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We present calculations of the photoionization spectrum of excited hydrogen using 7 polarization
in the presence of a strong electric field as a function of the spherical (applicable to complex atoms)
and parabolic quantum numbers of the excited state. We also present corresponding measurements
of the photoionization yield from the individual parabolic states of n=2. Both the calculations and
the measurements show an enhancement of the depth of the so-called ‘““Stark-induced modulation”
in the region E >0 when the initial excited state is a pure m;=0 blue state, and disappear almost
completely when the initial state is a pure m; =0 red state. These results are understood using argu-
ments based on the fact that the charge distribution of the Stark-induced states is tremendously ex-
tended up field. Because of the excellent signal to noise ratio of the enhanced modulations, we were

able to measure the field dependence of the spacings with sufficient accuracy to confirm the 3
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power law and rule out the recently suggested 5 power law.

I. INTRODUCTION

The simplest atom, the hydrogen atom, has been the
subject of continuing interest to atomic physicists. This
interest stems from the fact that the absence of electronic
core effects allows precise calculations to be made of its
properties, both in isolation and under the influence of
external forces due to electromagnetic fields and col-
lisions. This paper deals with an experimental situation
which can only be found in hydrogen: spectroscopy from
pure parabolic states in the presence of external electric
fields. The splitting of the various fine-structure states is
less than a fraction of a wave number, with the largest be-
ing 0.365 cm~! occurring in n=2. At 475 V/cm, the
Stark effect and the Lamb shift in n=2 become compar-
able, whereas at ~2.910 kV/cm the Stark effect becomes
comparable to the fine-structure splitting. For fields
greater than about 5 kV/cm, the interaction with the
Stark field dominates the fine structure, thus leading to a
linear Stark splitting of n=2. Consequently, at these
high field values pure parabolic (Stark) states can be
prepared if selective narrow-band sources of excitation are
available.

In complex atoms, the interaction of the outer electron
with the core results in much larger splittings of the vari-
ous components, thus making the field strength necessary
to achieve pure Stark states in low-lying excited states
very high and experimentally not feasible to apply because
of breakdown. Of course, the required field strength
drops for high-lying excited states. Unfortunately, the
wavelengths needed for studies for the photoionization
near threshold of these states are out of the range of the
convenient optical and infrared tunable sources.

In the presence of large electric fields, the field induces
relatively long-lived parabolic states (so-called Stark-
induced resonances) in the photoionization of the atom in
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the region E> 0. Each of these states is a superposition of
a few parabolic states with intensity ratios typically as 0.9,
0.06, 0.02, etc. Thus, they are approximately 90% pure
parabolic states.> Therefore, the capability of producing
pure parabolic excited states as initial low-lying states
offers the possibility of spectroscopy between them and
the higher parabolic states. Previously pure parabolic
states in hydrogen were prepared in states of high princi--
ple quantum number after charge exchange of a beam of
protons in a rare gas.> All but the specific Stark state
sought were quenched using microwave cavities. Transi-
tions to higher levels at infrared wavelengths were in-
duced using Doppler tuning. This technique in the pres-

_ence of an electric field has been used to measure the ener-

gies and field ionization rates of some excited Stark states
of hydrogen. However, application of this method to the
states in the region near E=0 would be very difficult,
since it would require a powerful, broadly tunable laser in
the infrared; currently, such lasers are unavailable.

Recently, we made the first observation of the Stark-
induced resonances in hydrogen near E=0.* Similar ob-
servation was also achieved.” In this paper we study exci-
tations from parabolic (Stark) states in a given low-lying n
state in hydrogen to the highly excited states near E=0 in
the presence of a strong electric field. We present calcula-
tions of the photoionization cross section as a function of
the spherical quantum numbers n and [/ of the initial state
and as a function of the parabolic quantum numbers n,
n,, and my; of that state. We give the dependence of the
depth of the Stark-induced modulation on these quantum
numbers, and on the electric field. Although excitation
from spherical states in the presence of strong fields is not
applicable to hydrogen, however, it is applicable to excita-
tion in complex atoms.

