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With the help of time-dependent solutions, their power spectra, Poincaré maps, and the complete
set of Lyapunov exponents, we have carried out a detailed investigation of the bifurcation routes of
three attractors in a single-mode model of a laser with injected signal. In addition to a sequence of
ordinary period-doubling bifurcations leading to chaos, we have observed subcritical and supercriti-
cal Hopf bifurcations of limit cycles. We have also observed the sudden disappearance of trajec-
tories due to the coalescence of a pair of stable and unstable tori and the possible collision of a limit

cycle with an unstable torus.

Lasers and other coherent optical systems have long
been known to undergo stability changes under appropri-
ate conditions. A single-mode, homogeneously broadened,
free-running laser, for example, is believed to develop out-
put pulsations if the cavity linewidth and the unsaturated
gain are sufficiently large.! This prediction has resisted
experimental verification, but numerous instances of un-
stable behavior have been recorded for lasers with inho-
mogeneously broadened gain profiles.? Instabilities in
bistable optical systems have also been investigated exten-
sively®> and the occurrence of self-pulsing is actively
sought out experimentally in a ring-cavity system contain-
ing two-level atoms.*

The active counterpart of a bistable system is the so-
called laser with injected signal, an ordinary laser operat-
ing above threshold and driven by a cw external field.’
Theoretical studies of this system® have revealed the pos-
sibility of interesting scenarios that include a variety of
pulsing modes of operation, including chaos.

The purpose of this paper is to summarize the results of
an in-depth analysis of the bifurcation routes of a specific
model of laser with injected signal using the combined di-
agnostic power of time-dependent solutions, power spec-
tral calculations, Poincaré sections of surfaces, and
Lyapunov exponents. We wish to provide not only a clar-
ification of several open questions from a previous
publication®® but also to demonstrate, with a specific
nontrivial example, the value of these combined tech-
niques for the analysis of complicated bifurcation pat-
terns. "

The system under study consists of a single-mode ring
cavity containing a collection of homogeneously
broadened two-level atoms. The atoms and the cavity are
tuned to one another at a frequency w4 =w¢ and, in the
absence of any external signal, produce a stable laser out-
put with a carrier frequency w,. By injecting into the
cavity a cw beam at frequency wg#w 4, the potential for
competition is established between the driving field and
the laser oscillator. At low-signal levels the output of the
system displays a beat pattern at frequency |w,—ayq]|
due to the mixing of the two fields, with the laser acting
as a local oscillator. At very high external signal levels
the laser is predicted to lock stably to the injected field
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and to produce a constant output intensity with a carrier
frequency wq (injection locking). Somewhere between
these two limits complicated nonlinear phenomena
emerge, as reported in Refs. 6(a) and 6(b).

The model is described by the usual single-mode
Maxwell-Bloch equations

dx s

ir = —K(i6x +x —y +2Cp) , (1a)
P _ b _(14ik

%L —xD—(1+ikp , (1b)
3—2:‘—7[%(xp*+x*p)+D+l] , (1c)

where y and x are proportional to the incident and emit-
ted field amplitudes (y is real and positive, for definite-
ness; x is complex) and p and D are the normalized com-
plex polarization and population difference, respectively.
The control parameters C, 6, A, K, and ¥ represent the
small-signal atomic gain, the cavity mistuning
[(wc—wo/k], the atomic detuning [(w,4 —ag)/y,], and
the scaled cavity (k/y,) and population (y,/y,) relaxa-
tion rates. The time 7 is measured in units of the polari-
zation relaxation time, ¥ . '

With reference to the state equation |x | =|x |(y)
shown in Fig. 1, it will be useful to summarize the main
results of an earlier scan®®»%® in which the amplitude of
the injected field was varied from 0 to about 20. For each
value of y, we monitored the time evolution of the output
intensity by solving Egs. (1a)—(1c), with the system ini-
tially in the stationary state defined by the final configu-
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FIG. 1. State equation for a laser with injected signal corre-
sponding to C =20, A=1, =2, ¥=0.5, and ¥=0.05. The
dashed segment is a locus of unstable stationary states.
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ration of the previous run (adiabatic scan). For y <6 the
output intensity was observed to undergo oscillations with
a pulsing frequency @,~A=(w,4—w¢)/y,. In the range
6y 211 the oscillations developed progressively larger
distortion, while the pulsing frequency @, decreased
monotonically from unity (the chosen value of A) to ap-
proximately 0.8 [for further details of this aspect of our
study, see Ref. 6(b)]. In this range of values of the driving
field, we gained our first evidence of the existence of com-
peting basins of attraction. In fact, by injecting different
initial perturbations into the starting state of the system,
we obtained quite different looking long-term oscillatory
patterns. Beyond y S'11 chaos set in, followed by an easi-
ly recognizable sequence of inverse period-doubling bifur-
cations, which eventually terminated at the injection lock-
ing threshold (a standard Hopf bifurcation point, if one
varies y from higher to lower values).

