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Orientation effects in thermal collisions between "circular" —Rydberg-state atoms
and ground-state helium
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A general formulation for thermal collisions between a Rydberg-state atom and a ground-state
rare-gas atom is developed within the framework of the impulse approximation. This formulation
allows calculation of cross sections for state-to-state transitions for an arbitrary initial orientation
between the Rydberg-state atom and the relative velocity of the two partners of the collision. It also
allows a direct computation of these cross sections averaged over all orientations, a situation corre-
sponding to a cell experiment. In this formulation, the differential cross sections with respect to the
modulus of the momentum transfer are obtained analytically in terms of rotation matrix elements.
Numerical applications are made for the case of a sodium atom in a "circular" Rydberg state
(

~
n, l, m ), with 1=m =n —1) colliding with helium. The collisional processes are found to be high-

ly anisotropic. In particular, a selection rule may appear, or disappear, depending upon the initial
orientation. The extension to the case where an external electric field is present is also discussed,
with special emphasis on symmetry properties.

I. INTRODUCTION

A state-to-state transition in thermal collisions between
a Rydberg-state atom 3 and a grou'nd-state neutral atom
B, with relative momentum q, can be written as

(A(i )+ &, (q))~(A(i')+B, (q')),
where i denotes all quantum numbers of A in its initial
state. The initial and final atomic states

~

i ),
~

i ) are as-
sumed to be eigenstates of the atomic angular momentum
relative to some z axis, i.e., '

(2a)

(2b)

Process (1) generally depends on the orientation angle ct

between the relative momentum vector q of the two
partners of the collision and the z axis. The collisional
process (1) is invariant if both the planes (q,z), (q', z), are
rotated the same arbitrary angle along the z axis. Such a
rotation corresponds to modification of

~

i ),
~

i '), only by
phase factors, and is therefore irrelevant for a change in
the physical processes.

The more anisotropic the state
~

i ) is, the more impor-
tant the orientation effect is expected to be. The so-called
"circular" states n, l =n —l, m =n —1) therefore appear
to be good candidates for a study of the role of the orien-
tation.

Collisional processes involving circular Rydberg states
already have suggested theoretical works. ' The interest
for these processes increases as the experimental produc-
tion of circular Rydberg states has now been demonstrat-
ed to be feasible. ' Process (1) has been considered in Ref.
3 for parallel orientation (a=0), within the framework of
the impulse approximation.

(3)~(Na( n ' =20, 1', m ') +He, q') .
The influence of the angle ct is found to be important, as
will be seen in Sec. IV. Section II gives the basic formula-
tion of the problem. Sec. IIA considers the differential
cross section dS/dQ for process (1); dQ denotes the solid
angle corresponding to q'. Section IIB gives a method
for obtaining the differential cross section dS/dII in the
case a=O, where K is the modulus of the momentum
transfer K defined as

K=q' —q .
Section II C gives the method for obtaining dS/dK for an
arbitrary value of a; it also provides a method for obtain-
ing directly dS/dK averaged over all orientations. Sec-
tion III gives the expression of the hydrogenic form fac-
tors in terms of rotation matrix elements. Section IV
discusses the results obtained for process (3). Section V
extends this work for the case where an external electric
field is present.

II. BASIC FORMULATION

A. dS/d Q and its symmetries

According to the impulse approximation in its simplest
form, the differential cross section for process (1) is given
by

In this paper we provide a general formulation for
state-to-state thermal collisions (1), according to the im-
pulse approximation in its simplest form [Eq. (5) below];
this formulation allows computations of cross sections for
an arbitrary angle ct, as well as a direct computation of
the cross sections averaged over all orientations. Numeri-
cal applications are done for the case:
(Na(n =20, 1=19, m = 19)+He, q)
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dS/dQ=(q'/q)[(M~ /M~2)L (
(i'

~

exp( —iK r)
~

i )
~ ] g dS(n, l, m ~n', 1',m')/dK

2l +1

where M& is the reduced mass of 3 and B, M&2 the re-
duced mass of B and e, and 1. the scattering length as-
sociated with a zero-energy collision between B and a free
electron. q' and q are related by energy conservation:

q'/(2M~ )+e=(q')'/(2M~)+~', (6)

where e (e') denotes the negative binding energy of 3 in
its initial (final) state.