The calculations are compared to experimental results
in the case of n=2 in the presence of 16.9, 14, 8, 6.5 and
4.5 kV/cm. Both the calculation and the measurement
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show, in agreement, an enhancement of the depth of the
Stark-induced resonances in the region E >0 when excited
from a blue m;=0 state. These observations are under-
stood from arguments that are based on the fact that the
electric field extends the electronic charge distribution to
the broad resonances up field.

II. THEORY OF STARK EFFECT NEAR E=0

Several quantum-mechanical numerical calculations
have been performed on the effects of a strong electric
field on the highly excited states of atomic hydrogen. The
calculation of Damburg and Kolosov® was concerned with
the positions and ionization rates of the states in the com-
bined potential, and did not address the problem of calcu-
lating excitation probabilities. Luc-Koenig and Bachelier’
calculated photoionization cross sections for hydrogen in
an electric field, but treated only excitation from the
ground state. Harmin’s numerical WKB calculation
found the cross sections for some excited hydrogenic
states; however, since the calculation was performed with
a later application to complex atoms in mind, the initial
states used were good states of angular momentum (for
example, the 3p state).? Since detailed comparison with
the experiment to be described will require the determina-
tion of the cross sections for photoionization from the
n=2 Stark excited states, the need for a new calculation
was seen.

The starting point for the calculation of the photoioni-
zation cross section of atomic hydrogen in an electric field
is equations
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These equations are of the form of effective one-
dimensional Schrodinger equations in the coordinates £
and 7, with the separation parameters Z; and Z, playing
the role of effective Coulomb charges for the motions in
each coordinate. The equations are coupled through the
relation Z;+Z,=1. Clearly, these potentials will depend
on the azimuthal quantum number m; and the values of
Z, and Z, for the state under consideration. In order to
apply WKB techniques to this problem, the Langer

correction must be made: this results in the conversion of J
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This series converges for £ —§&; < &;; therefore, this expres-
sion can be used to calculate the wave function using a
limited number of terms for values of £—§&; which are a
small fraction of &;. This expansion is used to calculate
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the numerators in the centripetal terms of the potentials
from m?—1 to m?. This correction is analogous to the
conversion 1(1 4+ 1)—(1 4 1/2)? in the field-free hydro-
gen atom problem. We study here the m; =0 case.

We first consider the motion in the £ coordinate. Since
the motion in £ becomes classically disallowed for &
greater than the turning point

& =E/F +[(E/F)*+4Z,/F]'/? 3)

and remains so for all larger values of the coordinate, the
magnitude of the wave function X;(£) must vanish at
large values of & In addition, the small-coordinate
behavior of Eq. (1) causes X;(£) to be proportional to £'/2
for small £&. At a given value of energy E and field F,
these conditions lead to a set of discrete eigenvalues for
the separation parameter Z, (the effective Coulomb
charge) corresponding to well-behaved wave functions.

The wave function in £ for given values of E, F, and
Z, is calculated by matching power-series expansions of
the solution at a large number of values of the coordinate,
in a technique similar to that of Damburg and Kolosov.’
The wave function is first expanded about the origin using
a power series of the form

X(E)=£7 3 Cen . @

n=0

The small-coordinate boundary condition is explicitly
displayed in this expansion. A recursion relation for the
coefficients C, is obtained by substitution of this expan-
sion into Eq. (1), yielding ‘

1
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C,=
The resulting expansion converges for all £, but in prac-
tice it is impossible to calculate terms of high enough or-
der to give accurate values for the wave function over the
entire region of interest. For this reason, this series is car-
ried to only 20 terms and is used to calculate the solution
and its slope at a small value of §,=0.01 a.u. The wave
function is then expanded about this value of the coordi-
nate in a new power series in (§—&p) which is matched in
magnitude and slope to the previously calculated function.

Substituting the following power-series form

o=3 cE—gr ©®
n=0

into Eq. (1) yields a recursion relation for the coefficients
of an expansion about any value of the coordinate &;:
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I
X and dX,/d§ at a new, larger value of the coordinate &;
such that &; —&; _; << §&;. .

