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A method for including exchange exactly in the framework of the noniterative partial-
differential-equation (PDE) approach [Phys. Rev. A 28, 62I (1983)] to electron-molecule scattering
is presented. The method consists of breaking down the exchange equation into a set of inhomo-
geneous equations without integral terms. The difference form of the latter can then be solved by a
straightforward generalization of the uncoupled noniterative PDE technique. Application is made
to e-N2 scattering in the fixed-nuclei approximation. The method is checked by comparing with
other static- (exact) exchange calculations; agreement is found to be satisfactory particularly with
new (unpublished) linear-algebraic results of Collins. A polarization potential, previously derived on
the basis of a polarized-orbital treatment generalized to molecular targets, is then added; comparison
is made with our previous results based on a Hara local exchange (HFEGE) approximation. The re-
sults show that HFEGE, as we had previously modified it, was less attractive than exact exchange.
With exact exchange we are led alternatively to weaken the short-range part of the polarization po-
tential with the consequence that agreement with other (exact) exchange-adiabatic calculations is ex-
cellent. The modified polarization potential is expected to be very useful in more elaborate scatter-
ing calculations.

I. INTRODUCTION

In this paper, we continue our study of the application
of the noniterative partial-differential-equation (PDE)
technique' to electron-molecule collisions. ' The immedi-
ate precondition for application of the noniterative tech-
nique is that the potential be local. On the other hand, an
essential requirement of low-energy electron scattering is
the

'

incorporation of exchange, and exchange is well
known to be equivalent to a nonlocal interaction. Thus it
would appear that exchange is incompatible with the
direct application of the noniterative technique. However,
in electron-atom scattering, if one confines oneself to ex-
change or exchange-adiabatic approximations, the ex-
change terms are Hermitian (i.e., a sum of separable
terms) and one can eliminate them. (It is, of course, possi-
ble to include them directly and solve the equations itera-
tively. This iteration process should not be confused with
the kind of iteration that is avoided by our noniterative
PDE technique, which refers to the elimination of the
kind of relaxation procedures that are usually employed to
solve elliptic partial-differential equations. )

In Sec. II we derive the noniterative exchange tech-
nique, which as stated above is the main object of this pa-
per. In Sec. III we describe an effective method for prop-
agating the solution to large values of r, which is neces-
sary in the presence of the long-range potentials that are a
particularly important part of low-.energy electron-
molecule scattering. In Sec. IV we first test our method
of including exchange by comparing our static-exchange
results with other such calculations. We next describe the
changes necessary in our previous polarization potential
as a result of including static exchange exactly rather than

in terms of a local-exchange approximation. Fixed-nuclei
results are graphically given in Sec. IV and compared
with a limited number of other calculational and experi-
mental results. We conclude with a few remarks relating
to the effect of the approximate target wave functions.

II. EXACT EXCHANGE PROCEDURE

We shall confine ourselves here to the fixed-nuclei ap-
proximation. The essential implication of this idealiza-
tion is that the scattering equations can be reduced to
equations in the molecular frame (defined by the direction
of the fixed internucleus axis) which are independent of
the orientation of the molecular frame with respect to the
laboratory frame (the latter most conveniently defined by
the direction of the incoming electron ). These equations
can be conveniently written (in atomic units; cf., for ex-
ample, Ref. 5)

(2.1)

where F' ~(r) represents a partial wave designated by
(m), of the scattered electron [with vector coordinates
r=(r, 8,$)]. V' is the usual three-dimensional Laplacian
with r representing the displacement of the scattered elec-
tron from a fixed point in space, usually the midpoint of
the internuclear axis for a homonuclear diatomic target.
In (2.1) V(r) is the local potential (which always includes
the static and may include the induced polarization poten-
tial as well) while the last term represents the static ex-
change kernels:
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'(r)= I dx@~(x)
~

r —x
~

'F( '(x) . (2 2) and

The above form of exchange assumes that the continuum
orbital is orthogonal to all bound orbitals. Thus is justi-
fied for closed-shell molecules such as N2. Equation (2.2)
contains the bound electrons orbitals 4 which in the
ground state X~ of N2 are occupied in pairs as indicated
by

F(m)(r ) &
—)f™(z)( 1 )m(2~) —) /2e ™%

@ (r)=r 'P (z)( —1) '(2') '~ e™",
(2.4a)

(2.4b)

where z = ( r, 8) is a two-dimensional vector in terms of
which, by substitution of (2.4) into (2.2), the exchange ker-
nel can also be written:

$y(~) ( )
) (Pg)( )( 1 )m In~ l(m m~)IP

(2.5)

Thus (2.1) can be reduced to a two-dimensional partial
integro-differential equation in z:

OCC ][~(m)+k'lf' '(z)=2~(z)f( '(z) —2 y —y (z)M (z) .
a=1

(2.6)

Here b, (m) is the two-dimensional Laplacian

1 m6( I)= + +cot8
Br r BO ~ sin 0

(2.7)

We now come to the method whereby the integral term
in 8'~ ' can be removed from (2.1). The procedure is in
effect a generalization to PDE's of a method that has long
been used in ordinary integro-differential equations
(ODE's). To demonstrate, apply V to both sides of (2.5)
using the fact that the Coulomb pptential is in fact the
Green's function of the Laplacian operator:

V (
~

r —x
~

') = 4n5(r x) —. . — (2.8)

Using (2.8) in the right-hand side (rhs) and Eqs. (2.4) on
the left-hand side (lhs) allows (2.2) to be reduced to two-
dimensional PDE:

(2.9)

We see that (2.9) combined with (2.6) is a set of
N„, + 1 coupled equations for the scattering function
f' ' and the reduced exchange kernels (() (z). The latter
may be considered a set of X„, pseudo-orbitals. The
main thing is that the set of equations has no integral
terms and may be solved by a straightforward generaliza-
tion of the noniterative PDE technique of Refs. 2 and 3.
Specifically, the boundary conditions for the pseudo-
orbitals which may readily be derived from their defini-
tions (2.2) and (2.4b) are

(2.3)

The cylindrical symmetry may then be further exploit-
ed by writing

lim w (p, 8)=0.
p~ oo

(2.10b)

In practice, (2.10b) is imposed at finite but large p, as were
the boundary conditions for the polarized orbitals in Ref.
3. The angular boundary conditions are similarly im-
posed: specifically, each orbital P has the same symme-
try as the lowest spherical harmonic Fi (0) in terms of
which the P~ are expanded. The symmetry of the partial
wave, f' ', is determined by the quantum numbers which
define the partial wave, and the associated Yj corre-
sponds to the lowest I (& m ) which is consistent with its
parity. The symmetry of w~(z) in terms of its lowest
spherical harmonic Fi (0) is determined from (2.9).

N W

This means specifically

m m —ma (2.11)

g(z)=

l8)v (z)

(2.12)

The solution vector is then discretized in the form g; J(k)
where k =1,2,. . . ,N„,+ 1 defines the function and ij the
mesh point in r, O at which they are all being computed.

The noniterative technique' then gets put into effect ex-
actly as described in Ref. 1, except that every element of
the solution vector becomes a vector of N„,+1 com-
ponents, and every element of the difference matrix be-
comes an (N„, + 1)X (N„, + 1) submatrix representing
the set of PDE's. The final form of the difference equa-
tion for Eqs. (2.6) and (2.9) is of the form

Ag=R, (2.13a)

where R is the expanded vector representing the known
boundary conditions for the set of functions representing
the solution. More specifically, the difference equation
can be written

[~~J (k)g;+),,(k)+~~ (k)g; ) ~(k)+ p,+;, (k)g;;+)(k)

+p~ (k)g;~ )(k)]+gyj(k, k')g;~(k') =0 . (2.13b)
k'

and the parity of I„ is the product of the parities of P
and f' ' with the magnitude of l~ being the smallest in-
teger which allows l to be vector coupled to l.

The results are given in Table I both in terms of the
lowest spherical harmonic (Y~ ) and the vanishing of
the u) (r, 8) indicated by (X) or its derivatives ( —) at
8=0 (upper entry) and 8=~/2 (lower entry). The latter
may be readily deduced from the symmetry of 1'& (Q)
at those boundaries, which are given in Ref. 3. (For some
of the higher /~ng~ both conditions obtain, and this is in-
dicated in Table I by an asterisk. )

To apply the noniterative technique' to a coupled set of
PDE's having defined a grid in r and 0, one must enlarge
the solution vector to include the u) (z):

f(m)( )

w)(z)

w (r, 8)
~

„0=0 (2.10a) Equation (2.13b) is the generalization of Eq. (2) of Ref.
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TABLE I. The lowest symmetry (l„m„) of the exchange kernels w for all bound orbitals and the
lower partial waves. Boundary conditions at 8=0,m/2 are indicated by the second column of symbols
for each entry; cf. text. The entries in this table are independent of n for each symmetry of y .
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1; it demonstrates with respect to the new index (k) that
the only off-diagonal term occurs in nonderivative terms,
and in fact for the specific coupling involved in (2.6) and
(2.9) only the y,z(k, 1) and y;~( l, k') elements are nonzero
(for k&k').