For a derivation of Eq. (5), its relation to Faddeev-
Watson expansion, and its validity for the thermal process
(1), see, e.g. , Ref. 6. We only recall here that the impulse
approximation is expected to be valid when the eccentrici-
ty [1—l(1+1)/n ]'~ is small; the circular states there-
fore appear particularly suitable for this study. At this
stage it is worthwhile to note two symmetry relations (see
the Appendix) that are of significant importance for
state-to-state collisions:

)
(n', 1',m'

~
exp( iK—r)

~
n, l, m ) (

=
(
(n', 1',m'

[
exp(iK r)

(
n, l, m ) (,

(
(n', 1', m'

~

exp( —iK r)
~
n, l, m ) I

=
( ( n', 1', —m'

~

exp(iK r)
~
n, 1, —m ) )

(7)

Both Eqs. (7) and (8) refer to symmetry properties of the
isolated atom A. Equation (7) is a direct consequence of
space inversion symmetry and reduces the fundamental
range of variation of a from [0,~] to [O,m/2] since the
two differential cross sections dS/dK corresponding to a
and to vr aare eq—ual. Equation (8) can be obtained ei-
ther from time reversal or rotational symmetry (see the
Appendix). Equations (7) and (8) show explicitly that rev-
ersing simultaneously both the sign of m and m' leaves
the differential cross section dS/dK invariant.

The method for computing dS/dK for an arbitrary
value of a will be given in Sec. II C. The following para-
graph gives another method valid only for a=O. In all
cases, the integrated cross section S is obtained from
dS/dK by numerical integration:

S=J, dKdS/dK . (9)

= 2'(21'+ l l[(M) /M)2)L /q]

l' k l
&&K ~(2A'+1) 0 0 0

'2

00 2

&( dr r j ~(Kr)Rn'1 (v )Rnt(r)
0

cos8& ——[q + ( q ') K]/(2qq ') —. (12)

R„ I (r) and R„I(r) are the radial wave functions of atom
A. In the case where a is zero, it is possible to go from
dS/d 0 to dS/dK in a similar way.

More precisely, we now define two orthonormal right-
hand systems of axes denoted I and II. System I admits a
orthonormal right-hand basis e~, ez, q, where q means q/q
(see Fig. 1). The orientation of the pair e~, ez with respect
to q is determined by requiring that a positive rotation of
angle a (0(a (m ) along e2 carry q into the axis z of Eq.
(2). (If q is parallel to z, the orientation of the pair e~, e2
is arbitrary. ) System II is defined to be the system I
transformed by the previous rotation. The axis z of Eq.
(2) is therefore also an axis for system II. This means that
system II coincides with the system relative to which the
states

~

i ),
~

i') of Eqs. (2) are defined, except for a possi-
ble rotation along the axis z; such a rotation affects

~

i ),
~

i') only by phase factors and is therefore irrelevant
for the physical processes (1) (see Sec. I). Let 8&,pz be
the polar and azimuthal angles of q' relative to system I
(q being the polar axis). One has

B. dS/dX for a=O

Several numerical applications based on relation (5) or
on closely related expressions have been done (see, e.g. ,
Refs. 6—12). These works only consider the cross sections
dS/dK averaged over the initial magnetic quantum num-
bers rn and summed over the final m'. The resulting
cross section is independent of the angle a. The method
used in Refs. 6—11 involves an expansion of exp( —iK r)
in Eq. (5) in terms' of spherical Bessel functions jq and
spherical harmonics y~~, i.e.,

exp( iK r)=4m g ( —i ) j.g(Kr)[Y~g(r—)]*7'~g(K)
A, ,p

and leads to the following expression:

(10)

FIG. 1. Schematic diagram of the coordinate system.
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d0= —d cos8~ dq, =(K/qq')dKdq . (13)

Using Eq. (10), the integration over tp can be performed.
Using the following expression' of an integral of three
spherical harmonics in term of 3-j symbols:

It is clear that for the case a=0, the two systems I and II
coincide. It follows that the azimuthal angle y of K in
Eq. (10) is equal to yz. The solid angle dQ can therefore
be written as

f dr I'i (v)Y"g(r)&P(r)
' 1/2

(21'+ 1)(2A, + 1)(21+1)
4m.

1
'

A, 1 1
'

A. 1

000 m'pm

one obtains after some calculation

(14)

dS(n, l, rn ~n', 1',m';a=0)/dK

= 8[m(Mi/Mi2)L/q] (21'+1)(21+1)

l I'k
XK f dr g ( i ) &—2k+ 1r R„ i (r )ji (Kr )R„i(r)

I
(8,0)—m m'm —m' (15a)

with

cos8= [(q') q K]/—2qK—. (15b)
~
n, l, m ) = g ~

n, l, m~;III)(l, m2,.III
~
l, m„I)

In the case of arbitrary values of a, the preceding formu-
lation is no longer valid, since the azimuthal angle &p of K
relative to system II will be different from the azimuthal
angle, denoted y», of K relative to system r. Another
method allowing the computation of dS/dK for arbitrary
values of a as well as an averaged value of dS/dK over all
orientations is given in the following paragraph.