At each new value of &; the wave function is expanded
and matched to the previous expansion, and then used to
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calculate the value and slope at the point of the next ex-
pansion. The size of the steps in the coordinate must be
chosen to be small enough that the series will converge us-
ing a small number of terms (20) and the solution will not
vary much over the interval (to facilitate subsequent nu-
merical integration), but not so small as to lead to exces-
sive calculation times. Since the wave function varies rap-
idly near the origin and more slowly as & increases, the
size of the steps in £ were chosen to make an exponential
approach to a constant step size S as a function of &,

S =So[1—exp(—£&/&))] . - (8)

For Sy7&p << 1, rapid convergence of the series expansions
is assured. The values of S, and &, are chosen to keep the
total number of expansion points reasonable while ensur-
ing that the solution does not vary much between succes-
sive steps.

The numerical calculation of X((£) is continued using
this procedure to a value of £ considerably greater than
the classical turning point. In this way the solution is
generated for a given E, F, and Z,. In order to find the
eigenvalues for an energy and field value, the following
procedure is used. The wave function is first calculated
for Z,=1, and the value of the wave function at the end
point is stored. The value of Z, is then decremented by a
small amount and the value of the wave function is recal-
culated, stored, and compared to the original value. Z, is
decremented until the value of the solution at the end-
point changes sign; when this occurs, Z, is changed by a
smaller amount in the opposite sense. In this manner the
program iterates through values of Z;, searching for a
value at which the wave function vanishes. Convergence
of Z, to an eigenvalue to a precision of ~10~° occurs
within about 30 iterations. The calculated eigenvalues are
insensitive to variation of the value of the endpoint if it is
chosen to be more than about twice the value of the classi-
cal turning point. On the final iteration, the values of the
coordinate and the wave function for each step are stored
for use in later computation.

Once an eigenvalue has been found for a given E and F,
the condition Z;+Z,=1 gives the value of Z,, allowing
numerical calculation of the wave function in the coordi-
nate 77 from Eq. (2). This calculation is performed in the
same way as that for the £ wave function; however, the
coefficients differ in that Z,—~Z, and F— —F.

The wave function X,(n) has the same behavior for
small coordinate values as X () but is unbound for all en-
ergies if the electric field magnitude is nonzero. Thus, at
large values of 7 it has an oscillatory character; asymptot-
ically, the time-independent wave function has the form

Yy 24 1 1
= P (2B /R

372 :
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The quantities A and & are found by calculating the slope
and magnitude of the wave function at some distant point
and substituting these values into corresponding expres-
sion derived from the asymptotic form, which gives 4
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and 6 in terms of these quantities. The calculated values
of X,(7) are stored in an array along with the values of 7.
Since the full wave function of the system is

1
V=V

the program has at this point produced a numerical solu-
tion proportional to the true wave function corresponding
to the calculated eigenvalue Z, for a given E and F.

In order to calculate the excitation matrix elements, the
numerical wave function must be normalized. As is typi-
cal for continuum state wave functions, normalization is
done per unit energy interval,

[ vz,Ewz ENav=s, ,SE—E), (1)

X1(EX(1)e™? (10)

where dV =(£+1n/4)dédnd¢d in parabolic coordinates.
This normalization condition can be shown to be
equivalent to setting the outgoing flux from the atom
equal to unity. Writing the normalized wave function as

(CZ E)1/2

17 . im;¢
——X(EX(n)e ", (12)
Ven 1(EXa(n

a calculation of the outgoing flux yields the normalization
constant for the numerical wave functions,

-1
PN

1/’norm =

Cz.E= (13)

The integral is computed by Simpson’s rule during the fi-
nal iteration of the calculation of X (£); using this quanti-
ty and the value of A4 found earlier, the normalization
constant is found. The values of the integral and A are
not sensitive to changes in the step sizes (within reason),
and 4 is insensitive to the exact value of the distant point
at which it is calculated, as long as the asymptotic form
of X,(7n) is valid at that point. Comparison of some re-
sults of this calculation modified to work at zero field to
the well-known analytic forms of the solutions in parabol-
ic coordinates has shown these wave functions to have a
relative accuracy of about 103,

The photoionization cross section for 7 excitation can
be written using parabolic coordinate wave functions as

o(E)=3 8(n,, EVdrlaliio) 3, | (v (n,E) |z |4;) |2 .
n

ny
(14)

As noted earlier, only final states with 0 <Z, < 1 will con-
tribute significantly to the cross section. Calculation of
the cross section therefore requires the determination of
the eigenvalues Z; within this range and the correspond-
ing final state wave functions, followed by calculation of
the matrix elements. Once the matrix elements have been
found, the partial cross sections o(n;,E) and the total
cross section o(E) can be calculated.