Due to the complexity of the bifurcation sequences in
the range y < 13, it became necessary to discriminate more
closely among solutions that evolve under the action of
coexisting basins of attraction. This was accomplished by
calculating the power spectra of temporal solutions in the
range y <13. In Fig. 2 we show the dependence of the
frequency of the fundamental spectral component on the
control parameter y. As alluded to by the quite different
character of the time records, the fundamental frequencies
Q, of the power spectra confirm that distinct domains of
attraction do coexist in the range 6y Z 11.

As a further refinement we have calculated all five
Lyapunov exponents for Egs. (1) and monitored at the
same time the Poincaré sections of the trajectories. Before
we enter into the details of these latest findings, it may be
useful to provide a brief summary of the information that
one can gather from the calculation of the Lyapunov ex-
ponents’ (some pertinent, more technical details are given
in the Appendix). Given a set of autonomous (usually

nonlinear) differential equations of the type
JE;=F,—(x1,x2,...,xN), i=1,2,...,N (2)

standard integration routines can produce the trajectory of

FIG. 2. The behavior of the fundamental-frequency com-
ponent  of the power spectrum. Lines 1 and 2 correspond to
the fundamental frequencies of solutions that evolve under the
influence of distinct domains of attraction. For a certain range
of values of y, these domains coexist. Line 3 traces the behavior
of the fundamental frequency through a sequence of period-
doubling bifurcations. The dashed lines correspond to the imag-
inary part of the unstable eigenvalue of the linearized equations.

a representative point P=(x,x,, ..., Xy) in phase space.
To test whether the trajectory is stable or not, one may
select a point in the vicinity of the trajectory and follow
its evolution according to the linearized equations of
motion. If 8x; represents the initial deviation away from
the selected value x;(t), and if W denotes a vector whose
components are proportional to the N-tuple {8x;}, the
linearized evolution of W is described by

W=Jw, 3)
where J is the Jacobian matrix with elements
9F;(X)
VT ek, : 4)

One is interested in the rate of change of the length of W.
If 7 is a constant matrix, the Lyapunov exponents are the
real parts of the eigenvalues of J [this only happens if the
selected starting point lies in the neighborhood of a steady
state of the system (2)]. In general, of course, J will be
time dependent because the point P itself is moving in
phase space. Let

W)=T [exp i) ‘; J(e"de' ]W(:o)z Ut,10)W(zy) (5)

be the solution of Eq. (3), where T is the usual time-
ordering operator. The matrix ifl t,ty) can be written as
the product 6(t,t0)§(t,to) of an orthogonal (0) and a
non-negative (S) matrix whose action is to induce rota-
tions and dilatations of the N-dimensional vector space.
Denote with A; the eigenvalues of S(t,t,); then, by defini-
tion, the ith Lyapunov exponent is given by

Ef= lim InA;(2,t5) . (6)

t—o I —-to
In the following we adopt the common ordering conven-
tion E{ >Ef > -+ >EL..

Some of the main properties of the Lyapunov exponents
that make them a very useful tool for stability considera-
tions are listed below.

(1) Different types of attractors exhibit different
Lyapunov exponents’ characteristics. For autonomous
dynamical systems, this characterization is summarized in
Table 1. ‘ '

(2) The nature of certain bifurcations of a limit cycle
can be uncovered by tracing the dependence of the
Lyapunov exponents on the control parameters. Thus:

(i) If the limit cycle undergoes a period-doubling or
symmetry-breaking bifurcation (the original basin of at-
traction splits into two domains of attraction), E5 will
show a maximum of zero at the bifurcation point.

(ii) If the limit cycle undergoes a tangent bifurcation,

TABLE 1. Attractors and their Lyapunov exponent charac-
teristics.

Type of attractor Lyapunov exponent- characteristics

Steady state E{ <0

Limit cycle Ef=0, Ef<0

m-dimensional torus EL=Ef= .. EL=0, EL. <O
Chaos Ef>o0
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FIG. 3. (a) Behavior of the first three Lyapunov exponents as functions of the driving field y. The stars denote Ef, the dots
denote E%, and the open circles denote E. (b) Behavior of the Lyapunov exponents E5 (dots) and E¥ (open circles) as functions of

the driving field y. (c) Enlarged view of the first three Lyapunov exponents in the dashed box of (a).



31 BIFURCATION ROUTES IN A LASER WITH INJECTED SIGNAL 357

* *
0.0’“****************** x KK kK

EL Cog

®eQ
oO' °
0388 os®
-0.01+~

o

() °

c
| |
10.3 104 Y

FIG. 3. (Continued).

