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A new approach to the variational representation of the Dirac equation is presented. The method
takes advantage of the conditions satisfied by the eigenfunctions at the origin. In this way, a varia-
tional representation of the complete Dirac-Coulomb spectrum without spurious roots is obtained.
Rigorous proofs of bounds for the positive and negative variational eigenvalues, as well as differen-
tial and integral properties of the variational eigenfunctions, are giveri. An alternative approach to
the elimination of spurious roots based on constraining the basis set to satisfy the right nonrelativis-
tic limit is also presented.

I. INTRODUCTION

with

Z8H =ca.p+Pmc— (1.2)

where a and P are the usual 4X4 Dirac matrices. The
solutions to (1.2) can be written in the form

.g(r) &E jlMr

r J7

I =2j —1 (1.3)

where g(r) and f (r) are the large and small radial func-
tions arid QjlM is a two-component spherical spinor.

In nonrelativistic quantum mechanics, variational
methods provide a powerful technique for the construc-
tion of approximate eigenvalues and eigenfunctions and
for calculations involving sums over the complete energy
spectrum. The variational method cannot be trivially ex-
tended to the relativistic case because the Dirac Hamil-
tonian is not bounded from below. Any positive energy
eigenvalue can collapse into a negative-energy eigenvalue
as the basis set is increased or as the nonlinear parameters
of the basis set are varied.

This paper is restricted to the case of an electron in a
Coulomb potential V(r)= Ze !r. In th—e present work
we obtain a variational representation of the Dirac Hamil-
tonian without spurious roots, with a general proof of
bounds for the energy eigenvalues.

To review briefly, the Dirac equation in the case of a
Coulomb potential can be written as'

The large and small components satisfy the coupled
equations

aZ Ic dg+ —— f=«g,
r r dr

d v 1 aZ+—g — —+ f=aEf
dr r a r

(1.4)

g(r)
f (r) (1.5)

the system of equations (1.4) can be rewritten in Hamil-
tonian form as

H, @=E4,
with the radial Hamiltonian H, given by

1 cxZ Ic d
a r r dr

(1.6)

aH, =
K+-

dr r
aZ
r

(1.7)

The exact positive energy solutions to (1.6) can be writ-
ten in the form

—~„r ~
@„,=rre " g r'

i=)

a;
0 +

where a; and b; are constants, N =n —1 for ~ & 0 and
X =n for a &0, and

in atomic units. a is the Dirac quantum number
n=+(j + —,

'
) for I =j+—,'.

Defining a two-component radial spinor
r
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y=[a. —(aZ) ]'~ (1.9)

In a previous work, Drake and Goldman introduced a
variational basis set of the form

The solution to (2.2) yields

p=1 =[~ —(aZ) ]' (2.3)

g ~g+ e
—A,

f r+! —Ap

0

0
i =0, 1,2, . . . , N —1,

(1.10)

(i) The 2N eigenvalues split into N-positive and N
negative eigenvalues.

(ii) The negative-energy eigenvalues all lie below
E = —n and move progressively up towards —a as

—2 —2

the basis dimension is increased.
(iii) The positive-energy eigenvalues behave exactly as if

the Dirac Hamiltonian were a positive definite operator.
(iv) A spurious root appears in the case x. ~O. This

spurious root is degenerate with the lowest variational
state of the same

~

~
~

but with a &0.

with A, an arbitrary positive nonlinear variational parame-
ter. Their results can be summarized as follows.

80

fo
K —p cxZ

cxZ K+ p
(2.4)

g (r) Ir —ylim =q =
r o f(r) aZ (2.5)

This ratio is the same for all eigenfunctions with the same
value of a.

Consider now the simplest basis set satisfying (2.5), i.e.,
the one-dimensional case

~

qI„& =g(r) (2.6)

Using (1.7) we obtain

It is interesting to note that according to (2.4), the
eigenfunctions of the Dirac Hamiltonian satisfy the Ievel-
independent constraint at the origin

The above properties of the set (1.10) were not proven
rigorously by Drake and Goldman for a general basis set
of dimension N, although an extensive numerical discus-
sion of boundness and completeness was given.