L»
~
n, l,m;III) =m

~
n, l,m;III) . (16)

C. dS/dE for arbitrary a and averaged over a

A third system of axis, III, having one of its three basis
vectors parallel to K, is defined as follows. Let 8» and

y~ be the polar and azimuthal angles of K relative to sys-
tem I. qr» is then equal to yz defined in Sec. IIB. Sys-
tem- I is first rotated an angle 0~ along the vector e2', the
resulting system (say I') is then rotated an angle q&» along
q. The resulting system defines system III. The key point
is now to express the state

~
n, l, m ) of Eq. (2) in terms of

the states
~
n, l, m; III). The notation

~
n, l, m; III) indi-

cates an eigenstate of the component of the atomic angu-
lar momentum along K:

The coefficients in Eq. (17) are the following rotation ma-
trix elements

= (l,m, ;I
~
exp(i8»L, )exp(iq»L )~ l, m -i, I)

=exp(irniy»)d', , ( —8»),

( 1,m i, I
~
I,m ) = ( 1,m i, I ~

exp( —i aL2 )
~
1,m; I )

=d', (a) .

(18a)

(18b)

(19a)

(19b)

Relative to the system I, the solid angle dQ is equal to
(K/qq')dK dp». The integration of dS/dQ over y~ =y»
is now easy to perform since the form factors
(n', 1',m', III

( exp( —iK r)
~
n, l,m;III) are by construc-

tion independent of the K orientation [see Eq. (16)].
These form factors are clearly diagonal with respect to the
magnetic quantum numbers. Using the relations

In view of the above definitions of the three systems I, II,
and III, the transformation is given with obvious notation
by one obtains

(20)

dS/dK=2mK[(Mi/M&2)L/q]

X (n', 1',m2, III
~
exp( iK r)

~
n, l,m—;III) (21)

with cos8» given by the right-hand side of Eq. (15b). Using the relation'

dj (y) = ( —1) d', (y), (22)
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the sum over m
&

in Eq. (21), to be denoted by W, can be rewritten as

W=( —1) ' g d', , (8x)d,', , (8z)d', (a)d,', (a) .
m&

(23)

Using the reduction of the product of two rotation matrix elements in a sum of rotation matrix elements multiplied by
Clebsch-Gordan coefficients. '

d.; ., (»d.'; .,()')= 2 &J ~ v~»2»z
l I i j»J M'& &i i j 2 J M

1j I vi j 2 vz~dM', M(3 )
J

one obtains

(24)

W=( —1) ' g (1,l', J~O
I
i, m2, l', —m2) (l, l', J,m —m' l1,m, l', —m')d~ o(8x )d, (a) .

J

Finally, using the orthogonality relation, '

(25)

I dasin(a)d, (a)d, (a)=5' [2/(2J+1)] .

The differential cross section dS/dK averaged over all solid angles, denoted (dS/dK ), can be thus obtained:

(dS/dK) = —, I da sin(a) dS/dK
0

= 2+K[(Mg/M)2)1. /q]
E+ l' l+ l'

X g g [[d,o(8 )]'/(2J+1) I
t= —l —l' J=maxI

~

t (, I
m —m'

~ J

(26)

(27a)

g ( —1) '(l, l', J,O
l
l, mz, l', —m2)(l, l',J,m —m'

l
i, m, l', —m')

2
X (n', I', m2, 111

l
exp( i K. r—)

l
n,.i, m2,'III) (27b)

The integral of (dS/dK ) over K corresponds to the cross
section pertaining to a cell-type experiment.

Equations (21) and (27b) are the starting points of the
numerical applications to be discussed in Sec. IV. These
numerical computations are made by expressing the hy-
drogenic form factors in Eqs. (21) and (27b) in terms of
rotation matrix elements. n& F g if m &——0— (29a)

I

The wave functions (r
l
n,f,g ) are, except for phase fac-

tors, the usual hydrogenic wave functions separable in
parabolic coordinates. ' The usual parabolic quantum
numbers n ~, nz are related to f and g by'

III. THE HYDROGENIC FORM FACTORS
IN TERMS OF ROTATION MATRIX ELEMENTS

n2 F f if m &——0—
n, =F+f if m (0

(29b)

(29c)
In this section the notation

(n', I', m;III
l
exp( i K r)

l
n—, l, m. ;III) will be replaced by

the standard one, (n', I', m
l
exp( iKz)

l
n, l, m ). —An ana-

lytic expression of the above form factor has been derived
on the basis of the noninvariance algebra 0(4,2) of the hy-
drogen atom. ' ' The method involves first a unitary
change of basis vectors by means of Clebsch-Jordan coef-
ficients:

n, =F+g ifm«0 (29d)

%'ithin Englefield phase convention, one has the symme-
try relation

l
n, l, m ) = g l

n,f,g ) (F f,F,g l
F,F, l, m =f+g )

fg
(28a)

(n', f', —g'lexp( iKz)
l
n,——f, —g)—

=(—1)" " (n', f',g'
l
exp(iKz)

l
n,f,g ) . (30)

F=(n —1)/2 . (28b)

From now on, all the formulas of this section [Eqs.
(31)—(38)] refer to the case m &0, the case m (0 resulting
from Eq. (30). The result quoted from Englefield' is
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( n', f',g'
I exp(iKz)