Figure 1 illustrates the structure of the 2 matrix for the
simplified case of N„,=3, Ne ——3, N„=5 (Ne and N, be-
ing the illustrative number of points in the 8 and r direc-
tion, respectively). Each filled square now corresponds to
a 4&4 block matrix and squares with diagonal lines
represent 4X4 blocks with diagonal elements only. All
other blocks are empty.

The factorization of A into a lower times an upper tri-
angular matrix, from which the consecutive inversion of,
in this case, the [(N„,+ l)Ne]X[(N„, + 1)N~] blocks
proceeds, is in complete analogy to the method of Ref. 1,

XmX

NRX

&Si

as carried out in Ref. 3. In practice, we have introduced
some additional technical modifications of which we will
describe here only those having to do with large-r contri-
butions to the solution.

III. PHASE-AMPLITUDE PROPAGATION METHOD

In this section, we develop a method of propagating the
solution to convergence as a function of r, so as to obtain,
ultimately, the elements of the E matrix. First let it be
noted, since the exchange pseudo-orbitals (w~) are ex-
ponentially damped, that the complete set of PDE's is
only carried to an inner radius r, & r (cf. Fig. 2). Beyond
r, the PDE for the scattering function f' '(z) is integrat-
ed without exchange coupling terms to r&. At that boun-
dary the reaction matrix is extracted as we have described
elsewhere. .

The propogation technique refers to the extension of
the solution beyorid r & r&, to a point where convergence
to a specified accuracy has taken place. The key to ob-
taining the solution in region III is to recognize that the
solution there can be decomposed into a spherical har-

FIG. 1. Example of the block tridiagonal structure of the
coefficient matrix corresponding to %,=3, N, =3, %,=5. Cf.
text for more details.

re

FIG. 2. Integration regions. I, PDE including exchange; II,
PDE without exchange; III, propagation region as described in
text.
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monic expansion which is rapi'dly convergent. The decom-
position allows the PDE [derived as described above from
(2.6)]

[h(m )+k ]f' '(z) =2V(z)f' '(z) (3.1)

(3.3)

to be written as a set of coupled ODE's. Specifically ex-

panding f(z) (dropping the diagonal m index)

(3.2)
Il

we can reduce (3.1) to the coupled ODE's:
r

+ k2 f(iL)(
) 2 +if V ( )f(i)( i)

r 2

(3.9b)

Up to this point, the analysis and decomposition in
terms of p(r) and q(r) is essentially that of Smith and
Henry. Below we shall give a brief analysis leading to
our specific method of propagation. We believe this treat-
ment is worthwhile, because it is brief and it applies
directly to our problem. It is emphasized that the essen-
tial ideas here are also not new and that a general develop-
ment of a concatenated expression for the asymptotic am-
plitude has been given by Norcross.

Suppressing index labels (l, A, ) in this discussion, we
start with a Taylor expansion of the solution

(3.10)

where f; = f(r;), etc. Utilizing (3.6) leads in first order to
where

Vi i(r)= f Pi (8)[V, „„,(r, 8)
fi Sipi —i +Ci qi —i

But from (3.8) we have

(3.11)

+ V~, (ri, 8)]P i(8)sin8d8 . (3.4)

The superscript (A, ) here refers to the specific PDE solu-
tion of (3.1), defined by the Pi„~(8) on the r =r& boun-
dary, that is being considered. It will be recalled that a
convergent linear combination of such solutions in the
PDE sense is required to obtain the physical solution, in
practice no more than three A, 's are necessary. The
asymptotic form of the solution of (3.3) defines the E ma-
trix

fi' '(r)- k '~ [sin(kr —rrl/2)5ii

+alii„cos(kr —irk, l2)] as r~ m . (3.5)

i

p; =1+2g cuJSq Vjfq ——p; i+2co;C;Vf;,
J=P

i

q = —2 g coJSJV&fj ——q; i
—2';S;V;f; .