In this work a new approach to the variational repre-
sentation of the Dirac-Coulomb Hamiltonian is presented.
The method takes advantage of the conditions satisfied by
the eigenfunctions at the origin. In thi. s way, a variational
representation without spurious roots and a proof of a
generalized Hylleraas-Undheim theorem are obtained.
As a consequence of this analysis a general proof of some
of the properties of the basis set (1.10) is also obtained, in-
cluding the presence and values of the spurious roots.

The zeroth-order conditions at the origin are first dis-
cussed in Sec. II. Section III presents a variational repre-
sentation without spurious roots for which the right
energy-bound properties and some general rules satisfied
by the eigenfunctions are found. In Sec. IV an alternative
approach to the elimination of spurious roots is intro-
duced. -This method is based on imposing the right non-.
relativistic limit on the basis set.

(2.7)

A diagonalization of the Hamiltonian yields the same
eigenvalue g regardless of the normalization function g (r)
used in (2.6). For ~ & 0, g is equal to the exact lowest pos-
itive eigenvalue a Ep (e.g., Is I~2, 2p3/p etc.). For a )0, rl
is a negative spurious root q = —a ED lying in the forbid-
den energy gap.

Results (2.5) and (2.7) can also be obtained directly for
the exact eigenstates. Defining y(r) =g(r)lf (r), one ob-
tains the following uncoupled differential equation for y:

dy 2~ nZ 1 aZ 1 2y —aE+ +——aE+ ——y =0.
dP' 7- A Cf

For the exact eigenfunctions the result (2.7) is equivalent
to the solution y =const, and the result (2.5) to
lim„0y =const.

Result (2.7) can be generalized to a basis set of arbitrary
dimension. Consider the orthogonal set

II. THE ZEROTH-ORDER CONDITIONS
AT THE ORIGIN

Consider an expansion of g(r) and f(r) in (1.4) around
r=0. In general we can write

I
q~&=(q'+1) —' 'p„(r) I, a =1,2, . . . , N

q

(2.g)

g(r)=r&(gp+g, r+ . ),

f(r)=r~(fp+f, r+ ) .

To lowest order in r, as r —+0, system (1.4) becomes

—aZgp+ (~ p)fp
——0, —

(~+@)go aZfo =0 . —

(2.1)

(2.2)

&=(q'+1) '
& ( )

with

Using (1.7) we obtain

m =1,2, . . . , M
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(+J
~

a H„( &II; &=ri5,J,

&4~~„~ a Ef,
~
%~~ &= —g5„—2a z(e„—8 ),r

&~i I~'H.
I ~~+. &= „&PJ Ig. &+~a(PJ —

„ t&.
)

With

0,'Z exp+ —0!
r dr

AZ CXf+ +
2(x Z

xl

(3.5)

with i,j =1,2, . . . , N and n, m =1,2, . . . , M.
The variational eigenvalues are obtained by solving

~

H —A, I
~

=0. Using an expansion in minors it is
straightforward to show that for N &M this determinant
can be written as

Notice that in (3.2) 8=0 is a valid solution for ~ & 0 with
eigenvalue e=q. In the case ~~ 0 such a solution would
yield a function P diverging at infinity.

We introduce now a specific basis set that will force all
the variational eigenfunctions to satisfy the zeroth-order
condition (2.5) at the origin, and we will show that the
variational eigenstates satisfy Eq. (3.2a) exactly. Consider
the basis set

2M

(
H —AI

~

=(q —A) g b;A',
i=0

u =e "r~+'
1

i' =0, 1,2, ~ ~ ~ s t (3.6a)

In conclusion, there are at least N —M degenerate
eigenvalues A, =g; this result is independent of the func-
tions used in the basis set (2.8). The variational eigen-
values do not cross.as the nonlinear parameters of a basis
set are continuously changed. Et would appear then that
for N &M, any positive eigenvalue A, greater than g can-
not collapse below g as the nonlinear parameters of the
basis set are changed. This result will be rigorously
proved in the next section.

0
m =e "r~+J j =1 2, .J (3.6b)

Notice that any spinor @ [Eq. (3.3)] constructed using the
functions u; and wj in (3.6) will yield a Dirac wave func-
tion [Eq. (3.1)] that satisfies the condition (2.5) at the ori-
gin. This is achieved because the lowest power of r is y
for the u; and y+ 1 for the mj.