~
n,f,g }

P

(n
& +m)!(nz +m)!(n+m )!(nz+m)! 1/2

=—K
2 n'1!n 2!n 1!n2!

ply +2
4nn'

(n+n') +K n n'
I

( —1) ' '(n n'—iK—nn') ' ' (n n'—+iKnn') '

X I

(m!) (n+n' iKn—n') ' '(n+n'+iKnn') '

)& f [2Kn n' +2inn'(nz n&)—+i(n +n' +K n n' )(n& n—z)]@~(n~,nI )@~(n znz)+i[(n+n') +K n n' ]

&& [nz 4 (n ~, nI )@ (nz, nz —1)—n'~ 4& (n &,nI —1)@ (nz, nz )] I .

The function P~(b, c) is defined in terms of the hypergeometric function zF~ by

(31)

P~(b, c)= zF&( b, c—;m+—1;y)

with

y= 4nn—'/[(n —n') +(Knn') ] .

Using the relation'

zF](b,c;d;y)=(1 —y) zF~(b, d c;d;y—/(y —1))

one obtains

(b,c)=[sin (co/2)j "zF~( b, m+1—+c; m+1;(1+c osco) /2 }

with

co=arccos[(y+1)/(y —1)] .

(32a)

(32b)

(33)

(34)

(35)

Using the relation' between a rotation matrix element and the hypergeometric function involved in Eq. (34), one obtains

m![b!c!/((b+m )!(c+m)!)]'
(36)

I ( —1)'[cos(co/2)] [sin(a)/2)] +'I

Finally, using the well-known recursion relations' between the rotation matrix elements d~ ~(co), one obtains after
some calculation

( n', f', m —f'
~
exp(iKz)

~
n,f,m —f )

= I( —1) ' K[cos(co/2)] /[2sin(co/2)] Iexp[2i(p(pz —p~)+p(j& —jz)]

X(d '
p ~ (co)d '

~ p (co)[Knn'+i2(p( —pz))

1/2+2i tan(co/2)I d~' „q,(co)[(gz —m+pz)(gz+m —p +z1)]' d~' ~,+) „,(co)

r/2 ~l—dm —pz p, (~)I (J t™+p 1 )(21+m pl+ 1 }j dm ——y, + 1,p, (~ ) I ) (37)

with
exp(2iP) =(n n'+iKnn')—/(n —n' —iKnn'),

exp(2ip) =(n+n'+iKnn')/(n+n' iKnn'), —

ji =(n i +n i +m )/2,

jz —(nz+ n z +m }/2,

pi =(ni —ni+m)/2

p ~ (n ~
n'& +——m )/2, —

pz ——(nz nz+m )/2, —

i z=(n, —n,'+m)/2.

(38a)

(38b)

(38d)

(38e)

(38f)

(38g)

(38h)

Equation (37) has some advantages compared to Eq.
(31). The nontrivial part of Eq. (37) indeed involves only

I

rotation matrix elements. These elements have a direct
physical interpretation, and satisfy many special proper-
ties that are useful for numerical computations.

IV. NUMERICAL RESULTS

Three situations are considered for process (3): a =0 (q
parallel to the axis z corresponding to the eigenstate of
atomic angular momentum); a=@/2 (q perpendicular to
the axis z); and, finally, an average over a corresponding
to the situation of a cell experiment. The calculations are
made for the same value of the relative velocity between
helium and sodium as used in Ref. 3, the thermal aver-
aged velocity for a temperature of 296 K. The value used
for the scattering length I. for the He-electron collision is
1.19. The results for I'=19,18 are shown in Table I and



3598 E. de PRUNELE 31

TABLE I. Cross sections S, in atomic units, for the processes Na{n =20, i=19, m =19)+He~Na(n'=20, l', m')+He. Angle a
is either equal to zero (columns l and 4) or m /2 (columns 2 and 5). Results obtained when averaging over all orientations [(S), see

Eq. {27i] are shown in columns 3 and 6. The number enclosed in parentheses signifies powers of 10 by which the prefactor is multi-

plied.

19
18
17
16
15
14
13
12
11
10

—10
—11
—12
—13
—14
—15

16
—17
—18
—19

0.263( +3)
0.966( —3)
0.196(+1)
0.120( —3)
0.751( —1)
0.197(—4)
0.607( —2)
0.444( —5)
0.826{—3)
0.135(—5)

0.243( —4)
0.834( —3)
0.164( —3)
0.612( —2)
0.170( —2)
0.753( —1 }
0.309( —1)
0.193(+1)
0.163(+1)
0.261(+3)

I'= 19
a=+/2

0.689(+3)
0.181(+3)
0.994(+2)
0.663(+2)
0.487( +2)
O.379(+2 }
0.307(+2)

'o.2s7(+2}
0.219(+2}
0.191(+2)