J=P

(3.12)

In the derivation of (3.12) the integral in (3.8) has been re-
placed by a summation with weight factors aiz. (In prac-
tice, we use trapezoidal rule: co&——~, ———,', all other
co& ——1.) Inserting (3.11) into the rhs of (3.12) for f; gives
rise to a difference equation for p; and q; which is con-
veniently written in matrix form as

fi '(r)=Si(r)pi '(r)+Ci(r)qi i(r), (3.6)

In principle one could integrate (3.3) as far as necessary
to obtain a converged K matrix. In practice, however, the
following phase-amplitude method is much more stable
and greatly shortens the machine time and storage that
would otherwise by required. Let us note that a formal
solution of (3.3) can be written:

p; =A(i)p;

where

pi=

and A(i) turns out to be'

(3.13)

(3.14)

where

Si(r) =k ' rji(kr)-k ' sin(kr nl l2) as r~ —oo,
A(i) = 1+2';C;V;S; 2m;C; V;C;

—2';S; ViSi 1 —2';S; ViC
(3.15)

pi (r) =5ii+2+ I Ci (x) Vii (x)fi '(x)dx,
P

qi' (r)= —2g J„Si(x)Vii(x)fi' '(x)dx .
P

(3.8)

Comparison of Eqs. (3.6)—(3.8) with (3.5) shows that the
I(. matrix as a function of r, is given by

+El(r) =[p '«)q(r)]u = g [p '(r)]i,„q„i(r),

from which the final E matrix is

(3.7)
Ci(r) = —k ' rni(kr) -k ' cos(kr nll2) as r~—a. o

(ji and ni are spherical Bessel functions with phase as de-
fined in Morse and Feshbach ) and

Repeated use of (3.13) allows the desired p to be evaluated
as a "concatenated" product:

p; =A (i)A (i —1) . A (p)p~ . (3.16)

From the components of p;, the K matrix at r; may be
evaluated from (3.9), and r; may be extended as far as
necessary for convergence. The methodology therefore
accomplishes the goal of propagating and at the same
time avoiding the integration of the ODE's in region III.

In actual calculations (both with and without polariza-
tion) the exchange integrals were dropped at r, =5ao (cf.
Fig. 2); that radius was sufficient to insure four-figure ac-
curacy in the eigenphase sums. In production runs rz was
set to 10ao and r at 60ao. In the IIg case three X values
(A, =2,4,6) (and the corresponding three / values) of Kii
were determined. . When the. process was repeated with in-
clusion of a fourth X value, the resulting eigenphase sum
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TABLE II. Comparison of e-N2 static-exchange. results. Calculations based on the Cade, Sales, and Wahl (Ref. 12) ground state.
0

Entries are partial cross sections in A, and eigenphase sums in radians (in parentheses). Empty entries mean particular results have
not been given. CRM denotes results of Collins, Robb, and Morrison (Ref. 11). CS denotes results of Collins and Schneider (unpub-
lished) using the linear-algebraic code (Ref. 13). Cf. text.

k (Ry)
Partial
wave Calculations

Present
CRM

CS

0.1

14.95 (2.417)
18.86 (2.311)
15.155 (2.406)

0.3

9.756 (1.983)
(1.808)

0.5

6.805 (1.747)
8.974 (1.524)
6.827 (1.723)

1.0

3.503 (1.350)
3.092 (1.043)
3.17 (1.296)

Present
CRM

0.862 (2.976)
0.8222 (2.937)

2.14 (2.692)
3.14 (2.584)

2.77 (2.479)
3.76 (2.316)

2.90 (2.149)
3.33 (1.908)

Present
CRM

0.0105 (0.24)
0.011 (0.26)

42.68 (1.760)
43.92 (1.461)

7.70 (2.574)
10.4 (2.454)

4.47 (2.546)
5.26 (2.453)

Present
CRM

0.55 ( —0.0705)
0.63 ( —0.075)

3.01 ( —0.269)
( —0.290)

4.63 ( —0.536)
5.52 (—0.455)

5.95 ( —0.646)
6.38 ( —0.694)

was again unaffected to three significant figures. Ade-
quate mesh sizes were found to be b,8=m/60 and
br=0.05 in regions I and EI and hr=0. 1 in region III.
We estimate that the final cross sections that we deduce
have an overall accuracy of better than 5%. As in other
calculations, we found the cross sections for the b, sym-
metries to be almost negligible in the energy range of
present interest (0—10 e&).