Using the functions u; and wj, we construct now the
following basis set:

III. THE ZEROTH-ORDER VARIATIONAL
BASIS SET

N 1
o;= g bj., uf s;(r) 0, ——i =0, 1,2, . . . , N

j=o
(3.7a)

The results of the last section suggest that it may be ad-
vantageous to use the following decomposition of the ra-
dial Dirac eigenfunction:

1
I+&=(1+v') '"

y 1
+8, (3.1)—g

instead of the usual one in large and small components.
In the remainder of this paper &tt and 8 will be called the
upper and lower components, respectively. P and 8 satis-
fy the following coupled equations:

&r;+tv ——g cjtw& t;(r)——
j=1

with

0
i =1,2, . . . , X (3.7b)

(s;
~

&s=(t; ~t, &=5;, ,

(s;
~ sj &= f s;(r)sj(r)dr .

(3.g)

(3.9)

Given the 2%+ 1 orthonormal basis vectors o;, one ob-
tains upon diagonalization of the Hamiltonian h, 2%+ 1

variational eigenstates 4; which satisfy

+ + 8+ ('g —&)f=0,dO aZ uy
dr K r

(3.2a) (3.10)

(3.1 1)
cxZ exp 8=0,2(x Z

K r r
with

where a=a E.
Defining the new radial spinor as

&)I (r)
(r)= 8( )

(3.2b)

(3.3)

2N

~
@;& = g ~ o,. & (cr,.

~
e; & =

j=0
(3.12)

We proceed now to investigate the properties of the
variational radial functions P; and 8;, and of the varia-
tional eigenvalues e; Equation (3.10.) can be rewritten as

h@=e@ (3.4)

the equations satisfied by P and 8 can be written in Ham-
iltonian form as

Summing over i, one obtains the following expression in
terms of the orthonormal basis vectors o.k.
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2N

k=0
&818&+ &81v 18&+(g—e)&81$&=0. (3.21)

Using (3.7), this expression is equivalent to the following
two equations where we omit the index j:

N

2 leak&&~k 1~+18&+(~—e) g leak&&~k ld&=0
k=0 k=0

(3.13a)

g I
tk & &tk

I
~ 14'&+ g I

tk & &tk
I

u 18&
k=1 k=1

+(q+e) g I
t„&&tk18&=0, (3.13b)

k=1
with

g+2&81 u 18&
1 —2&818&

which is valid for any variational eigenstate.
Calling ep ——

I q I
we obtain for the case a & 0

co+2& 81v
1 —2&818&

(3.22)

(3.23)

Having obtained the equations satisfied by the variational
basis set, we proceed now to show that the variational en-
ergy spectrum has the proper bounds.

Using Eq. (3.11) in the form &$1$&+&818&=1,Eqs.
(3.19) and (3.20) yield the following expression for the
eigenvalues:

A —=a +—+Z v
dr K

(3.14) All the quantities involved in the right-hand side of Eq.
(3.23) are positive, thus

and

Q Z (3.15) and

e~eo if 0& &818& & —, (3.24)

r
Due to the fact that the lowest power of r is y + 1 for

the functions t; and y for the functions s;, it follows that
the lowest possible power of r in the radial variational
functions 8 and P is y+ 1 and y, respectively. Then, by
construction, we can write

M
A+8= g p;s;, (3.16)

i =0-
where the p; are constants, and then the set s; completely
represents 3+0, i.e.,

g ls, &&s„la+18&=~+18&.
k=0

(3.17)

The same is automatically true for the second term in
(3.13a), i.e.,

sk sk
k=0

We obtain then from (3.13a) the following important
result:

« —(co+2&8
1

u
I

8& & —eo if I='&818» z

(3.25)

Equation (3.23) implies then that in the case a. &0, every
positive variational eigenvalue is larger than or equal to
the exact lowest possible energy ep ——y/ I

~
I

for that value
of K. In other words, every positive variational eigenvalue
is an upper bound to the ground state. In the Appendix
we show that the negative eigenvalues are lower bounds to
—mc ( —1/a in a.u. ), i.e., e & —1.

