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External dichotomous noise: The problem of the mean first-passage time
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A retarded backward equation for a non-Markovian process induced by dichotomous noise {the random
telegraphic signal) is deduced. The mean first-passage time of this process is exactly obtained. The Gauss-
ian white-noise and the white-shot-noise limits are studied. Explicit physical results in first approximation
are evaluated.

The study of the dynamics of stochastic processes induced
by an external nonwhite noise has recently received an in-
creasing interest not only from a theoretical point of view'
but also from the experimental one. ' The dynamical
quantities to focus on are, among others, the relaxation
time of the correlation function, ' ~ the activation rate of a
metastable state, ' and the mean first-passage time
(MFPT).78 The MFPT is widely used for evaluating dif-
ferent time scales in dynamica1 problems such as the decay
of an initial state in nonequilibrium situations. A particular-
ly important one is the study of the decay of a metastable or
unstable state in a bistable system. 5

Many systems of practical interest " can be described by
a single relevant variable. This variable obeys a first-order
differential equation of motion which depends on external
control parameters. If it is assumed that there exists a fluc-
tuating control parameter (external noise ) the deterministic
equation of motion transforms into a stochastic one of the
form

x= f(x)+ q(x)((t)

where ((t) is the external noise, f(x) is the deterministic
flow, and g (x) represents a linear coupling of the fluctuat-
ing parameter with the variable x. This is the most general
case in a variety of real situations. ' '2 If one assumes that
g (t) is a white noise then the process x(t) is Markovian"
and the problem of the MFPT has been already solved.
When g(t) is a nonwhite noise (noise with finite correlation
time) the process x(t) is non-Markovian4 8 " and the prob-
lem of the MFPT remains unsolved.

In this Rapid Communication the problem of calculating
the MFPT is addressed for the first time when the external
noise g(t) is a dichotomous noise. A backward equation for
the probability density of the process x(t) is derived. From
this equation an exact formula for the MFPT is obtained ex-
actly. The main conclusion is that the effect of the
nonwhite noise is important as compared with that of the
white noise.

The mathematical properties of this stochastic process are
well known:6' The process ((t) takes two possible values,
a' & 0 and a & 0, with transition rates p,

' and p, , respective-
ly. The stationary mean value of g(t) will be assumed equal
to zero: i.e., p, a'+ p, 'a =0. The correlation time of g(t) is
then r =X '= (p, + p, ') '. Modeling g(t) in (1) by a dicho-
tomous noise has several practical advantages. The station-
ary distribution of the process x (t) can be evaluated exactly.
This is not the case in other situations, for example, if g(t)
is taken to be an Ornstein-Uhlenbeck noise. Also, a dicho-

where 1'„+ is the adjoint (backward) operator. The mean

first-passage time T~ (xp) obeys then the equation"

1 „+ T(xp) = —1

where the boundary conditions should be defined in each
particular situation. The backward equation for P(x, t) of a
non-Markovian process is only known in a few cases. ' A
first original result of this work is the derivation of the
backward equation for the process (1) when g(t) is dichoto-
mous noise. This equation will be used here to obtain the
exact expression for the mean first-passage time. Approxi-
mate backward equations for other types of non-Markovian
processes can be found in Ref. 14.

The master equation for the probabilities P(x,a;t) and
P (x,a';t) is well known. 6 7 One can also write the equations
for the reduced probability P(x, t) and P(x,a';t), where

P(x, t) —= (P(x, (;t))t = P(x,a;t)+ P(x, a';t)

They explicitly read

P(x, t) = —8„[f(x)+ ag(x) ]P(x, t)

—(a' —a )B„g(x)P (x,a', t)

P (x,a';t) = pP(x, t)

(4)

(Sa)

—[) +B„[f(x)+a'g(x)1)P(x,a', t) . (Sb)

This is a forward master equation but our interest is to find
the associated backward equation. The first step in this
direction is to take the Laplace transform of (5) with the in-
itial conditions

P(x, 0) =5(x —xp); P(x, a';0) =0 (6)

tomous noise can be easily modeled in the laboratory '2 and
in particular limits it reduces to other interesting noise
models.