0.651(+1)
0.656(+ 1)
0.667(+ 1)
0.686(+ 1)
0.715{+ 1)
0.760(+ 1)
O.832(+1)
0.957(+ 1)
O. 121(+2)
0.239i+2)

0.406(+3)
0.100(+3)
o.s82(+2)
o.41o(+2)
0.319(+2)
0.262( +2)
0.224( +2)
0.196(+2)
0.175(+2)
0.159(+2)

O.894(+1)
0.915(+1)
0.945(+ 1)
0.986(+ 1)
o.1o4(+2)
0.112(+2}
o.12s(+2)
0.145(+2)
0.187(+2)
0.374(+2)

0.135(+3)
0.235( —2)
0.301(+1)
0.418( —3)
0.196
0.909( —4)
0.228( —1)
0.257{—4)
o.41o( —2)

0.412( —2)
0.571( —3)
0.228( —1)
0.412{—2)
0.196
O.442( —1)
0.298(+ 1)
0.751
0.134( +3 )

I'= 18
a=+/2

0.890(+2)
0.394( —2)
0.272(+ 2)
0.207( +2)
0.166( +2)
0.138(+2)
0.117{+2)
0.102(+2)
0.899{+ 1)

0.339(+1)
0.344(+ 1)
0.353(+1)
0.368(+ 1)
0.390(+1)
0.427(+ 1)
0.490(+ 1)
0.613(+1)
0.124(+2)

(S)

0.107(+3)
0.379( +2)
0.246(+2)
0.182(+2)
0.146(+2)
0.122(+2)
0.106(+2)
O.936(+1)
0.844(+ 1)

0.474(+ 1 )

0.488(+ 1 )

0.509(+ 1)
0.537(+ 1 )

0.578(+ 1)
0.640(+ 1)
o.74s(+1)
0.944(+ 1)
0.194(+2)

in Fig. 2. The results for I'=9, 8 are shown in Table II
and in Fig. 3. Finally, Table III shows the results for
l'= 3,2. The cases I'= 1,0 corresponding to large quan-
tum defects require nonhydrogenic form factors and are
not considered here.

A. The case a=0

This case was considered with I'=19,18 in Ref. 3. The
slight differences between the results of Yosizawa and
Matsuzawa and our results originate in the introduction

TABLE II. Cross sections S, in atomic units, for the processes Na(n =20, 1=19,m =19)+He~Na(n'=20, 1', m')+He. Angle a
is either equal to zero (columns I and 4i or m/2 icolumns 2 and 5). Results obtained when averaging over all orientations [(S), see
Eq. i27i] are shown in columns 3 and 6.

9
8
7
6
5
4
3
2
1

0
—1
—2
—3
—4
—5
—6
—7
—8
—9

0.443(+2)
0.166( —1)
0.949(+ 1)
0.137(—1)
0.388(+ 1)
0.115(—1)
0.223(+ 1)
0.112(—1)
0.171(+1)
0.127( —1)
0.171(+1)
0.171(—1)
0.223(+ 1)
0.273{—1)
0.387(+ 1)
0.502( —1)
0.947(+ 1)
0.958( —1)
0.442(+ 2)

I'=9
a=+/2

0.795(+ 1)
0.250(+ 1)
0.271(+1)
0.198(+1)
0.189(+1)
0.164(+1)
0.156(+1)
0.144(+ 1)
0.140(+ 1)
0.133(+1)
0.131(+1)
0.128(+1)
0.131(+1)
0.129(+1)
0.140(+ 1)
0.138(+1 }
0.180(+1)
0.154(+1)
0.470(+ 1)

(S)
0.122( +2)
0.366(+ 1)
0.403(+ 1)
0.288(+ 1)
0.276(+ 1)
0.237( + 1)
0.227(+ 1)
0.208(+ 1)
0.203(+ 1)
0.193(+1)
0.193(+1)
0.188(.+ 1)
0.194(+1)
0.192(+1)
0.211(+1)
0.208(+ 1)
0.275(+ 1)
0.235(+ 1)
0.732(+ 1)

0.415( +2)
0.171(—1)
0.102( +2)
0.156{—1)
0.474(+ 1)
0.146( —1)
0.310(+1)
0.154( —1)
0.270(+ 1)
0.191(—1)
0.310(+1 }
0.276( —1)
0.473(+ 1)
0.454( —1)
0.102{+2)
0.770( —1)
O.414(+2}

a =m/2

0.708(+ 1)
0.205(+ 1)
0.246(+ 1)
0.170(+1)
0.172{+ 1)
0.145(+ 1)
0.144(+ 1)
0.130(+1)
0.131(+1)
0.122(+ 1)
0.128(+ 1)
0.121(+1)
0.136{+ 1)
O.127(+ 1)
0.174(+1)
0.135(+1)
0.448(+ 1)