A valuable check of the method of including exchange
as well as the asymptotic program is afforded by the
static-exchange approximation. Here there are two previ-
ous calculations in which exchange has been included ex-
actly. ' " Of these, the one by Collins et al. " uses the
Cade-Sales-Wahl ground-state (N2) wave function, ' to
which therefore we can directly compare. In Table II re-
sults are given both in terms of eigenphase sums and cross
sections. The respective results are one the whole in satis-
factory agreement with each other, to the accuracy es-
timated in Ref. 11; however, within that accuracy it was
felt that the Xs results were most in need of improvement
[L. A. Collins (private communication)]. Collins has
therefore just redone the Xg utilizing the new linear-
algebraic code recently developed at I.os Alamos. ' Those
results are also given in Table II; the agreement with our
results is now truly remarkable In view. of how different
the methodologies and programs are, we consider the
agreement a cogent confirmation of the validity of both
methods.

EV. THE POLARIZATION POTENTIAL: RESULTS

In Ref. 3, a polarization potential for the e-N2 system
was derived using the basic ideas of the (static part) of the
method of polarized orbitals the cutoff dipole approxi-
mation of the static interaction between the incoming and
the target electrons. In the molecular application, howev-
er, although the nonspherical aspects of that static in-
teraction could also be nicely handled by the noniterative
PDE technique, including the additional and complicated
coupling involved in those equations was considered to be

with

V,~(r) =8(r ) V,~ (r) (4.2)

—(rlr )2B(r)=1—e (4.3)

and V„,~(r) given by the polarization potential of Ref. 3.
In order to facilitate comparison with other exchange-
adiabatic (fixed-nuclei) calculations we first report on re-
sults using a value of ro selected so as to give the IIg res-
onance in the vicinity of previous results' ' (which
range from 2.07 to 2.24 eV). A value of ro =2.635 85 was
found to give E„=2.103 eV with a width l, =0.356.
This is in satisfactory agreement with other exchange-
adiabatic results (E„=2.24, 2.07, 2. 17 eV; I „=0.34, 0.47,
0.301) coming from Refs. 15, 17, and 18, respectively. It
is seen that there are differences among the other
exchange-adiabatic calculations as well, each of which is
based on a different methodology. The authors of Ref. 18
have had some reservation that their results may suffer
from overcorrelation. '

In Fig. 3, we present our total cross section in compar-
ison with several calculations' ' and experiments. '

In this calculation we have. chosen ro ——2.934 to achieve a
resonance at E=2.39 eV which is closer to the experimen-
tal value. This value of ro ——2.934 gives I,=0.37 eV,

unwarranted given the nature of the above approxima-
tions. Thus we made additional approximations which
rendered the inside part of the derived polarization poten-
tial of less than fundamental quantitative significance.

That aspect of the polarization potential which we con-
sider to be of qualitative importance, however, is the rela-
tive strength of the monopole and quadrupole parts of the
potential:

V~,&(r) = V„',Ilr)+ V„',I(r)P2(cos8) . (4.1)

Specifically, it was found that V~~(r) was attractive
along 8=0 but repulsive along 8 =m/2 for small values r
Wishing to retain that character, we have therefore taken
our present polarization potential to be
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which shows that width is only minimially affected. But
it should be stresse ad th t the experimental cross section

so that any fixed-nuclei widtcontains substructure, ' so
h e onl semiquantitative significance. To o tain

the substructure, as is by now well known, o
h 4' include vibrational motion.one way or anot er

theor exact ex-From the point of view of the hybrid eory,
change can aso e inc u1 b

'
1 ded in the vibrational close-

of the theory in direct analogy to whatcoupling portion o e e
has been done here, and we are starting to imp emen
part of the calculation.

f' d- I
'

Apart from the resonant energy g' fre ion the fixed-nuc ei
h ld be a uantitatively accurate approximation. In
ig. 3, nowever, one'g. 3, h one sees that our cross section g

1 lower than experiment at the high-energy and more no-
r end. But all calculationsticeably lower at the low-energy en .

in Fig. 3 were aseb d on a single-configuration se
n." Theconsistent-field (SCF) target (N2) wave function.

importance of an accurate ta gr et state wave function has
b 26recently been stressed by Burke, Nobble and Salvini.

, R bl t a/. have examined the effect
of usin an improved [multiconfiguration SCF (MCSCF)j
grou - ' . The find —relative to theground-state wave function. ey in-
single-configuration target —a slight low

'
gl erin of the cross

h hi h-ener y end and a more noticeable

a ive effects cannot yet be considere e ini
'

they ave use ah 27 h sed a model HFEGE exchange potential in
each case. u eBut the model exchange is the same o

ivel su-targets, t us we consh e consider their results provocative y g-
oten-gestive, an we ood look forward to utilizing the static po en-

tial based on the improved ground-state wave unc ion
in future calculations.
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