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Dynamical theory of binary ionic mixtures
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Following the Golden-Kalman one-component-plasma nonlinear response-function approach, the authors
formulate an approximation scheme for the calculation of dynamical ionic polarizabilities in binary-mixture
plasmas, Preliminary collective-mode calculations are presented in the weak- and very-strong-coupling re-
gimes.

I. INTRODUCTION

Using a nonlinear response-function approach, we formu-
late a promising new dynamical theory of binary-ionic-
mixture plasmas. Preliminary calculations indicate that the
theory will provide a reliable description of the longitudinal
collective modes over a range of coupling strengths [charac-
terized by the plasma parameter I'=Pe2/a, a = (3/4mn )' 3,

n = X (iY /V)] spanning the entire fluid regime. At long
wavelengths [kv « IpuI, v = J(l/Pma. )], these calcula-
tions reproduce the qualitative features of the molecular
dynamics data for the dispersion of the optical mode in the
strong-coupling (I » 1) regime, ' while at the same time
reproducing the k = 0 weak-coupling (1 « 1) collective-
mode features inferred from a recent microscopic theory.
As far as we know, this is the first time a dynamical theory
has succeeded in securing the correct collective-mode prop-
erties of binary ionic mixtures in these two extreme cou-
pling regimes.

Our approximation scheme is a generalization of the ear-
lier Golden-Kalman (GK) one-component-plasma (ocp)
scheme. 3 The principal building blocks to its construction
are (i) the first Bogoliubov-Born-Green-Kirkwood- Yvon
(BBGKY) kinetic equations linking nonequilibrium one-
and two-particle distribution functions [labeled F(1) and

1

G (12)] and (ii) dynamical nonlinear fluctuation-dissipation
theorems (NLFDT's) linking three-point structure and
quadratic response functions. The central hypothesis of the
theory, the VAA (velocity-average approximation) 3 5 6 sup-
poses that the non-random-phase-approximation part of
G (12) can be replaced by a suitably chosen velocity aver-
age.

The development of the theory is carried out in three
stages which we summarize in Sec. II. Detailed derivations
will be displayed in a more complete follow-up regular arti-
cle.

II. APPROXIMATION SCHEME

Consider a mixture of W~ and Ng classical point ions in a
uniform neutralizing background of rigid degenerate elec-
trons; the entire system occupies the large but bounded
volume V. Let m and e (o-=A, B) denote the mass and
electrical charge; n =Aj' /V is the unperturbed density,

= (4mPe n )' is the Debye wave number,
0 = (4mn e 2 /m )'i2 is the plasma frequency, and
K = X K 0 = X 0 . Relevant two- and three-point
structure functions S (kt ) and S (qr; k —qt ) are de-
fined in Ref. 4, while linear and quadratic polapizabilities are
defined through the constitutive relation

(2a)

where nuo(k+) = n (k+) Ir=p is the random-phase-approximation (RPA) polarizability and

(@ q)
t ~(cu) = —n (kco)4&~2~(kru) +—X ~ q ' p n (qp, ', k —qo) —p, )4~'~(qp, )4t'~(k —qco —p, ) (n=A, B) (1)

V q k ~- 2m

connecting the second-order response (@ ) ~2~ of type n ions to the total potential perturbation 4 = @'"'+X ($ );
q "'(qp, ) =4I'"'(qp, )/e(qp), ~(qp, ) = I+& n (qp).

In the first stage, we introduce the VAA hypothesis into linearized first BBGKY equations in order to convert the
velocity-dependent G (12) s into velocity-independent nonequilibrium two-point density correlation functions. The latter are
then expressed in terms of equilibrium three-point structure functions via routine statistical mechanical linear response cal-
culations [see, e.g. , Ref. 3, Appendix A]. These operations lead to the polarizability expression

nu(ko)) n~p(ken) n~p(kcu) np( ok))

e(k(o) ap(ko)) ep(klan) [1+ e (koo) )]
1+n, p(k~)

