in
the 4d case.

For the 6d —¢€f Cooper minima, only the rising portion
of the trajectory from the onset is seen before the known
Periodic Table ends. This rise is just like the 4d and 5d
cases and occurs for precisely the same reasons. The vari-
ous anomalies in the 6d trajectory, which are seen clearly
owing to the fine mesh of Z’s considered, are due to the
nonmonotonic filling of shells with increasing Z, as dis-
cussed previously.

D. 5f subshell

The trajectory of the 5f—€g zero is also shown in Fig.
3 where it is seen that the zero is at 13.8 Ry at the onset,
Z =91, resulting from a relative phase difference of 2.

Since the Periodic Table runs out, only a small portion of
this trajectory is seen. It rises, with increasing Z, since
the 5f quantum defect is increasing while the eg phase
shift remains zero at threshold. The anomalous behavior
is due to anomalous filling of shells, as in other cases.

IV. FINAL REMARKS

The location of Cooper minima in ground states of
atoms has been calculated over the entire periodic system
and their behavior, as a function of Z, has been explained
primarily in terms of the quantum defects of the discrete
states and the phase shifts of the continuum states. It was
found that the trajectories of these zeros were generally a
very complex function of Z for various reasons as dis-
cussed.

It was also found that these Cooper minima are ex-
tremely pervasive. At least one subshell is found to have
one for all Z > 10 and some high-Z elements have as
many as five, e.g., Z=92 has Cooper minima in the 7s,
6p, 5d, 6d, and S5f channels. Clearly, then, this
phenomenon is not an isolated curiosity.

These results have been obtained using simple nonrela-
tivistic Hartree-Slater wave functions. Based upon past
experience, however, it is expected that using more sophis-
ticated wave functions including exchange and/or correla-
tion might make some quantitative changes, although
they are unlikely to alter the overall systematics.>?°

Relativistic effects are another matter. This is because
a single nonrelativistic Cooper minimum becomes three
minima relativistically (two for an initial s state). For ex-
ample, the 6p-—ed nonrelativistic channel becomes
6p1,—€dsp, 6p3pn—€dyn, and 6py,—edsy; the
p1,2—€ds/, transition is forbidden in the electric dipole
approximation. Comparing these relativistic zeros with
the nonrelativistic, using the same atomic formulation
otherwise, provides an extremely sensitive probe of the
relativistic interactions. This has been done for 6p and 5d
subshells?"?? and the results showed huge splitting be-
tween the zeros of the relativistic subchannels arising
from a single nonrelativistic channel; this emphasizes the
sensitivity of the position of the Cooper minima to small
interactions such as the spin-orbit effect.

Rich as the phenomenology is for Cooper-minimum
ground-state atoms, it is far richer for excited states where
zeros exist in [—I —1 transitions'®?? and multiple zeros
(as many as three) in individual channels are found.!>?32*
It would be interesting to connect the phenomenology of
ground- and excited-state atoms by calculating the con-
tinuation of the trajectories to Z’s below where the orbi-
tal is bound in the ground state, e.g., look at the 4p transi-
tions for Z <31. We are embarked on this project at
present.
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