We have then shown that in the case x ~ 0, no variation-
al eigenvalue will lie in the forbidden gap. All the posi-
tive eigenvalues are upper bounds to e0, and all the nega-
tive eigenvalues are lower bounds to —1.

These results would not apply in principle to states with
~&0 because g= —ep in Eq. (3.22). However, we show
now that if the same basis set is used for the cases
~=+ 1~1, the resulting sets of eigenvalues are degenerate
with the exception of the states with e=q.

Consider a specific variational eigenstate i with v&0
and 8;&0, then according to (3.23):

ct + + 8+(q —e)P =0, (3 18)
dO uZ ay
dr K

where P and 8 are the variational upper and lower radial
functions, respectively. It is remarkable that both the
variational and the exact eigenfunctions satisfy the same
differential equation (3.18).

From (3.18) and (3.13) the following equations satisfied
by 8 and P are obtained:

" 0+ 0+ ' ~ 0+~-
=0, (3.19)

0" — 8 -' 0 ~ +~+ 08

+2&8
I

v 18& =0, (3.20)

co+2&8;
I

u 18; &

1 —2&8;18; &

Defining now the function 0,' as

&8;
I

v 18; &+ep(1 —&8;18;&)
g,'. =+

&8; I
u 18; &+co&8; 18; &

or, correspondingly,

& 8,'
I

v
I
8,' &

—ep( 1 —
& 8,' I 8,' & )

&8,'
I

u 18,' &
—co&8,' 18,' &

and using (3.27) in Eq. (3.26) we obtain

—ep+2&8,' I
v 18,' &

1 —2&8,'18,' &

(2.6)

8; (3.27a)

(3.27b)

(3.28)
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But according to (3.22), Eq. (3.28) is the expression
satisfied by a state with a & 0. 8,' satisfies Eq. (3.28) with
eigenvalue e; and P,' can be obtained from the differential
equation (3.18) satisfied by the variational eigenstates.
Equations (3.18) and (3.28) are simultaneously satisfied,
implying that this is a variational solution of the eigen-
value equation (3.10). Since the variational solutions are
unique, we conclude that for every state with quantum
number z, energy e; and lower component 8;&0, there is a
state with v'= —x, the same energy, and lower component

1/2

0;. (3.29)
E+9

g,' =+
6- —'g

The last equation is obtained using Eq. (3.22). It is re-
markable that the lower components of the degenerate
levels with opposite signs of ~ differ only by a constant.
It follows from this degeneracy that all the results ob-
tained for states with a &0 and 8;&0 apply identically to
the states with v~0. The states with 0=0 are trivial in
the sense that in this case the energy eigenvalue is a con-
stant: e=eo for ~ &0 and e= —eo for ~~0. This finishes
the proof that the variational eigenvalues do not lie in the
forbidden gap eo )e ) —1, with the exception of the
spurious loot e= —EOfor the case 'K )0.

We prove now that the number of positive- and
negative-energy eigenvalues (excluding e=g) is the same.

Consider the 2%+ 1-dimensional basis set introduced
in (3.7) and call

p++- j=1,2, . . . , M
Oj

the set of eigenvalues with positive energies Ej &E'p. We
show first that all the OJ+ are linearly independent. Sup-
pose that OM is linearly dependent on the other HJ+.

M —1

e~+= g c,e~+.
j=1

We can define a vector
M —1

P =@'~+ +
j=1

such that

Similarly it can be proven that the lower component func-
tions 8J of the negative-energy states also are linearly in-

dependent. The only case in which both requirements are
satisfied is when N =M. Then, excluding the state with
e=g, there are as many positive as negative variational
eigenvalues. In a similar way one can show that the {()J+

are linearly independent as well as the Pz .
Still the problem of the spurious root e= —eo for states

with ~~0 remains to be solved. We introduce now a
modification to the basis set (3.7) that will eliminate the
spurious root from the variational spectrum

Equation (3.18) implies that for every variational eigen-
state i with e;+q,

P; =constX 2+0; (3.31)

with A+ defined in (3.14). This proportionality suggests
the introduction of the following basis set, which is a
slight modification of the one presented in Eq. (3.6).