Up to now the only dynamical result available for non-
trivial systems influenced by dichotomous noise is the ap-
proximate evaluation of the MFPT through the calculation
of the activation rate of a metastable state. 5 7 Nevertheless
the solution of this problem is not well defined for all the
values of the intensity of the noise. 5 On the contrary, the
problem of the MFPT is well formulated. For a Markovian
process the standard approach starts with the deduction of a
backward equation of motion for the probability density
P(x, t) [P(x, 0) =8(x —xp)],

P(x, t) =r„+P(x,t),
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Then the formal solution for the Laplace transform of P(x, t), P(x, s) is

P(x s) = (s+8„[f(x)+ag(x)]+ (a' —a)p6„g(x) {s+X+9„[f(x)+a'g(x)]}') '5(x —xp)

Using the properties of the delta function, Eq. (7) can be rewritten also in a backward form

P(xs) = (s —[f(xp)+ ag(xp)]B„—(a' —a)p, {s+A.—[f(xp)+ a'g(xp)]6„} 'g(xp)fl„) '5(x —xp)

We define now the auxiliary quantity

H(x, s) = (a' —a) {s+Z—[f(xo)+ a'g(xp)]6„,} 'g(xo)B„P(x,s)

Inverting the Laplace transform in Eqs. (8) and (9) we obtain the backward equation corresponding to Eq. (5):

P(x, t) = [f(xo) + ag(xp) ]B„P(x,t) +P,H(x, t)

H(x, t) = (a' —a)g (xp)B„P(x,t) + {—A. + [f(xo)+ a'g(xp) ]6„}H(x,t)

(7)

(8)

(10a)

(10b)

where H(x, t=0) =0. H(x, t) is formally obtained from (10b)

H(xt) =~ dt'exp({ —X+ [f(xo)+a'g(xo)]6„,}(t t'))—(a' —a)g(xo)B„,P(xt')

which is substituted in the equation for P(x, t) to obtain a retarded backward equation which has the useful form

P(x, t) =„F(xp,d„;t s)P(x, s)ds—

where

F (xp, Q„;t —s ) = [f(xp) + ag (xp) ]$„25( t —s ) + p (a' —a ) exp ( {—X + [f(xp) + a'g (xo) ]} ( t —s) )g (xp) 5„

(12)

0„+T(xo) = —1 (14)

where 0„+ is given now in terms of F(x0, 8„;t—s) by

Equations of the type of (12) have been studied by Hanggi
and Talkner' and they have proved that the mean first-
passage time T~ of the non-Markovian process (12) obeys
an equation similar to (3):

where

dx
X D~ff X

(20)

starting in x, C(xp, x2), which escapes from this domain
through the point x2.

Using (19) the solution of (17) is

n„+ = „I, F(x0, 5„,;s) ds (15) ~( ) Ia{g(x) f(x) P ( )—
g (x)

The explicit equation satisfied by TI, is

([f(xp)+ ag(xp)]8„+ p, (a' —a)

&& {Z—[f(xp)+a'g(xp)]8„,} 'g(xp)B„,) T) ———1, (16)

which can be reduced to a second-order differential equation
for T~ (but of first-order for 8 Tt/Bxo)

D,f((xp)d„', Tt = {—Zf(xp)+ [f(xp)+ a'g(xp)]

x [f'(xp) + ag'(xo) ]}B„T)—Z, (17)
where

D ff(xo) [f(xp) + a g(xp) «[f(xo) + ag(xp)] (18)

This quantity is positive if xpC (x„xb), where x, is the left
natural boundary of this processb [f(x,)+ ag(x, ) =0] and
xb is the right natural boundary [f(xb)+ a g(xb) =0].
Equation (17) for Tt can be solved with the boundary con-
ditions7

5.,Tt(xo) I„=o, (19)

The first condition means that we have a reflecting boun-
dary at x, ~x and the second one means that there is an
absorbing boundary at x2~ xb. These conditions physically
mean that T~ is the mean first-passage time of a particle

I
I

= [a'g(x)+ f(x)] 'exp ' dx' . (21)
D, (xff')

This is the second main result of this work.
The solution (20) is also useful to study two Markovian

limits. 7

(i) Gaussian white-noise limit. This is obtained with the
following limiting procedure:

a2a'=Ia{=, p+p'=, D= =const . (22)

(ii) White-shot-noise limit. The values of the parameters
are now

Ia =~, P, =OOb
a' a D = const
p,

'
t

(23)

where the parameter D is usually called the intensity of the
noise. The difference between these two noises is the
Gaussian property.