(s&

0.109(+2)
0.303(+1)
0.370(+ 1)
0.250(+ 1 }
0.254(+ 1)
0.212(+ 1)
0.212(+ 1)
0.191(+1)
0.194(+1)
0.181(+1)
0.191(+1)
0.181(+1)
0.206(+ 1)
0.192{+ 1)
0.268(+ 1)
0.207(+ 1)
0.698(+ 1)
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S (a.u. )

4 g102

TABLE III. Cross sections S, in atomic units, for the pro-

cesses Na(n =20, l =19, m =19)+He—+Na(n'=20, l', m')

+He. Angle n is either equal to zero (column 1) or m/2

(column 2). Results obtained when averaging over all orienta-

tions [(S), see Eq. (27)] are shown in colutnn 3.
'102

4xzo t

10~
8
6

3
3
3
3
3
3
3

m'

3
2
1

0
—1

—2
—3

0.275(+02)
0.105( —01)
0.134( +02)
0.139(—01)
0.134(+02)
0.158( —01)
0.275{+02)

a =~/2

0.387(+01)
0.515
0.186(+01)
0.530
0.176(+01)
0.460
0.330(+01)

(s)
0.599(+ 01)
0.775
0.287( + 01)
0.802
0.273(+01)
0.698
0.512(+01)

Zoo
20 —20

fA

2
2
2
2
2

2
1

0
—1

—2

0.239{+02}
0.714( —02)
0.144(+02)
0.874{—02)
0.239(+02)

0.326(+01}
0.303
0.188( +01)
0.286
0.293(+01)

0.505(+01)
0.457
0.291(+01)
0.434
0.455(+01)

FICs. 2. Semilogarithmic plot of the cross sections S corre-
sponding to the processes Na( n =20, l = 19, m = 19)+He
~Na{n'=20, l', m')+He. Atomic unit: ao. Abscissa: m'.
CI: l'=19, a=a/2 e: 1'=. 19, average over a [see Eq. (27a)].
+: I'=18, a=a/2. 6: I'= l8, average over a [see Eq. (27a)].

by these authors of an additional term in Eq. (5) involving
the He polarizability. When looking at the present results,
the most striking feature is the appearance of a selection
rule which nearly forbids transitions when I' —m' is odd.

The
T is rule is most easily explained by considerin E (15)

e angle 8 is nearly equal to r//2 for the K values which
contribute significantly to the integral of dS/dK over K.

is then different from zero only for A, —m +m '

even. In this case the sum l+I'+A, has the parity of
l' —m'. The 3-j symbol (o o o) of Eq. (15a) is therefore
zero if I' —m' is odd.

Another striking fact is the quasiequality of the cross
section S for processes differing only by the sign of m',
when l' —m' is even. It should be emphasized that this
concerns only the cross section S and not the differential
cross section dS/dK. This is illustrated in Fig. 4 where it
is seen that dS/dK for m'= —19 takes significant values

for larger values of K than does dS/dK for m'=19. We

do not presently have a simple explanation why the area

of the two curves of Fig. 4 should be nearly equal. The
fact that the dotted curve (m'= —19) is centered on

larger values of K than the solid line curve (m'= 19) sup-

40000

S (a.u.)
12

30000

20000

3.0 —10

'10000

0. 00

/
/

/
/

/
/

/
/

/
/

/
I . r . . I . . ~~ l

0. 05 0. '10 0. 15
K (a.u.)

FICs. 3. As in Fig. 2 but linear plot. 0: I'=9, a=m/2.
I'=9, average over a [see Eq. (27a)]. +: I'=8, a=@/2.
l'=8, average over a [see Eq. (27a)].

FICx. 4. Differential cross sections dS/dK (a.u. ), as a func-
tion of E (a.u. ), for the processes Na(n=20, i=19, m=19)
+He~Na{n =20, l'=19, m'}+He with ca=0. Solid line
curve, m'=19; dotted line curve, m'= —19.
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ports a classical interpretation: reversing the direction of
motion of an electron on a classical circular trajectory re-
quires large momentum transfers.

B. The case a=a./2 and the average over a

It is seen in Figs. 2 and 3 and Table III that the cross
section S averaged over o. are generally not too different
from those corresponding to a =m/2. The reason for that
is a geometrical one: for a given value of da, Eq. (27a),
the solid angle encompassed is the greatest for a =sr/2, as
indicated by the factor sin(a) in Eq. (27a). A systematic
study of the cross sections S as a function of a would be
time consuming. When calculating dS/dE as a function
of a, for some fixed values of IC, not other general selec-
tion rules were found. As an illustration, Fig. 5 shows the
a dependence for two particular cases: dS/dK corre-
sponding to the transition towards the states

~

20, 18, 18}
and

~

20, 18,17}for %=0.02.
The cross sections S are found to be maximum when

~

m'
~

=I' as for the case a=O. The minimum of S as a
function of m ' decreases from about 9a o

—1000 to about a
fraction of ao as I' varies from 19 to 3. For large l'

values the behavior of S as a function of m' is smooth,
whereas it presents structure, with unit period, as for the
case a=O, for low l' values.