Define

0
(3.32a)

1
v =A+e 'rr+Jj 0

—Xr+—+ e 'rr+J 0, j=12, . . . , N.
r K r

(3.32b)

For every state with e;&g, the lower component 8; will

be a linear combination of the w; and, by construction,
the upper component P; will be the same linear combina-
tion of the UJ as stated by Eq. (3.31). [Notice that condi-
tion (3.17) is automatically satisfied by construction. ] In
other wordsusi, ng the set (3.32) we obtain the same set of
eigenvalues as with the previous basis set (3.6) with the ex-
ception that the eigenstate e=g is now missing. All the
proofs obtained until now for the basis set (3.6) apply
identically to the basis set (3.32). The only difference be-
tween both sets is that the basis set (3.32) does not contain
the spurious root e= —eo for the states with ~& 0 as well
as the ground state e= eo for the states with K & 0.

The ground state can be reintroduced in the case ~ &0
by adding to the basis set (3.32) the vector

where we used the fact that the P& are orthonormal being
eigenstates of the Hamiltonian, and

1
vp ——e r—A,r y (3.33)

&s lh lv& eM+ g CjlEj
P P j

Since p is of the form

M —1

1+ g c~ )ep.

(3.30)

The addition of this vector makes this set identical to the
previous basis set (3.6) in the case v & 0. However, it is in-
teresting to note that the exact (non-normalized) ground-
state function

P= 0
1

e
—z«I&I rr (3.34)

its eigenvalue should be eo. This contradicts Eq. (3.30)
and we conclude that all the 0J+ are linearly independent.

can also be used, because vg is orthogonal to all the other
vectors in the set
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&u
I

u &=a dre ~~+z~l~l rr2'v
g i

&([(2y+i)r' ' —(A, +Z/I a.
I

)r']=0 .

value is a lower bound to —mc .
We summarize now the results of this section. A basis

set is introduced of the form

Using Eq. (3.19) and

(3.35)

(3.36)

0
w;=e 'rr+' 1, i =1,2, . . . , X

u; =[(2@+i)/r +Z/Ir —A, ]e "rr+' 1
i =1,2, . . . , iV

Eq. (3.35) implies that

&e, Ie, &=0
and in the case ~ & 0, either vp or vg are added to the set,
with

H, =e "rr g a;r'=e ~rr g c r'= g c w; . (3.37)

Such a linear combination wi11 yield the exact eigenvalue
e, as shown by Eq. (3.22). Using the fact that both the
exact and the variational eigenfunctions satisfy the same
differential equation (3.18), one obtains the following
equivalent result for the upper component:

=('g —e) g c;v; (3.38)
i=1

where the c; are the same as in (3.37). We conclude that
the basis set (3.32), with (3.33) and (3.34) for the case
~ & 0, is a complete representation of the exact wave func-
tions when X—+ oo. In other words, as in the nonrelativis-
tic case, the exact and variational spectra are the same
when X~ oo.

Consider now a variationa1 basis set of dimension N. It
is a general result of the diagonalization procedure that by
adding a vector to the basis set, the resulting eigenvalues
interleave with those of the smaller basis set. In our case,
adding a vector w~+I (and then u&+ I) to the basis set
(3.39) will yield a new set of eigenvalues, half positive and
half negative. The interleaving of the positive- and of the
negative-energy eigenvalues means that as the basis set di-
mension is increased, each positive eigenvalue decreases
and each negative eigenvalue increases. We have shown
that for an infinite dimension of the basis set the varia-
tional and exact bound-state spectra coincide, and that no
eigenvalue lies in the forbidden gap. Then, as the dimen-
sion of the basis set is increased, each positive variational
eigenvalue decreases towards the corresponding exact
eigenvalue, and each negative eigenvalue increases towards
—mc . In other words, we have a generalized Hylleraas-
Undheim theorem: each positive eigenvalue is an upper
bound to the exact eigenvalue and each negative eigen-

&4g I
h

I
4;&=0,

so that 4g 1s a valid variational eigenstate with eigenvalue
Ep.

