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Relationships among the terms in the expansions of the kinetic- and exchange-correlation-energy
density functionals
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With use of the Sobolev-Holder inequalities, certain rigorous interrelationships among the leading
terms in the expansions of the kinetic- and the exchange-correlation-energy density functionals have
been derived. This work has also been extended to include some quasiclassical connections. All
these relationships are inequalities that have been tested numerically with use of Hartree-Fock den-
sities for 1806 neutral atoms and their ions.

I. INTRODUCTION f f(r)g(r)d~ ( f f(r)!~dr
' 1/p

g r

f ! VP(r)! dr&3(tr/2) ~ f ! P(r)! d~
1/3

for any normalized P(r) such that f P(r)dr exists, and
the Holder inequality

In two recent articles' some interesting connections, in
terms of rigorous bounds, between the leading terms in
the expansion of the kinetic and exchange-correlation-
energy density functionals ' were derived. These deriva-
tions were based on the three-dimensional Sobolev in-
equality '

where f(r),g(r) with p) 1 and p '+q '=1 are all real.
Recently, Csavinszky and coworkers have made some de-
tails investigations on the bounds in Refs. 1 and 2.

The spirit underlying the present work is to bring out
additional interesting connections among the leading
terms in the expansion of the kinetic and exchange-
correlation-density functionals by employing the inequali-
ties in Eqs. (1) and (2). The resulting inequalities were nu-
merically investigated using 1806 Hartree-Fock atomic
densities, obtained by numerically solving the "average-
energy-of-the-configuration" Hartree-Pock equations.
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FIG. 1. Plot of R l against the number of electrons, X, for 1806 neutral atoms and their sons.
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FIG. 2. Plot of R~ against the number of electrons, X, for 1806 neutral atoms and their ions.

EI. DERIVATIONS

A. Rigorous inequalities

fpd'r(NfpdT
I

fp'dr( f p'"dr

I /2

5/4 f p'dr

(3)

As a prerequisite, we note the following inequalities,
directly obtainable from the Holder inequality (2):

'2 r

fp dr (. fp dr fpdr (5)

Here N =f p dr represents the total number of electrons.
The inequality

TII[p]= ,' f (Vp V—p—)p 'dr(T[p], (6)

where T~[p] is the Weizsacker' functional and T[p] is
the kinetic energy density functional, along with the ine-
qualities given in Refs. l and 2, yields
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FICs. 3. Plot of R3 against the number of electrons, N, for 1806 neutral atoms and their ions.
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FIG. 4. Plot of R4 against the number of electrons, N, for 1806 neutral atoms and their ions.

f p'dr
1/3 8 8

2)2/3 ~ —3(2~2)2/3
Tg( T. error; the correct derivation is supplied below. ) From the

inequalities (3), (6), and (7) it follows that

By means of the inequalities (3) through (4), several in-
teresting rigorous relations can be derived.

A connection between the Weizsacker term (as well as
the total kinetic energy) and f p dr, which is an observ-
able related to the intensity of the coherent (elastic)
scattering of x rays by elements, has been shown by Hy-
man et al. " (The derivation given by Hyman et al. is in

3/2

) ( ~1/2T3/2
2%2 3 1

' 3/2

&~/2T3/2
-2~2 3 P d&—=R2.

Equation (8) and the recent lower bound for f p d7 de-
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FIG. 5. Plot of R5 against the number of electrons, X, for 1806 neutral atoms and their ions.
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FIG. 6. Plot of R6 against the number of electrons, N, for 1806 neutral atoms and their ions.

rived by Hyman et a/. ' yield

0034K' T f p dw&R &R (8')

' 3/2

(c T/Fc )eNxICpT~ /Tp —=R32~2 3

The inequalities (5), (3), and (8) (in the given order) lead to
3/2

5/3d & & ~1/2 4/3 d T3/2
. -2 ~ 3

' 3/2
~1/2 f 4/3 d T3/2

-2H 3

which is easily transformed into

' 3/2

/c, „)V' ICpT /? p—=R4
27T2 3

(l0)

where Tpfp]=cTF f p d~, with cTF ( —,'0)(3~ ) / is the
Thomas-Fermi kinetic energy functional and It.p [p]=c,

„ fp dr, with c,„=(—,)(3/sr)', is the negative of
the Dirac-Slater' exchange energy density functional.
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FIG. 7. Plot of R~ against the number of electrons, N, for 1806 neutral atoms and their ions.
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FIG. 8. Plot of RjE against the nUmber of electrons, X, for 1806 neutral atoms and their ions.

The inequality Tp & —,(3K/2) / T~ (obtained in Ref. 2
through successive applications of the Sobolev and Holder
inequalities) and the inequality (6) furnish a connection
between Tp and T:

1 & , (3X/2) / —T/Tp=R5 .