E% will first increase up to a value of zero; then, above
the bifurcation point, elther E¥ becomes pos1t1ve (while
E% remains zero) or E% undergoes a sudden jump. The
latter case is indicative that the trajectory has jumped into
another coexisting attractor.

(iii) If the limit cycle undergoes a Hopf bxfurcatlon as
the control parameters are varied, one will have E% 2 —E3
over a finite range of the parameters before the bifurca-
tion point; this is a consequence of the fact that the corre-
sponding eigenvalues of U(t,t;) in Eq. (6) form a
complex-conjugate pair. The subcritical or supercritical
nature of the Hopf blfurcatlon can be recognized by the
behavior of E% and E% 3 above the blfurcatlon point.
Thus, if EY and E% remain zero while E% becomes nega-
tive again, the blfurcatlon is supercritical; if ET becomes
positive or E% 2 and E% 7 undergo a sudden change, the bi-
furcation may be expected to be subcritical.

(iv) If the second Lyapunov exponent of a limit cycle
shows a sudden change without first becoming equal to
zero, this may be a symptom of a collision of the limit cy-
cle with the boundary of its basin, followed by the sudden
disappearance of the limit cycle.

By using the adiabatic scanning technique, we have cal-
culated the five Lyapunov exponents of our system from
y =15 to y =5 as shown in Fig. 3. On observing a sud-
den change in dynamical behavior, as indicated by the
Lyapunov exponents and the phase portraits, we have al-
ways reversed the direction of variation of y and searched
for the existence of hysteretic behavior. Following this
procedure, we have produced a global view of the main

dynamical features of our system as shown synthetically
in Fig. 4, where the individual attractors are denoted by
their Poincaré section labels.

Each of the three branches in Fig. 4 portrays the bifur-
cation scheme of an attractor. - As hinted by the time-
dependent solutions, and confirmed by the analysis of
their power spectra, more than one attractor may exist for
the same value of y. In fact, Fig. 4 shows a fairly large
domain of coexistence of two attractors and even a narrow
region where three distinct attractors coexist.

Branch I begins at y =0 and ends at y =11.12. The
numerical calculation of the five Lyapunov exponents
supports the following relation:

10.42 3PW  5PW 13.30
w02e7| 8P 112M CHAOS _ jap| 2p |1p
’ 10.45 13.05 14.45
2Q
5.88 913 10303
10.307
1P
112
Yy

FIG. 4. Global behavior of the system in the range 0 <y < 15.
1P denotes a simple periodic solution, 2P is a doubly periodic
solution (i.e., the spectrum contains a fundamental frequency
and its subharmonic ®/2), etc., 2Q denotes quasiperiodic
motion with two incommensurate frequencies (two-dimensional
torus), W denotes a window in chaos (thus, 3PW denotes a win-
dow with a triply periodic solution), and the values of y, e.g.,
y=11.12 at the end of domain I, denote the approximate
thresholds.
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FIG. 5. Poincaré surface of section displaying an enlarged view of one-half of the 2Q torus for y =10.307, Im(x)= —6.0.

0=EtSEL=EYS>ELSEL.

In particular, in the vicinity of y=11.12 (but for
y<11.12) we have ,

| Ef |~|E7 | ~|E¥| <1073,
Ef~—1.460, Ef~—1.590 .

This indicates that a Hopf bifurcation occurs at y =11.12
because both EZ and E¥ approach zero. No stable torus
exists beyond this Hopf bifurcation; however, by selecting
different initial points in the vicinity of the 1P limit cycle
for y 211.12, and by monitoring the transient evolution
of the system in a Poincaré surface of section, we have
identified the existence of an unstable torus which con-
tracts into the limit cycle as y approaches the value 11.12
from below. On the basis of this evidence we conclude

1
10304 10307 Y

FIG. 6. Schematic representation of the supercritical bifurca-
tion occurring at y =10.307 on branch II. The solid lines
denote the stable 2P solutions and the 2Q torus, respectively.
The dashed lines denote the unstable limit cycle and the unstable
torus, respectively.

that the Hopf bifurcation at y =11.12 is of a subcritical
type. Similar evidence supports the conclusion that a sub-
critical Hopf bifurcation also arises when y approaches
the value 5.88 along branch II from above. This con-
clusion is also confirmed by the behavior of the Lyapunov
exponents (Fig. 3).

Another Hopf bifurcation occurs in branch II for
y~10.303. Beyond this bifurcation point a stable torus
(2Q) develops for which evidence, through the appearance
of a second frequency, had been provided by the power
spectra (Fig. 5). Hence, the bifurcation is supercritical as
indicated schematically in Fig. 6. In addition, during a
systematic search for the basin of attraction of the 2Q
torus, we observed the existence of a second (unstable)
torus surrounding the first. By increasing the value of y,
it became apparent, from the behavior of the trajectories
on the Poincaré surface of section, that the unstable torus
converges to the stable one and eventually coalesces with
it. This suggests the existence of a saddle-node-type bifur-
cation at y~10.307 (Fig. 6).