Finally it is shown now that the eigenvalue spectrum
obtained using the basis set (3.32) satisfies a generalized
Hylleraas-Undheim theorem.

An infinite power expansion using the functions w; of
(3.32a) is a complete representation of the lower com-
ponent of any exact eigenvector. In other words, as in the
nonrelativistic case, for an exact eigenvector 4, there ex-
ists a set of linear coefficients c; such that

1
v —e —z«l&l qr

0

and

1
v =e ~'rr0 0

gI + &+9
I 6' —77

( 1/2

(iv) Every positive eigenvalue is an upper bound to the
corresponding exact eigenvalue and every negative eigen-
value is a lower bound to —mc .

(v) The number of positive eigenvalues (excluding eo)
and negative eigenvalues is the same.

(vi) There is no spurious root in the spectrum.
The following properties of the radial variational eigen-

functions can be obtained using the formulas of this sec-
tion and the invariance of the norm of the Hamiltonian
during diagonalization:

(b) X«14 &=X&~ l~ &=&&0; IP;&

=g&e; Ie,'&=a,
«) 2 &~

I
V

I
~ &=+ &~'

I
V

I

~' &= ——'ge
(d) g (p; ((;)=x (((,' ((,')=0,

(e) g & P; I
~; & = g & 0,' I &,' & =0,

e, &=g&y,' I le,'&=0,

For this basis set, upon diagonalization of the Hamil-
tonian (3.5), the following results are found.

(i) The exact eigenvalue eo is always present in the ener-

gy spectrum, in the case ~ & 0.
(ii) The variational eigenvalues obtained in the cases

~=
I
~

I
and v= —

I
v I, excluding eo, are degenerate.

(iii) If a state with eigenvalue e;&eo has lower com-
ponent 0;, then the corresponding state with the same en-

ergy and the opposite sign of ~ will have a lower com-
ponent
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TABLE I. Variational eigenvalues for s&iz states for a hydrogenic ion with nuclear charge Z=92.
The basis sets of Eqs. (1.10) and (3.7) were used for a and b, respectively. The exponential parameter
was chosen to optimize the positive-energy level n =4.

Exact

1.007 947 103 2
0.990422 849 9
0.984 277 125 6
0.971 297 594 2
0.933 303 9504
0.746 291 088 3

1.006015 528 5
0.990396 323 5
0.984 277 125 6
0.971 296 235 5
0.933 187 369 2
0.741 134719 8

0.993 232 093 9
0.990 122 665 8
0.984 277 125 6
0.971 292 560 3
0.933 041 992 6
0.741 134719 8

1

2
3.

4
5
6

—1.016629 651 2
—1.029 469 965 2
—1.052 676 171 8
—1.103074 067 0
—1.250 241 171 6
—2.101 462 320 2

—1.017 195 862 2
—1.030 979 486 9

1.056 987 963 8
—1.118512 157 9
—1.342 560 994 4

where ' denotes a change in the sign of ~, and

0

E +60

The sum rules are particularly useful to check numerically
the computer program generating the basis set.

The completeness of the basis set has been checked nu-
merically using relativistic electric-dipole sum rules. In
Table I we list the eigenvalues obtained for sii2 states for
a hydrogenic ion with nuclear charge Z=50. A 12-
dimensional basis set of the form (1.10) was used in the
first column, and an 11-dimensional basis set of the form
(3.32) and (3.33) was used in the second. The exponential
parameter was chosen as to optimize the eigenvalue n =4.
The same is done for pii2 states in the first two columns
of Table II. Note the degeneracy of the eigenvalues with
the corresponding ones in Table I.

With regard to the basis set (1.10), the methods of this
section can be applied only in the case in which the num-
ber of powers used for the large and small components is
the same. In this case Eq. (3.23) proves that (a) the basis
set (1.10) yields positive eigenvalues that are upper bounds

IV. THE FIRST-ORDER CONDITION
AT THE ORIGIN

In this section an alternative method for the removal of
spurious roots from the basis set (1.10) is presented. In a
review paper, Kutzelnigg relates spurious roots to wrong
nonrelativistic limits. Following this idea, the spurious
root of basis set (1.10) for the case a &0 is removed by
constraining the basis set to have the right nonrelativistic
form in the limit a~0.