Since the initial states of interest are low lying, they are
essentially unaffected by the electric field. Therefore, the
matrix elements may be computed using the zero-field an-
alytic expression for the initial state under consideration.
The z matrix element in parabolic coordinates is
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(Wpni,E) |z [9)=7 [ p(n,EXE —nP), dEdn .

(15)

This two-dimensional integral is calculated using
Simpson’s rule over the same variable steps in § and 7
used in the calculation of the wave functions. The partial
cross section is then calculated for this eigenvalue using
this result, and the process is repeated for each of the cal-
culated eigenvalues. Finally, the photoionization cross
section for the value of energy and field under considera-
tion is found by taking the sum of the partial cross sec-
tions. In addition, the program calculates the quantum
number n, for the state responsible for each partial cross
section, allowing the states leading to structure in the pho-
toionization to be identified.

The resulting cross sections have been tested for their
sensitivity to variations in the various parameters of the
calculation such as number of expansion terms retained,
step size function and end points of calculation, and are
believed to have a relative accuracy of about 10~%. As an
additional check, the transition rates between analytically
calculated n=2 states and numerically calculated n=3
states were found. These rates were in agreement with
zero-field theory to an accuracy greater than that stated
above.

The modulations at E=0 at 16.5 kV/cm for the ground
state, 'the n=2 states, 100 and 010 states, and for the
n=3 states 200, 110, and 020 are presented in Table I.
Moreover, the results for excitation from some spherical
states are shown in the same table. Here the modulation
is defined as the difference between the cross sections at
the maximum and minimum of the resonance divided by
the average value. These results show that for the 100 ini-
tial state the predicted depth of modulation is more than
twice that for the ground state, while that for the 010
state is so small as to be practically unobservable. The sit-
uation is even more pronounced for the n=3 states.

Comparison between excitation from spherical and par-
abolic states is also interesting since the spherical case is
applicable to excitation in complex atoms. Our results in
Table I show that for excitation from the ground states
both cases give essentially the same result. However, for
excitation from excited states we have drastic differences
between the two cases. We find an enhancement of the
depth of the Stark-induced modulation in the region E >0
when the initial excited state is a pure m;=0 blue state,
and disappear almost completely when the initial state is a
pure m;=0 red state.

GLAB, NG, YAO, AND NAYFEH 31

III. EXPERIMENTAL

We now discuss the experimental test of these calcula-
tions. The experimental apparatus was described previ-
ously.*® Here we only describe it briefly. The technique
we use utilizes the simultaneous absorption of two pho-
tons from a single tunable pulsed laser beam at 243 nm re-
sulting in excitation from 1s to n=2, and some photoion-
ization of the resulting n=2 population. A second pulsed
beam at ~366 nm excites states near the continuum from
the n=2 state. The atomic hydrogen source is a modified
Wood discharge tube. An atomic beam is formed by ef-
fusion from the discharge region through a multicollima-
tor assembly. The atomic beam is directed into the dif-
fusion pumped . cell which contains the field plates. The
beam is loosely collimated, but produces a density of
about 10! H%cm3; the background gas density is on the

- order of 10'2/cm®. Ions produced by the laser radiations

are driven by the electric field through a grid in the
grounded plate. They travel through a 1-m-long, field-
free drift tube which provides mass analysis. This is
necessary since molecular impurities are easily ionized by
the ultraviolet wavelengths in use. Ions are detected using
an 18-stage venetian blind electron multiplier capable of
single ion detection. Under typical experimental condi- -
tions, several hundred ions are detected per pulse. The
data are collected and analyzed using a Digital Equipment
Corporation LSI-11/23 minicomputer system.