V. INFLUENCE OF AN EXTERNAL ELECTRIC FIELD

The previous formulation of state-to-state collisions can
be extended in the presence of an external electric field E.
The direction of E is assumed to be parallel to L, [see
Eqs. (2)]. Then, it is known that the states

~
n,f,g } [see

Eq. (28a)],

A. Symmetry properties

The states
~
n,f,g} are eigenvectors of the operators

F,G,F„G, with eigenvalues F(F+ 1 ),F(F+ 1 ),f,g if F
and G are defined by

F=(L—A/v' 2H )/2, —

C=(L+ A/& 2H )/2, —
(40a)

(40b)

with H the hydrogenic Hamiltonian, and A and Runge-
Lenz' operator:

~
n,f g }= g ~

n, l, m =f+g }(F F,l, m
~

F f F g },(39)
I

are the correct eigenstates of the hydrogenic Hamiltonian
in the limit of zero external field. The differential cross
section dS/dQ can therefore be expressed as in Eq. (5),
the states

~

n,f,g } in place of the states n, l, m }.This is
the starting point used by Hickman. The method of Sec.
IIC for obtaining the differential cross sections dS/dK
for an arbitrary value of a as well as for an average value
of dS/dK over the angle a can be used after the change of
basis given by Eq. (39) has been made. Hickman was able
to obtain dS/dK from dS/d0 for the case a =~/2 by us-

ing another procedure; his procedure involves a further
approximation ' well justified when the energy gap

~

e —e
~

is not too large; it is not generalizable to arbi-
trary values of a.

The difficulty when using the expansion of
~
n,f,g } in

terms of the
~
n, l, m },Eq. (39), is a serious increase of the

computation time. It is therefore of interest to make a
general study of the symmetry properties Sec. VA. In
Sec. VB we shall concentrate on the results which can
presently be obtained without any numerical computation
in the case where the initial state is circular.

10000 A=(p 6 L—L h p)/2 —r . (41)

8000

(g) 6000

L].000

2000

/
/

/
/

/
/

/
/

/

E

It is clear that under space inversion F and G are inter-
changed, and that under time reversal F transforms into
—Cy, 6 into —F. This allows us to conclude (see the Ap-
pendix) that

)
(n', f', g'

~

exp( iK r)
~

—n,f,g.} )

=
[
(n', g',f'

)
exp(iK r)

] n, g,f}(, (42)

[
(n', f', g'

)
exp( —iK r)

)
n,f,g } [

=
(
(n', —g', f' exp(iK r)

~

n, —g,—f}
~

. (43)—
A further relation is obtained by considering rotational
symmetry (see the Appendix):

[
(n', f', g'

~

exp( —iK r)
~

n,f,g } )

=
[
(n', f', g'(exp(iK r))n, f—, —g}—)

. (44)—
0. 0 0. 5 1.0

a (rad)

FIG. 5. Differential cross sections dS/dK (a.u. ), as a func-
tion of the angle a (rad), for K =0.02 (a.u. ), and for the process-
es Na(n =20, I = 19, m = 19) + He~Na(n'=20, I'= 18, m')
+ He. Solid line curve, m'= 17; dotted line curve, m'= l8.

The differential cross section dS/dQ is therefore invari-
ant under the three following independent transforma-
tions:

(»q —q q' —q' f' g' ff' g'f-
«) q —q q' —q' (f' g'f g) ( f' g' f- — —

—g)
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These independent transformations can of course all be
combined together. For example, the product of transfor-
mations (a) and (b) indicates that the differential cross sec-
tion dS/dQ is invariant if q and q' are unchanged
whereas f',g',f,g all undergo a change of sign. These re-
sults for dS/dQ of course also concern dS/dK. In par-
ticular dS /dE is invariant under the transformation
which changes the angle a into a—a.

These results are valid for an arbitrary initial state
~
n,f,g ) and final state

~

n', f',g'). In Sec. V B some re-
sults obtained without an electric field for a circular ini-
tial Rydberg state are compared to the case where an
external electric field is present.

f' r'
(f'+g'=m')

~

n', f',g')(n', f',g'
~

= g ~

n', i', m')(n', l', m'
~,

(45)

B. Comparison with the zero-field case

The circular state
~
n, l=n —l, m=n —1) is identical

to the state
~
n,f=F,g=F) [see Eq. (39)]. By expressing

the projection operator onto the subspace characterized by
fixed values of n' and m' in two different ways,

one thus obtains [see Eqs. (5), (9), and (45))

S(
i
n, f=F,g =F)~

i
n,f',g'))

& gS(
~
n, I =n —1, m =n —1)—+

~
n, l', m')) . (46)

The inequality in relation (46) has its origin in an increase
of the lower bound

~

q' —q ~
[see Eq. (9)], which arises as

the field E removes the degeneracy. The variation of the
upper bound q+q' does not matter since dS/dJ is com-
pletely negligible for a value of K of the order of q+q'.
The equality in Eq. (46) occurs for the zero-field limit.