Consider the ratio (2.4) at the origin. In the nonrela-
tivistic limit for ~ & 0 we obtain

go
lim
a of()

0!Z
2K

to the ground state, and (b) the states for opposite signs of
K are degenerate, including a spurious root for a & 0 de-
generate with the lowest positive eigenvalue for x. (0. The
discussion of Eq. (3.30) also applies in this case, showing
that the set (1.10) will give the same number of positive
and negative eigenvalues.

TABLE II. Variational eigenvalues for p&i2 states for a hydrogenic ion with nuclear charge Z=92. The basis sets of Eqs. (1.10),
(3.7), (4.3), and (4.3) and (4.4) were used. for a, b, c, and d, respectively. The exponential parameter was chosen to optimize the
positive-energy level n =4. The spurious root of set (1.10) is underlined.

Exact

1.007 947 103 2
0.990422 849 9
0.984 277 125 6
0.971 297 594 2
0.933 303 9504
0.746 291 088 3

1.006015 528 5
0.990 396 323 5
0.984 277 125 6
0.971 296 235 5
0.933 187 369 2

1.005 225 185 4
0.990 384 289 0
0.984 277 125 6
0.971 295 719 8
0.933 152405 6

1.005 633 224 2
0.990 390 640 8
0.984 277 125 6
0.971 295 987 3
0.933 170294 7

0.993 232 093 9
0.990 122 665 8
0.984 277 125 6
0.971 292 560 3
0.933041 992 6

1

2
3
4
5
6

—1.016629 651 2
—1.029 469 965 2
—1.052 676 171 8
—1.103074067 0
—1.250 241 171 6
—2.101462 320 2

—1.017 195 862 2
—1.030 979 486 9
—1.056 987 963 8
—1.118512 157 9
—1.342 560 9944

—1.016705 1447
—1.029 674 888 6
—1.053 280 250 2
—1.105 378 831 2
—1.266 326 957 3

—1.016370 981 3
—1.028 801 673 1
—1.050 868 9163
—1.097 292 622 1
—1.224 669 8114
—1.919623 088 2
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go/a —aZg i + (a —y —1)fi aEg——o,

(~+y+1)—g,f,/a+aZf i
—aEfo . —

(4.1)

From these equations we obtain the level-independent
first-order condition for states with i~ & 0:

(q+2aZ)gi+(1 2aZq)f i
—(2q/a——)fo . (4.2)

From this equation, in the nonrelativistic limit we obtain

gi-fi/a ~

which is the sufficient condition to avoid the spurious
root for ~ & 0 in the basis set (1.10).

A basis set satisfying both the zeroth- and first-order
conditions at the origin, can be constructed in the follow-
ing way for states with ~ &0:

u =e 'r~
1

2(Z+ i~A, )q+ aZ(1+21~+2y)
r

1

This equation reflects the fact that in the nonrelativistic
limit, for a ~ 0,

lim g =r"+' .
r —+0

In other words, the lowest-order coefficient for the expan-
sion (2.1) of the large component in the nonrelativistic
limit is gi. The sufficient condition on gi can be ob-
tained from the first-order conditions at the origin in sys-
tem (1.4):

The basis sets (4.3) and (4.4) will still satisfy the first-
order condition (4.2). The same numerical results on
bounds are obtained although now there is an extra
negative-energy eigenstate which will accelerate the con-
vergence of sum rules involving high powers of the ener-
gies. In the third and fourth columns of Table II, we list
the results obtained for pi~q states using the basis sets
(4.3) and (4.3) and (4.4), respectively.

V. DISCUSSION

We have shown that by introducing a separation of the
wave function into "upper" and "lower" components, the
Dirac equation with a Coulomb potential can be diagonal-
ized in a suitably chosen finite basis set to obtain a
discrete representation of the complete spectrum without
spurious roots. This separation leads also to a rigorous
proof of bounds for both the positive and negative varia-
tional eigenvalues. Also, by forcing the right nonrelativis-
tic limit, we obtained a method for extracting, before di-
agonalization, the spurious roots from discrete basis sets
that expand directly the "large" and "small" components
of the wave function.