The optical beams needed for the excitation of atomic
hydrogen are produced using a pulsed laser system: an
Nd*3YAG laser and two dye lasers. A fraction of the
second harmonic of the YAG laser at 532 nm is used to
pump one of the dye lasers producing a beam at 630 nm,
which is frequency doubled to 315 nm by a KDP crystal
and then summed with the residual YAG fundamental by
a KDP crystal resulting in a beam at 243 nm of pulse
length of about 15 ns, a bandwidth of about 1.5 cm™!,
and pulse energies on the order of 10 microjoules. The
second dye laser produces a beam at about 555 nm which
is summed with part of the YAG fundamental to produce
a beam with pulse length near 10 ns, bandwidth of 0.6
cm™!, pulse energies of a few tenths of a millijoule and
wavelength near 365 nm. :

IV. PREPARATION OF PARABOLIC STATES
OF H(n=2) STATE

The feasibility of producing pure parabolic states in
n=2 hydrogen state is now described. Since we are in-

TABLE 1. Effect of initial state on the depth of the Stark-induced resonances.

Parabolic states (n;,n;,n)

n n; n, my % Spherical states %

1 1 0 0 20.4 1s 20.4

2 1 0 0 57 2s 20.4
0 1 0 2.3 2p 38

3 2 0 0 89.7 3s 18.8
0 2 0 0.3 3p 39.6
1 1 0 11.0

4 3 0 0 123.9
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terested in applying fields larger than 2 kV/cm, we will
not include the Lamb shift in our analysis since, as we
mentioned above, the Stark shift becomes comparable to it
at ~0.475 kV/cm. In the region of 2—5 kV/cm the cal-
culations of the n=2 Stark effect are quite complicated.
Only n and m; are good quantum numbers, but neither j
and /, nor the parabolic quantum numbers are. At fields
higher than 5 kV/cm, the interaction with the Stark field
dominates over the fine structure, thus leading to a linear
Stark splitting; consequently, the states can have good
parabolic quantum numbers. Such calculations were pre-
viously done for n=2, 3 and 4.° In Liider’s treatment the
Hamiltonian matrix for the n=2, m = % states interact-
ing with an electric field is calculated, with the result

2p3py 212 2812
~ 0 0 A\/B 2p3/2
H=
0 _Tlﬁ_ _A‘/:—; 2p1/2 ’
AVE6 —AVE — 2s

16

where A =eaoF /a*Ry) in cgs units where Ry is the Ryd-
berg energy, and the zero of energy is taken to be that of
the field-free 2p3,, level. This matrix is diagonalized,
leading to a secular equation for the energy eigenvalues

E+ 1845 —94)E—+42=0,

where £=AE /a*Ry). Solution of the secular equation
gives the energy shifts of the states, allowing the calcula-
tion of the eigenvectors as coherent superpositions of the
zero-field states. The overlaps of these states with the
pure parabolic states 100, 010, and 001 can then be easily
found, giving the probability amplitudes for the parabolic
state superpositions comprising each Stark state for a
given field. Here we present numerical results based on
these calculations relevant to our method of excitation of
n=2, namely, two-photon process using = polarization
radiation. ’

Figure 1 gives the Stark splitting of n=2 as a function

1+

(100)

Energy (cm)

(00"

(010)

O 5 10
Field (kv/cm)

FIG. 1. Calculated Stark splittings of the n=2 state of hy-
drogen as a function of the applied electric field. The Lamb
shift is neglected, and the states are labeled at high fields by
their parabolic quantum numbers.
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FIG. 2. The calculated absolute percentage of the various my
states excited from the ground state of hydrogen using a two-
photon process as a function of the applied electric field. The
polarization of the radiation is parallel to the field (7 polariza-
tion) and the bandwidth is larger than the Stark splittings.

of the electric field. At higher fields the states are labeled
by their parabolic quantum numbers (7n,,n,, |m;|). The
state (100) originating from p;,, is what we call the
m; =0 blue state, whereas the state (010) originating from
P1,2:51,2 is what we call the m;=0 red state. The
| my| =1 state is the least shifted state.