[n„o(kcu)v „(ko)) +n p(ko))v (klan) l (a, ri=A, B:gWa )
ep kco I+op ken

v (kco) —=
2 ge, e „(n n, n „) X,ice t dr e'"S, „(k—qt;qt)+S, „(k—qt =0;qt =0) (2b)

q

(o., a. '= A, B)
is a 1 - dependent dynamical coupling correction. Equations (2) are valid for arbitrary k values and over the entire frequency
domain. At high frequencies co » 0, one can rigorously demonstrate that the three-point functions in (2b) collapse into
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two-point functions, whence

n (kcu ~) n'
Re

e(kcu~ uu)

with

n~'&(k)
(3a)

(k) = & f1 + f1 [3(k/cc ) + g(e i&, /e X )—gx [(e m /e m, )g, (k —q) —g, (q)])
(T q

g, (q) = (n n, ) 'i' IS,(qr = 0) —8,)

(3b)

(4)

is the static pair correlation function and x=k. q/(kq). The VAA expression (3) is identical to the exact high-frequency
sum-rule expansion through 0 (1/cu4).

In the second stage, the three-point structure functions are traded for quadratic response functions by application of the
ionic NLFDT's. 4 After some algebra, we obtain

1+n~(kcu) e~/V~ cc (kcu)
v (kcu) = — ~ [u (kcu) + w (kcu)] — ' ' w„(kcu)

kcu eN ekcu

u„(kcu ) e„/V~ 1+cc (kcu)v„(kcu)= " [u (kcu)+w (kcu)]+ " w~(kcu) (o-, 7i=A, B: rico)
e kcu e W ekcu

(Sa)

(Sb)

where the dynamical coupling coefficients

~ 2

u (kcu) =
k2 N.

~ k q ",, a (qp, ;k —qcu —p, ) a (qcu —p, ,k —qp, )
q

— e(qp)e(k —qcu —p, ) e(qcu —p, )e(k —qp, )
1

q, t n~(k —qcu —p, )a (qp, ;k- qcu —p, ) n~(k —qp, )a (qcu —p, ;k —qp, )dp5 (p) ' +q' "-- e(qp)e(k —qcu —p) e (qcu —p, ) e(k —qp, )

(Sc)

2

w (kcu) =
N

(Sd)
t

(~, ~=~,B:&~~)
are structured by relative quadratic polarizabilities' a (qp, ', pv) = —qp Iq+pIcc (qp, ', pv)/(27rP2eg n ). Equations (Sa) and
(Sb), when substituted into (2a) lead to the VAA expression

e N
e(kcu)= 1+ go.'p(kcu)[1+cc (kcu) +w (kcu)] g a&o(kcu)w (kcu) (7i&cr) (6)

Q' e„N„
for the dielectric response function. The formal operations which transform (2b) into (5) do not entail any restrictions on
the range of (k, cu). Consequently, (5) and (6) are valid for arbitrary wave numbers and over the entire frequency domain.
The static (cu = 0) limit of Eqs. (2a) and (5) [which we identify as Ref. 5, Eqs. (41)] is exact since the VAA itself is exact in
this limit. 6

In the third stage, we make the approximation scheme self-consistent at long wavelengths by supposing that the quadratic
polarizability can be approximated by an RPA-like structure. The subsequent kv « Icu I development of (Sc) and (Sd) ac-
cording to the procedure of Ref. 3 then results in the dynamical superposition formulas

u (kcu) = (Q /cu)'[u (k)+u, (kcu)]

dp, g (p)u (q~- p)cc (qp)

e
u (k)= X —gx'[g (k-q)-g (q)],

en ~ q

u, (k~) = ——3 k fo oo

5 K N

(7a)

(7b)

and

dp, s (p) [u (qp)cc~(qcu —p) —a~(qp)n (qcu —p)) —8 „(cr,ri= A, B:'q&cr)
30 K Nq" c

t

(7c)

2 r

w (k)= — —XX g „(k-q)+— g, (r=0)e„N„1
e~ n q 5 cd K~

c

(gb)

w (kcu) = (f1 /cu)'[w (kcu)+ w, (kcu)] = (f1 /cu)'[w (k) + w, (Ocu)]+O(k'v'/cu')+O[(k'v'/cu')(f1'/cu')]
(8a)

w (Ocu) =-
~dyn

—X (q/~ )' J dp, &-(p)[~ (qp)~, (q~ —p)+~, (qp)~ (q~ —p)]
o q

gg(q/cc ) &I dp & —(p)[~ (qcu —p)~ (qcu p)ec (qp)+o'
/ q

(o, v) =A, B:7)&cr)