Another relation can also be obtained in the case when
a =0. Due to the selection rule for the states

~
n, l, m ),

only the term corresponding to I'=n —2 has to be taken
into account in the expression of

~

n', f'=F 1,g'=F)—
in terms of the states

~

n', 1', m'=2F —1) [see Eq. (39)].
For a=O, one then has

S(
~

n, f=F, g =F)~
~
n, f'=F 1, g'=F—) )/[S(

~
n, i=n —1, m =n —1)—+

~
n, l'=n —2, m'=n —2) )]

&
[ (F,F,i', m

~
F,y', F,g') ['=—,

' .

The inequality in relation (47) is transformed into a
quasiequality in the zero-field limit.

Getting more detailed results requires numerical com-
putation, and we are looking for procedures that could de-
crease the calculation time.

APPENDIX: SYMMETRIES OF THE MODULUS
OF HYDROGENIC FORM FACTORS

The hydrogenic form factors A and 8 are defined,
within the notations used in this work, by

VI. CONCLUDING REMARKS
3 = (n', l', m'

~
exp( iK r)

~
n,—l, m ),

B=(n',f',g'
~
exp( iK r)—

~
n,f. ,g) .

(A 1)

(A2)
It has been shown that the impulse approximation, in

its simplest form [Eq. (5)], predicts a highly anisotropic
behavior of collisional processes involving a circular ini-
tial Rydberg state. A selection rule may appear, depend-
ing on the initial orientation. An experimental study of
these orientation effects would be a crucial test of the va-
lidity of the impulse approximation for treating thermal
collisions between Rydberg atoms and ground-state rare-
gas atoms. Confrontations of the theory with experiment
already exist when considering the so called l-mixing
cross sections. These confrontations, as they concern
summed and averaged cross sections, do not test the orien-
tation effects. The experimental study of orientation ef-
fects of course represents a difficult experimental chal-
lenge, but, in view of the progress in crossed-beam tech-
niques, this could be possible in the near future, especially
by using the polarization properties of both the excitation
and the detection.

ACKNOWLEDGMENTS

The author would like to thank J. Pascale and F.
Gounand for helpful discussions, and C. Searle for a care-
ful reading of the manuscript.

Three symmetry operations concerning the isolated hydro-
gen atom (isolated means that K is not affected by these
operations) will now be considered: reflection, rotation,
and time reversal. From now on, the same letter s will
denote different, unspecified, phase factors. The parity
operator P has the following actions:

P
~

n, l, m) =s
~
n, l, m), (A3)

P
~
n,f,g ) =s

~
n, g,f),

P exp(i K.r)P =exp( i K r) . —
It follows that

[
A

f
=

J
(n', I', m'[exp(iK. r)

J
n, l,m) ),

f

8
f

=
/
(n', g',f'

/

exp(iK. r)
f
n, g,f ) /

.

(A4)

(A5)

(A6)

(A7)

A rotation along the z axis [see Eq. (2)] changes the states
~
n, l, m ),

~
n,f,g ) only by a phase factor. It is then pos-

sible to choose the x axis in the plane (z, K), so that

K.r=K„x+E,z . (AS)

A rotation by m along the y axis then changes the sign of
K.r:
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exp(imL~)exp( —iK r.)exp( i—~Ly)=exp(iK r.), (A9) T changes the hydrogenic states according to

whereas the hydrogenic states are transformed according
to

T
I
n, l, m) =s

I
n, l, —m ),

TIn,f g)=sIn, —g, f—) .

(A16)

(A17)
exp( i n.L—

y )
I
n, I,m ) =s

I
n, l, —m ),

exp( i n—Ly )
.

I
n,f,g ) =s

I
n, f,——g ) .

It follows that

I

2
I

=
I

&n', l', m—'I exp(iK. r)
I
n, l, —m)

I

(A 10)
It follows that

(Al 1)
[&i'exp( i K—r) i )]*=&i'

I
T exp(iK r)T

I

i )

and therefore

=
I & n', 1', —m'

I
exp(iK r)

I
n, l, .—m ) I

(A12)

I
+

I

=
I

&n', f' —g'
I

exp('K'r) In f —g—& I
(A13)

(A18)

(A19)

Texp( —iK.r)=exp(iK r)T . (A15)

The antiunitarity property of the time-reversal operator
T gives

(A14)

I
&

I

=
I

&n' g' f—'I exp—«K r) In —g —f & I

It should be noted that Eq. (A19) coincides with Eq.
(A12), whereas Eq. (A20) differs from Eq. (A13). Equa-
tions (A6) and (A12) are not specific to the Coulomb
problem, but are valid for any central potential.
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