The basis set presented in Sec. III provides a very useful
technique for calculations in which infinite summations
over the complete relativistic spectrum are involved. A
discussion of convergence for this type of calculations will
be presented in a following paper.
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APPENDIX

e —A, l'r /+ I
I

0
i =2,3, . . . , X.

This basis set provides a variational representation of
the Dirac Hamiltonian (1.7) for the case a &0, without
spurious roots. Although no forinal proof of bounds for
this basis set is provided, extensive numerical calculations
have been done involving a wide range of dimensions of
the basis set and values of the nonlinear parameter. In all
cases one obtains that a diagonalization of (1.7) using the
set (4.3) results in E-positive and 5-negative eigenvalues
which satisfy a generalized Hylleraas-Undheim theorem
in the sense discussed in Sec. III. Completeness was
checked numerically using the relativistic sum rules of
Ref. 4.

The first-order condition at the origin (and then the
right nonrelativistic limit) will still be satisfied if one does
not force the zeroth-order condition at the origin to the
states with x ~0. This can be achieved by adding to the
basis set (4.3) the vector

1
(4.4)

(Al)

and using Eq. (3.21) we obtain

k/(2aZ)+aZ(2(8
~
8) —1)/(2k) —y(8

~ P) /k
7'(2 & 8

~

8 &
—I )/(2a»+ & 8

I p &

(A2)

where according to Eq. (3.25),

0&2(8i 8) —1&1 .

Consider in (A2) the case (8
~ P ) =0:

(A3)

In this appendix we prove that for the variational repre-
sentation described in Sec. III, the negative eigenvalues
are lower bounds to —mc . With the notation used in
Sec. III, we show now that

~

e
~

& 1.
From Eq. (3.23) we obtain for the negative-energy

eigenvalues:
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k (aZ)
1)

+

together with the fact that in (A2), for any value of
(8

f
8)

f
e

f
is a monotonically decreasing function of

(8
f P), this implies that

f
e

f
& 1 for any negative value

of (8
f P). We concentrate then from now on, on the case

(8fy) &O.
Using

&8f8&+&q fq&=1 (A5)

together with Eq. (A2), we obtain the following lower
bound for

f
e

fe f&x
with

k/(2aZ)+aZ(2(8)
f
8—1)/(2k) —(y/k)[(8

f
8)(1—(8

f
8) )]'

y(2(8
f
8) —1)/2(aZ)+[(8

f
8)(l —(8

f
8))]'r

where x is always positive because

k/(2aZ) —(y/k)[(8 f
8)(1—(8 f 8) )]'r

To analyze (A12) consider first the case cr=op for
w»ch x (crp) =y (op). From (Al 1) and (A9) we obtain

& k/(2aZ) —y/(2k) & 0 .

To simplify the notation in (A7) we define the new vari-
able o.,

or

(aZ/k)sinop —(y/k)cosop ——0,

sinop ——y/k,

(A13)

(A14)

sino =2(8
f
8) —1, 0&o &m/2 .

With this substitution we can rewrite x in Eq. (A7) as

(Ag) and

x(ap) =y(op)=1. (A15)

x(cr)= k /(aZ) + (aZ/k)sino —(y/k) coso.

(y/aZ)sincr+ coso

0 & cr & m /2 . (A9)

Together with the condition
f
e

f
& x, we obtain from

(A 1)

(A10)

where

But according to Eq. (All), y(o ) monotonically decreases
with cr, then fe

f
&1 for o &op. We show now that in

the region o & crp, x is an increasing function of o. Con-
sider x'=dx/do,

(aZ/k)sino. —(y/k)coscr
X

(y/k)sino + (aZ/k)coscr

then, using (A13) we find x'&(aZ)/k &0 for cr&crp It.
follows then that x (cr) &x(op) for cr & op, and then

I & 1 for o & op. Finally we obtain

y(o)=y/(k sincr), 0&o &m/2 . (A 1 1) max I x ( cr ),y (o ) I & 1, 0 & cr & n /2,

Both conditions
f
e

f
&x and

f
e

f &y are satisfied
simultaneously; it follows then that

and then

f
e

f
& maxIx, yj . (A12) as desired.
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