(8c)
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where, e.g. , a (qp, ) =u (qp, )/e(qp, ) and R „ is another
polarizability pair cluster quantity similar in structure to but
more involved than the second right-hand-side member of
Eq. (7c). Equation (7) is a natural generalization of the
Ref. 3 ocp dynamical coupling coefficient; as such, u (kcu)
provides information only about 0(k2) long-range correla-
tional effects. Equation (8) goes much further: it provides
information about 0 (ko) ionic interdiffusion and short-
range static correlational effects on the collective mode
structure.

The self-consistent pair of coupled ionic polarizability
equations which results from the combination of (2a), (Sa),
(5b), (7), and (8) comprises the approximation scheme of
the present paper. Since the VAA is exact at co=0, the
dynamical coupling coefficients u (kco) and w (kryo) can be
inputted with static pair correlation function data which are
assumed to be determined by Monte Carlo simulations or
by an independent theoretical approach. At high frequen-
cies ~ && 0 and arbitrary I, the correct small-k limit of
the sum-rule coefficient fl'~l(k) is readily recovered from
the combination of (2a), (5a), (5b), (7), and (8); thus,
internal consistency between the third-stage construction of
our approximation scheme and the (exact) VAA expression
(3) is guaranteed. Because of the inherent RPA-like charac-
ter of the dynamical polarizability clusters, the Eqs. (7c) and
(Sc) q summations are cut off at the customary q,„—I/a
for strong coupling situations. The nature of the cutoff at
weak coupling is discussed at some length below.

III. COLLECTIVE-MODE BEHA VIOR

The collective-mode analysis of this section is preliminary.
More comprehensive numerical calculations are deferred to
a later work. 9

A. I &(1,k-0

First note from (7) that u (Ocu) =0. We next observe
from (8b) and (Sc) that both w (0) and w (Ocu) exhi-

bit divergences when evaluated in the Debye-Huckel and
RPA approximations, respectively; these divergences, how-
ever, exactly cancel each other under addition (with or
without the screening) leaving us with the expression

w (Ocu) = (0 /u))2[I (cu+ J (o))] (9a)

where

I( )=2@ n

3'' fl ~ K

max x x4
Qo (I + 2)2 (I + 2)2

(9b)

(o, q = A, B:q&o )

is expressed in terms of the plasma dispersion function

e —z /22

Z(y )= dz&2m"- z —y —i0

with

COKo 1 —,x=~;
II K +1+m /m~ x

J (co) is a similarly structured but more involved integral
which is developed from the ana cluster (convergent) sums
in (Sc). The plasma parameter @=K /(4vrn) appearing in
(9b) more appropriately characterizes weak coupling situa-
tions. In deriving (9b) from (Sb) and (Sc) we have as-
sumed that a (qp, ) and a (qcu —p, ) can be replaced by
a (qp, )/e(q0) and n (qco —p, )/e(qO). This static screen-
ing approximation, which is probably quite good except near
cv = 2Q, has been used extensively. '

The integral I (cu) still exhibits divergences in its real and
imaginary parts. The divergence in the latter is the well-
known logarithmic one which is handled by the usual
y « 1 cutoff q,„=I/Pe2. The familiar piny ' expression

t
1 —1/2 K KIme(Oco) lr«~ = J2/m gm —X(e n /m ) g(e n ) eq

t

' 1/2
mg—eg
mg

'1/2 2 '
~ Iny-' (10)

then follows [cf. gq. (6)] from the subsequent evaluation of
Imw (Oco). The divergence in the real part appears only at
very high frequencies co & 0/y and would adversely affect
the I/cu structure of ReavAA(cu ~) were it not for the
imposition of the cutoff: indeed at weak coupling, the q
cutoff is required to maintain internal consistency with the
VAA sum-rule coefficient 0' '(k). At the lower frequen-
cies co « 0/y, the divergence in Rew (Ot&) disappears and
a numerical evaluation for the case of H+ —He2+,
N+ =N2+ leads to

n2 n4
Ree (Ocu ) I r (( ) = 1 —

2
—0.016'

whence Acu'(k = 0) —= Rect(k = 0) —II =0.008@II. Note
that our real frequency shift AcoGG~(k=0) =0.0551 t 0
compares favorably with Baus's predicted' b, catt ( k = 0)
=0.08I / Q. At weak coupling, but only at weak coupling,
our calculations support his contention that the (positive)
shift in the plasma frequency is temperature dependent.