Branch III begins with a 6P limit cycle at y =10.297.
The numerical results of the Lyapunov exponents show
that in the neighborhood of and above y =10.297 we have

|E¥ | <1073, Ef~ E5~—0.003,
Ef~Ef~—1.522.

Because E% remains negative when y approaches the
value 10.297 from above, the sudden disappearance of the
limit cycle can be explained only by the possible loss of
stability of some points on the cycle itself (in contrast to
the loss of stability of the entire trajectory in an ordinary
bifurcation).

From Fig. 4, we observe that immediately after the
disappearance of the 6P cycle, the basin of the original 6P
attractor becomes the basin of the 2P attractor of branch
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II. This suggests the reasonable assumption that the loss
of stability of the 6P attractor is caused by its collision
with the unstable torus of branch II whose presence was
revealed by the bifurcation of the 2Q torus at y =10.307.

In conclusion, the combination of time-dependent stud-
ies, power spectra, Poincaré maps, and Lyapunov ex-
ponents have revealed progressively finer details of the
very rich bifurcation structure of the single-mode model
of a laser with injected signal. Further studies are in pro-
gress for different values of the gain and the detuning and
mistuning parameters.
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APPENDIX

The purpose of this appendix is to summarize a few
technical details of the algorithm that was used in our
computation of the Lyapunov exponents. This algorithm
is based on the method developed by Benettin et al.’

We do not evaluate the Lyapunov exponents by calcu-
lating the eigenvalues A; (i =1,2, ..., N) according to the
definition (6) Instead, we choose arbitrary orthonormal
sets {W =1,...,k}, k<N as initial vectors for the
hneanzed dlfferentlal equations (3) and calculate the ex-
ponential evolution rates of the volumes of the paral-
lelepipeds generated by these sets. In fact, according to a
theorem proved in Ref. 6(b), one has
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Wy ..., Wi, and EY >E%L > -+ > EF are the largest k
Lyapunov exponents.

In the actual computation of the Lyapunov exponents,
the exponential growth (or reduction) of the volume
le(t)/\ -+ AW,(1)|| may be the source of numerical
difficulties which can be circumvented by the use of the
Gram-Schmidt procedure to reorthonormalize the set
{Wj(t)l j=1...,N} after a selected time interval 7.
This is done as follows.

By standard integration routines, we first calculate the

vectors
=0(r,00W9, j=1,...,N (A2)

and orthonormalize them successively with the help of the
recursive formulas

j—1
al=vi- 2 whw

—~—

(A3)
=1

Wj=14d; /a,, aJ—H il 7=12,...,N.

The volume of the k-dimensional parallelepiped generated

by {Vj|j=1,...,k]} can be expressed as
k
IWiA - AVLI=T]q] -
j=1

We repeat this procedure with {W 7' |j=1,..., N} as ini-
tial vectors at t =m7, m =1,2, ... and thus calculate suc-
cessively the set of numbers {a}’ | j=1...,N}.

Since, given any two llnearly equlvalent sets of vectors
{8j]j=1...,k} and {b;|j=1,...,k}, the following
relation holds:

[1O(t,t0)8 A -+ AD(t,10)3k]|

2 EL hm —}IDHWI(”/\ . A‘_vk(t)H Hal/\ s /\akH
Hﬁ(t7t0)gl/\ A /\ ﬁ(t,to)gkli
k=1,...,N (AD = - —
= A — — — b /\ “ e /\b
where W;(1)=0(,00W9, [|[W,A - -+ AW, || denotes the 1By kll
volume of the k-dimensional parallelepiped generated by one also has
i
In||Wy(mT)A -+ AFp(m7)||= _ || W () AW (I7)]]
= ”Wl((l'—l)’f)/\"'/\Wk((l—-l)"r)”
. i HU(IT,(I—-I)T)_'II—I/\ /\U(IT,(I—-I)T)'*"‘H
I=1 ”"{*1/\ —’I—IH
k m |
=22 (A4)

On comparing Eqs. (A4) and (A1), one obtains

2 Ina}
T i=1
Our numerical integration was carried out by a double-
precision fourth-order Runge-Kutta method with a typi-
cal integration step size of 0.02. The reorthonormaliza-
tion interval was chosen as 7=1 and the number m in Eq.

Ef=

£~ lim , J=12...,N. (A5

m-— oo

r

(A5) usually larger than 10*. Because our dynamical sys-

tem is autonomous, the largest Lyapunov exponents for
limit cycles must be equal to zero. We have used this
property to test the accuracy of our numerical scheme and
noted that with the exception of the domains in control
parameter space where critical slowing down becomes sig-
nificant, our calculated Lyapunov exponents can be ex-
pected to be accurate to within about 1073,
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