Simple analytical results for Tt(xp) are in general difficult
to obtain from (20). However, reliable information on
scape times can be obtained by standard approximate
methods. 5 The way to proceed is the following. One can
consider that the parameter D'= a'Ia I/A. is a small quantity. .

Physically this means that the stochastic motion of x is dorn-
inated by the deterministic flow f'(x) in (1) and the relative
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fluctuations around the deterministic trajectory are small.
The deterministic steady states are the real roots of the
equation

f(x)=O . (24)

For the sake of simplicity one can consider the case of three
real roots x~ & x & xz, where xI ) x, and xz & xb are stable
steady states and x is unstable (bistable process). Let us
now evaluate the MFPT of a particle initially in the stable
state x~, which scapes to the other stable state xz when the
reflecting bounding at x, coincides with the left natural
boundary of this process x . At this point it is convenient
to introduce an effective "potential" u(x) by

u(x) ~
'" f(x')

D' ~ D„(x') (25)

T)(xt) = e xp(b, p /D')
If'(xt)f'(x) I"'

~here the exponential term is the Arrhenius factor and

, I'" f( ')
D ax, Dtr(x)

(27)

In (27) one can distinguish two factors. The most impor-
tant one is the second since the exponential is dominant

whose extrema are also the solutions of (24). Using (21)
and (25) the result (20) takes the explicit form

] + &z d eu(x)/D f x —u(p)/D
Ti(xt) =

D' " t g(x) —f(x)/lal . g(y)+ f(y)/a'
(26)

The exponential term in the first integral becomes dom-
inant near x and then the integra1 can be evaluated approxi-
mately by the method of steepest descent. '5 For the second
integral (the upper limit is now x) the exponential term is
dominant near x~ and the way to proceed is the same one.
The final result for Tt(xt) is

when D' is small. It has the same formal expression for a
Gaussian white noise and shot noise but with different
Deft(x) in each case. It means that for these three noises
and small enough D', the process (1) can be approximated
by a Markovian Fokker-Planck equation with the corre-
sponding effective diffusion D,rt(x). Taking the limits (22)
and (23) in (27) we recover well known results. 7's

From (27) one can also conclude that the effect of the
correlation time of the noise is dynamically very important
since it appears in the exponential factor through (28). A
lengthy but straightforward calculation shows that T~(xt) in
the approximation (27) is larger than the corresponding
value for the white-shot-noise limit (23) if g(x) & 0. This
is not the case if the negative impulses of g(t) are larger
than the positive ones (IaI & a'). This corresponds to a
different white-shot-noise limit (a ~, p, ~) not con-
sidered in (23). The same conclusion is obtained if we
compare (27) with the Gaussian white-noise limit (22) but
only in the case of symmetric dichotomous noise (a'= IaI,
p,

'=
p, ). The fact that the time scale of a non-Markovian

process is larger than for a Markovian one with the same D'
has been also observed in other situations with symmetric
noises. ' This is physically understood since a nonwhite
symmetric noise is not an "instantaneous" process like a
white noise and hence it slows down the physical variable x
in (1). For a nonsymmetric dichotomous noise no general
statement can be drawn from (27). Hence one can con-
clude that the finite relaxation time 7 and the lack of sym-
metry of the random impulses of the noise play a very dif-
ferent role in the dynamics of the noise-induced process
(1). This is in agreement with Ref. 7 where an approximate
study of (1) is presented; Nevertheless, numerical analysis
of (20) will give us exact information about this problem for
all the values of the noise parameters.
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