While R3 is smaller than RLT (the Lich-Thirring bound)
for small N, RLT is tighter than R5 for values of X) 12.
A combination of the inequalities (4), (5), and (7) yields

5/3
8 CTF 4

1 & 2 2/3 4/3 Kp Tg /Tp=R6
3(2m ) c,

„

At this point, a comparison between the inequality (11)
and a recent bound due to Lich and Thirring' is in order,
namely,

8

3(2tr )
/

5/3
CTF

Kp T/Tp =R7 .
Cex

(13)

1 & (477) T/Tp =—RLT Another interesting inequality which involves the value of

I } I I I . I } I I I I j I I I I } I I I I } I I I I } I I I I t I I I I } I I I I

4

4
4

~ r
4 ~ ~

4 a

e

4r

e 4
44 ~
4

'~

~ ~

a
~ 4

4 4
4 4 4
e ~ 4r44

'~

~ a

~ ~
~ 4

4 ~

4 e

4 r
~ ~

4

~ 4
4 4 4
4 4
e 4
~ 4
4 pr ~ »

~ 44 4
g 4 4

I

4 4

'~ 4

4 ~

4

4
~ ~
e
~ r ~
~ ~
4 r 4
~ ~ ~4 4 ~

e

4
4 e

~ 4

~ ~
~ ~e r

e

4

e 4
~ 4
~ ~e

4
~ e
~ ~
~ 4e 4

~ 4 4
4e ~4
44

4 ~
4 ~ 4
~ ~ 4

4

e

4 ~
e 4 ~

~ ~ \ ~

~ ~

4

r
~ ~

e

~ ~ ~
~ ~ s
4 ~ ~
4 4 ~

~ ~r
4 ~~ ~ ~

~ ~
~ ~

~ 4~ ~

~ ~

a

r ~
~ 4
~ ~
~ 4
4
~ ~
~ 4
~ ~
~ ~
~ ~

4

4 ~
~ ~
4 ~e 4

4 ~
~ ~4 ~P

I~ ~

4
4

e

4
~ 4
4
4
4
4 444 44
~ ~~ ~4 444 4
~ 4 t~ ~ I~ ~ ~~ 4

~ e

~ 4

~ ~

~ e
~ ~

~ ~

~ ~
~ ~

~ ~

~ ~

~ ~

~ 4 ~~ r ~
~ e ~
~ 4

~ 4 4

~ ~ 4

~ ~ ~
»

4 ~
4 4

4 4 e
~ 4 ~
4 4 a
e ~ ~

4
~ ~

4 ~ 4
4 \ ~
4 ~ ~

~ 4
~ 4

~ 4 4 4 4

4

4
4 ~
4 4
~ 4

e
r

~ ~
4 4

e 4 r
~ ~ ~

~ ~
~ eer
~ a4

e ~r ~ ~
~ ~

e
r

4 ~
~ ~
~ ~
~ ~
~ ~
4 ~

~ ~
~ ~
~ ~

a

~ ~
4

~ ~
4 ~

e ~ ~
4 ~ ~

~ 4 ~

~ ~

4 4
~ ~ 44 4
~ 4
~ ~

4 ~
4 ~
~ ~
r ~
~ a
e e
a ~
~ 4
~ 4
~ ~
a 4~ ~r4
~ 4
~ 4

~ ~
4 a ~

~ ~
4

4 ~4 4
~ ~

~ ~
~ ~

~ ~ ~~ ~ ~e S ~~ ~

4 4 4 ~

4 ~ 4

~ ~
~ ~
~ ~
~ ~

~ ~
~ ~

~ ~
4 ~
~ ~
~ ~
~ ~
~ ~

I

4
4 4

4

e
4 ~

e

~ ~ 4 ~

e ~
4

4
e
r e
4

~
' ~

~ 4 4
' 44 4

~ 4
~ 4 4
4
4 ~
~ ~ ~

~ ~o 4P

4 ~ ~

~ ~

4
~ ~
~ ~
e

~ ~

4 ~
~ ~
4
4 4 ~
~ ~

»

r 4 ~a ~

Pe

4 P 4

~ 4 4

4 ~

4 ~
4

4 ~
4 ~

4 ~

4
4
4

r 4
~ 4 ~
4 e
4

4 ~
~ ~4
~ ~4

P
4

4 ~4 4 44 4 44

4 ~ 4
~ 4 ~ 4

e r
4
4

~ ~
~ ~
~ 4

~ ~

4 ~- ~
444

~ ~

~ r
~ 4
~ 4
~ 4
~ ~
~ ~
~ ~
~ ~
~ 4
~ ~
~ ~
~ ~
~ ~
~ ~4

4
4

~ ~4 ~4
4 ~4
4 ~4 ~4 ~4 e4 44 4
~ ~

p o ~ 4 4 ~
e ~

4

r

~ ~~ ~e ~
4 ~e 4~ ~4 ~o s~ ~~ ~4 ~

4 ~
~ ~
e
~ ~
4

4 ~
4 ~4 ~4 ~
4 ~~ ~~ ~~ ~~ ~

4

lpg ~

I I I I I I I r 1 ~ I I I t i s I a e s s I l I l I I I I l I I l I t 1 I 1

20 40 60 80
N

FIG. 9. Plot of Q~ against the number of electrons, X, for 1806 neutral atoms and their ions.
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FICr. 10. Plot of Q2 against the number of electrons, X, for 1806 neutral atoms and their ions.