We will now discuss the efficiency of populating the
various Stark states of n=2 using the two-photon (7 po-
larization) process. Two cases will be discussed. In the
first the laser bandwidth is wide enough such that the
Stark states cannot be resolved, hence they are excited
simultaneously. In the second the bandwidth is narrow
enough such that individual components can be excited.
Figure 2 gives the percentage of population of the
| m; | =1,m; =0 blue state and m; =0 red state as a func-
tion of the electric field (F>1 kV/cm) assuming the
states are not resolved. It is known that in the zero-field
limit | m; | =1 state is not excited in the 7—7 excitation.
The presence of a field of 3 kV/cm produces about 30%,
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FIG. 3. The purity of the blue-shifted (a), unshifted (b), and
red-shifted (c) Stark states as a function of the electric field, in
terms of the parabolic states to which they tend at high field.
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however, at high fields (> 15 kV/cm) this population
drops to less than a few percent. We also note that the
two m;=0 states. approach 50 percent populations at
higher fields with the red one approaching faster than the
blue one.

Figure 3 gives the percentage of purity of the various
states if each state is selectively excited by radiation whose
effective bandwidth is less than the splittings. Above 10
kV/cm both of the m;=0 states can be purely excited
(>97%) whereas the |m;|=1 state is not excitable.
Thus, in principle, with fields larger than 8 kV/cm, exci-
tation of pure parabolic states of n=2 in hydrogen can be
achieved. But because our laser bandwidth is ~ 1.5 cm ™!,
then in practice we can only excite pure states using fields
larger than 10 kV/cm such that the Stark splitting is
larger than 3 cm ™. Since we use quite low atomic hydro-
gen density, we find no problem in dropping up to 18
kV/cm across our interaction region; thus making these
kinds of studies feasible.

~

V. EXPERIMENTAL RESULTS AND ANALYSIS

Figure 4 gives the ionization spectrum at field values
4.5, 6.5, and 8 kV/cm. The 243-nm beam is of 7 polari-
zation and does not resolve the Stark splittings. The ioni-
zation beam is tuned across the E=0 region and is also of
7 polarization.

Figure 5 was taken at higher fields where the Stark
splitting is large enough to allow selective excitation of
the parabolic states. In Fig. 5(a), the 243-nm beam was
selectively exciting the m; =0 blue state, whereas in Fig.
5(b) the m; =0 red state was selectively excited.

These observations can be understood from the follow-
ing arguments that are based on the charge distribution of
the broad resonances, and that of the parabolic states of
n=2 state. From the Stark theory it is known that the
electronic charge distribution of the broad resonances is
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Energy cm™)

FIG. 4. The photoionization spectrum of hydrogen near the
field-free photoionization threshold E=0 in the presence of
‘three different -Stark fields (a) 8.0, (b) 6.5, (c) 4.5 both light
beams have 7 polarization. Some quasidiscrete states are la-
beled by (n,,n,). All states are m;=0.
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FIG. 5. The photoionization spectrum of ground state hydro-
gen near E=0 in the presence of 16.9 kV/cm. Both beams have
m polarization. The 243-nm beam is selectively exciting the (a)
m;=0 blue state of n=2 (100) and (b) m;=0 red state of n=2
(010).

highly polarized along the axis of the electric field and
predominately up field with respect to the nucleus. On
the other hand, each Stark state of n=2 state has a dif-
ferent charge distribution. In fact, there is a correlation
between the energy shift and this distribution. As the
shift increases, the charge distribution gets more and more
concentrated along the field, being mostly up field if the
shift is positive (blue states) and down field if the shift is
negative (red states).