B. I' &&1

The dynamical o.o. and ann cluster terms, while they play
an important role in the weak and intermediate coupling re-
gimes, appear to contribute only negligibly to the structure
of the optical mode at very strong coupling (I » 1). To
see this, we first observe that the Golden-Kalman (GK) ocp
theory' can be exactly recovered from the present theory
simply by setting m~ =m~ and e~ =e~ with the concentra-
tions left arbitrary. We next examine the Carini-Kalman-
Golden I = 110.4 dispersion curve" [which originated from
the GK approximation scheme and, consequently, from the
ocp limit of Eqs. (7a)—(7c)] and observe that this high-1
curve can be quite accurat'ely reproduced solely from the ocp
version of (7b). Thus, in binary ionic mixtures,
Reu (kco) should not significantly affect the dispersion of

~dyn

the optical mode for I )) 1. The same holds true for
Re w (ko& ): our preliminary compressibility-sum-rule-

dyn
based estimate indicates that it drops off like 1/I as I'
It therefore follows that the correlational corrections to the
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dielectric response function

2 2eamB earns +a +B 1Re[a(k~) lr)) &

—eo(k~) j = + —2, —gx'g, a(k —q)
ep mB

e~m g A~A2 2 —gx'[g (k —q) —g (q) 1
I

O, CJ

7+i
5

r

eq mB

eB mq

t 3/2 r

+ eB mg

eg mB

~ 3/2 I/2
mB

mq

~ &/2.
mg Og QB

gAB
mB ' KA KB

(12)

can be constructed solely from (7b) and (Sb). Since ( I/ V) /agnes (q) = gqs (r = 0) = —1 for I eO, 8 '2 '3 the k = 0 collective
mode formula

2 2
'

Redo(k =0)lr)) g= 1+ 1+Q, 40' Os elms esmA+ — —2J2, 30 esm~ eq ms

1/2' 1/2

(13)

follows from (12). For the H+ —He2+ mixture with

N~ ——N2+, Eq. (13) provides ra(k =0) = 1.01980 in exact
agreement with the result of the Hansen-McDonald-
Vieillefosse (HMV) memory function analysis. ' Our result
(13) certainly supports HMV's contention that, at strong
coupling (I' » 1), the positive shift in 0 is I independent.
For Oaku~ &( lral, the last right-hand-side group (cx 1/co6)
in (12) contributes only negligibly to the dispersion. This
leaves us with a dispersion re1ation which is almost entirely
controlled by the correlational parts of the third frequency
moment sum rule coefficient Qt4~(k). Inputting with the
static pair-correlation function data from Ref. 8 would
therefore result in a dispersion curve for the optical mode
which should coincide with HMV's Fig. 6 sum-rule-
moment-based theory curve, ' and which therefore repro-
duces the qualitative features of their molecular dynamics
data' for 1" && 1. %e have rigorously demonstrated near-
coincidence of the two curves at the longer wavelengths
ka «0.5 where one can justifiably input with the more ac-
cessible correlation-energy-density formulas of Refs. 8 and
14.

A comprehensive collective mode analysis at intermediate
coupling states and concomitant numerical calculations of
I,„;t marking the crossover from plasmonlike to phononlike
dispersion are deferred to a later work.

IV. CONCLUSIONS

Following the Golden-Kalman ocp nonlinear response
function approach, we have formulated a promising sum-
rule conserving approximation scheme for the calculation of
ionic polarizabilities in binary mixture plasmas. Our prelim-
inary collective mode calculations indicate that the (positive)
shift in the plasma frequ=ncy is I dependent at weak cou-
pling and I independent at very strong coupling. In the
latter regime, the dispersion of the optical mode appears to
be almost entirely structured by the correlational contribu-
tions to the third frequency moment sum rule.
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