the electron density at the nucleus p(0) is

f p d~&p,
„ f pdr=p(0)N, (14)

where the monotone decrement of the spherically aver-
aged p(r) for atoms is implicit, ' i.e., the maximum value
of p(r) is equal to p(0). Combining the above inequality
with the inequality (5), we find

2
CTF 2=1 & Xp(0)Ko/To =Rs (15)
~ex

which provides a lower bound for p(0). Lower bounds to
the density are hard to determine and are very scarce in

the literature; some recent work in this direction was done
by King, ' who computed several upper and lower bounds
to p(0) for the helium-isoelectronic sequence.

The ratios R& through A8 provide some interesting
rigorous connections between some of the energy density
functionals. Apart from these rigorous bounds, it is possi-
ble to derive certain relationships on a quasiclassical basis,
as done in the next section.

B. Quasiclassical inequalities

From the position and the momentum space transfor-
mations that form the theme of Ref. 17, we can show that
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FIG. 11. Plot of Q3 against the number of electrons, X, for 53 neutral atoms and their ions.



31 RELATIONSHIPS AMONG THE TERMS IN THE EXPANSIONS. . . 3563

the following equalities hold quasiclassically:

(16)

and

f' &/3~
&p )atomic= p 2r3 I p(3m. )

(17)

The above two relations become exact as the nuclear
charge tends to infinity. Now, from the theory of distri-

(p )per particle & ( (p ) per particle) O (p )atomic
& (p„,;, )2/N. With (p2)/2—:T, and the quasiclassical
equality (16), a quasiclassical bound is obtained:

2NT
m Eo

Noting that N & (p ) (p ), we obtain

61&
2 3/2T p' d7:—

(18)

Using N & (p ) (p ' ) and the fact that (p ' ) =2J(0)
(exactly), J(0) being the peak value of the Compton pro-
file (which is an observable), we can rewrite (16) as

1&2trICOJ(0)/N =—Q3 . (20)

TABLE I. Numerically determined upper and lower limits to
the ratios Rt through Rs and Qt through Q3.'

1.9610&R& &6.8858
1.9610& Rp & 35.904
2.0699 & R3 & 11.984
2.0699 & R4 & 62.024
1.8213 & R5 & 21.384
1.5933 &R«4.0878
1.5933 & R7 & 12.602
9.4184 & R8 & 391.46
1.4151 & Qt &2.7562

11.613 & Q2 & 909.98
1.4862 & Q3 & 4.2975

'The inequalities R t through Ra, Qt, and Q2 are based on 1806
Hartree-Fock densities within the range 1 &X & 86 and
N &Z &N +20. The inequality Q3 is based on the 53 Hartree-
Fock densities within the range 2 & X =Z & 54.

All the rigorous bounds R ~ through R8 and the quasiclas-
sical bounds Qi through Q3 will be numerically tested in
the next section.

III. NUMERICAL TESTS AND DISCUSSION

Each of the ratios R i through R s as well as Q i
through Q2 was tested individually for 1806 Hartree-Fock
atomic ground-state densities within the range 1 (X& 86,
N &Z &N+20. The quasiclassical ratio Q3 was tested
using the Clementi-Roetti' neutral atom near Hartree-
Fock densities and the corresponding theoretical Compton
peak values recently obtained by Gadre et al. ,

' via a
direct Fourier transformation of the Clementi-Roetti wave
functions. This ratio was tested for the neutral atoms
2 (N =Z & 54. Table I lists the various ratios and the nu-
merical limits which we found for the above Hartree-'Fock
densities. Plots of the ratios Ri through Rtt and Qi
through Q3 are displayed in Figs. 1—11. Even though the
ratios provide interrelationships among some important
density functional energy components, none of them are
very tight for the Hartree-Fock densities, especially as X
becomes large. The reason for this not-very-tight
behavior is that several inequalities have been employed in
succession to arrive at the final result. However, with the
exception of the quasiclassical ratios Qi through Q3, all
the ratios tend to rise smoothly with X. The ratios R2,
R&, and Rs are of particular interest because of their
linear behavior. The ratio R5 is most interesting because
it displays very little Z dependence. The ratio R8 pro-
vides a lower bound to p(0) which is not as tight as
King' s' highest lower bound for X =2. However, since
Rtt is related to some simple i'ntegrals of powers of the
density alone, certain simple mathematical inequalities en-
able one to connect the terms in the density expansions.
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