Using these arguments, one therefore expects to have a
large overlap between the wave function of the m;=0
blue state of n=2 and that of a broad resonance because
both distributions are elongated up field. On the other
hand, we expect much reduced overlap between the wave
functions of the m;=0 red state and a broad resonance.
These conclusions are precisely what causes the disappear-
ance of the modulation when we use the m; =0 red state
as an initial state. In fact, the disappearance of the modu-
lation in Fig. 5(b) is accompanied by an enhancement of
their depth in Fig. 5(a) taken with the blue Stark state as
an initial state. '

O4r

O
N

o(Z,B) @u)

0 eae®®® 0., a s

FIG. 6. The distributions of partial photoionization cross sec-
tions for the n=2, m;=0 parabolic states, (a) is for the blue-
shifted 100 state, while (b) is for the red-shifted 010 state.
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These conclusions can now be quantitatively supported
by examining the partial cross sections for different values
of Z,. At a given energy and field, a finite number of Z,
eigenvalues fall within the range 0 <Z, <1, each of which
corresponds to a state with quantum number #n,. As the
energy of the highly excited states increases, thresholds
for the excitation of states of higher n, are reached. In
terms of Z, these thresholds are those energies for which
an eigenvalue of Z;=1 occurs. Figures 6(a) and 6(b)
show the distributions for excitation by 7 polarized light
from the blue-shifted 100 state and the red-shifted 010
state to near E=0 for F=16.5 kV/cm, respectively. The
important feature of these distributions is the large
enhancement of the partial cross section of the Z,~1
state from the 100 state relative to the redder states. For
the 010 initial state, the redder states which contribute to
the smooth background have the larger cross sections.
Thus the blue-shifted 100 state has a large excitation
probability to blue-shifted final states (Z; ~ 1) but not to
red-shifted states (Z; ~0). Therefore, the structure near
E=0 would be expected to be much larger for photoioni-
zation from the blue n=2 state than from the red. For
comparison Fig. 7 shows the distribution of partial cross
sections for excitation by = polarized light from the
ground state to E=0 for F=16.5 kV/cm. The cross-
section distribution is similar to that of the osillator-
strength distribution for zero field (quadratic in Z; —Z,),
but enhanced for Z,>Z,. This enhancement is due to
the fact that blue-shifted final states have a larger charge
density near the nucleus than red-shifted states. This new
result is in qualitative agreement with weak-field results
which state that red-to-red or blue-to-blue transitions are
much more probable than red-to-blue or blue-to-red tran-
sitions.'°

The enhancement can be observed easily when Fig. 8 is
examined. Figure 8 gives the ionization spectrum at field
values 8, 14.4, and 16.9 kV/cm, with the same polariza-
tion conditions as in Fig. 5. At the two highest fields, the
243 nm was selectively exciting the m; =0 blue Stark state
of the n=2 hydrogen state, but it was not at the field 8
kV/cm. According to the current understanding, the
depth of the modulation is a slow function of the electric
field; it depends on F!/4. The fact that doubling the field
from 8 to 16.9 kV/cm resulted in a change of about a fac-
tor of two in their depth underscores this effect.
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FIG. 7. The distribution of partial photoionization cross sec-
tions o(Z,E) for E=0 and F=16.5 kV/cm, for photoioniza-
tion from the ground state.
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FIG. 8. The photoionization spectrum of ground state of hy-
drogen near E=0 in the presence of dc electric fields. Both
beams of 7 polarization. In (a) and (b) the 243-nm beam is
selectively exciting the m; =0 blue state of n=2 (100). In (c) the
243-nm bandwidth is larger than the Stark splittings.

A quantitative analysis of the dependence of the depth
of the Stark-induced resonances is given in Fig. 9. The
raw data is given in solid circles. The data are analyzed in
two different ways. In the first we use the calculated per-
centages of the population of the various Stark states of
n=2 at low fields given in Fig. 2 to arrive at the depth of
the modulation assuming that they were excited from the
m; =0 blue state alone. These reduced points are given in
open circles for the field values 8, 6.5, and 4.5 kV/cm.
The figure shows very good agreement between these
readjusted data plus the higher field data where resolution
was actually achieved, and the theoretical prediction for
excitation from the pure blue intermediate state.

The same figure also gives the theoretical prediction of
the depth of the modulations assuming that the Stark
states of n=2 were never resolved at all of the applied
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FIG. 9. The depth of the modulation at ~E=0 as a function
of the electric field. Solid circles are experimental points. Tri-
angles are calculated depths assuming that the 243-nm beam
selectively excited the m;=0 blue state (100), and the solid line
is a fit of these calculated depths. The open circles are depths
derived from the low field data assuming that the laser has ex-
cited 100 blue state only (adjusted data points). The dotted
curve is derived from calculations assuming the laser bandwidth
is larger than the Stark splittings.
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FIG. 10. Both the calculated and measured photoionization

spectrum of hydrogen m;=0 blue state of n=2 near E=0 at
16.7 kV/cm. The polarization of the ionizing radiation is 7.

fields. This clearly shows the enhancement of the depth
when individual parabolic states are used.

Finally, Fig. 10 gives both the measured and calculated
photoionization spectrum near E=0 at 16.7 kV/cm with
‘the m;=0 blue state as initial state. The polarization of
the ionizing beam is 7. Apart from some disagreement
between the heights of the sharp peak in the E <0 region,
one observes excellent agreement between the two spectra.
The variation in the heights is due to the fact that the
peak is very sharp (its width is dominated by the laser
width) thus making the location of its true peak difficult,
and subject to errors due to scan speeds. In addition, the
presence of nonuniformities in the electric field in the in-
teraction region leads to a broadening and reduction of its
height.

VI. FIELD DEPENDENCE
OF RESONANCE SPACING

One distinctive property of the field-induced resonances
near E=0 is the dependence of their spacing on field.
This dependence is believed to be universal; that is, the
resonances for any atomic system in an electric field will
obey the semiclassical formula:

AE =(7.499 cm~Y)[F(kV /cm)]?7* .

This conclusion is based on the fact that the phase in-
tegral appearing in the quantization condition is- insensi-
tive to the behavior of the potential at small values of the
coordinate. Each experimental study which has been per-
formed on complex atoms has included a comparison be-
tween the predictions of the semiclassical formula for the
threshold spacing and the experimental results. Agree-
ment has generally been quite good, although one study
reported a rather large discrepancy (7%) between the mea-
sured and theoretical values for the coefficient.!! Since
their study made use of more data points than previous

studies and thus is probably the most precise test yet made
of the spacing formula, their discrepancy is somewhat dis-
turbing. Moreover, there is a competing theoretical work
that predicts a = power law.!?

The best system in which to test the spacing formula is
hydrogen, since the lack of core mixing and the enhance-
ment of the resonance by excitation from pure parabolic
states lead to large resonance and very good signal to
background ratios. For each spectrum, the energy separa-
tion between the peak of the first resonance below E=0
and the peak of the second resonance above E=0 was
measured. This value was divided by 2 to give the thresh-
old spacing. This procedure was used to reduce the rela-
tive uncertainty in the measurement. Table II gives the
results of this measurement: the first column gives the
measured spacing for each field, while the second column
gives the prediction of the semiclassical formula. The
agreement is quite good. Figure 11 is a log-log plot of the
measured spacing versus field. The solid line is the result
of a linear least-squares fit of the data to the form of the
theoretical formula. The resulting best-fit value for the
exponent is 0.7511+0.02, in excellent agreement with the
semiclassical result. The value for the coefficient is
7.47+0.2 cm™!, also in excellent agreement with the
theoretical prediction. Thus, this analysis has verified the
semiclassical result for the field dependence of the spacing
to the highest precision reported to date.

In conclusion, we have performed measurements of the
photoionization cross section of hydrogen from pure para-

TABLE II. Theoretical and experimental spacings of the res-
onances at threshold as a function of the electric field.

F (V/cm) AE expt (cm™!) AE semiclassical (cm™"!)
4500 - 23.7£0.6 23.2
6500 29.5+0.7 30.5
8000 35.6+0.8 / 35.7
14400 54.5+1.5 55.4
16 900 64.0+1.5 62.5




31 SPECTROSCOPY BETWEEN PARABOLIC STATES IN HYDROGEN: ... 3685

bolic states. Such studies are not feasible in complex
atoms because of the large splittings in their fine-structure
components. Attempts to make measurements from
higher excited states such as n=3 or n=4 are underway.
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