
PHYSICAL REVIE% A VOLUME 31, NUMBER 5 MAY 1985

Renormalization of the quasiperiodic transition to chaos for arbitrary winding numbers

J. Doyne Farmer and Indubala I. Satija
Center for Nonlinear Studies, MS 8258, Los Alamos National Laboratory,

Los Alamos, Ne~ Mexico 87545
(Received 26 November 1984)

Previous renormalization analyses have demonstrated universal properties for the quasiperiodic transition
to chaos. These theories have the unpleasant feature that universal properties depend on the winding
number. We modify the renormalization transformation so that it has stable attractors. This allows us to
study nonlocal properties by solving the equations numerically without linearizing. The resulting universal
strange attractor contains the unstable fixed points of previous theories and has exponents that are indepen-
dent of winding number.

One of the most common transitions to chaos occurs
when quasiperiodic motion with two irrationally related fre-
quencies becomes chaotic. In phase space, a two-torus at-
tractor turns into a strange attractor. Inspired by the
universal behavior associated with the period-doubling tran-
sition to chaos, ' in recent years considerable effort has been
invested toward understanding the universal properties
underlying the breakdown of a torus. ~ In spite of the fact
that there are numerical indications of universal properties
valid at all winding numbers, 4 previous renormalization
theories have only been able to deal with special parameter
values, finding universal properties that depend on the
winding number. Experimental verification of these
theories requires control of the winding number which, in
general, is not feasible. Our central purpose in this paper is
to modify the approach of the previous theories making pos-
sible a numerical method that can describe the breakdown
of a torus for all parameter values. We demonstrate that
the renormalization transformation has a universal ergodic
attractor, with universal exponents that are the same for al-
most all winding numbers. The unstable fixed points of the
previous theories lie on this ergodic attractor.

The dynamics of the torus can be simplified by using a
Poincare section to convert a continuous dynamical system
into a discrete mapping. To visualize this procedure, imag-
ine slicing the torus, producing a mapping of a closed curve
(equivalent to a circle) onto itself. An example of such a
circle map is'

xi+ ~
= xi — sin(27rxi) +k

x is taken modulo 1, so that xI represents the position on
the circle at the ith iteration. k is a nonlinearity parameter
and co is a parameter that determines the rate at which
points travel around the circle, called the ~inding number,
defined as p=lim [f (xo) —xo]/m. p is independent
of xo. For k ( 1, this map has a unique attractor. For ra-
tional winding numbers this attractor is a finite sequence of
periodic points, but for irrational values it fills the circle.
For k ) 1 this map is no longer one to one, and may have
strange attractors. The critical value k=1 is of special in-
terest as the parameter value where a transition to chaos can
take place. For k & 1 (the noncritical case) the map has a
differentiable inverse, but at k=1 (the critical case) the
derivative of the inverse does not exist for x = 0. Previous
work ~ has shown that the critical and subcritical cases be-
long to different universality classes.

Even though Eq. (1) appears simple, its behavior as
parameters are varied is extremely complicated, as can be
seen by examining Fig. 1(a). Furthermore, it is only one of
an infinite number of possible circle maps. The purpose of
the renormalization treatment given here is to find regulari-
ties in this bifurcation diagram, and to extract properties
that are common to an entire class of analytic circle maps.

A one-parameter family of critical circle maps may be
visualized as a landscape suspended over the bifurcation di-
agram of Fig. 1(a). Regularities in this landscape are evi-
dent as regularities in the bifurcation diagram. For exam-
ple, by magnifying the illustrated portion of the bifurcation
diagram shown in Fig. 1(a), the entire diagram reproduces
itself, as shown in Fig. 1(b). This process can be continued
ad infinirum. The self-reproducing parts of the diagram cor-
respond to subregions in which a (somewhat distorted)
landscape is reproduced for some iterate of the map. As
will be explained below, a remarkable property is that it is
possible to find such a set of nested reproducing diagrams
centered about any irrational value of the ~inding number.
The renormalization transformation is a "microscope" for
finding such regularities and determining their universal
features. This microscope operates by (I) examining a
higher iterate of the map, (2) zooming in on the relevant
subregion of the map, and (3) blowing up this subregion.

Previous renormalization treatments ~ ~ begin by noting
that any winding number p can be expanded in a continued
fraction expansion, of the form

1n)+ + ~ ~ ~

Truncating this expansion provides a sequence of rational
numbers that for a given denominator are the best rational
approximants to p. The denominators of this sequence are
given by the recursion relation qI+q= n&+~q&+q& q. This
implies that this sequence of iterates can be expressed in
terms of the previous two iterates, i.e.,

f I+I f i+1 lgi ~i —I

For a circle map with winding number p, the sequence of
iterates given by qI are the recurrences of the orbit.

Rand and co-workers2 have shown that this relation de-
fines a renormalization scheme for two monotonic functions

g and q, representing f ' and f ' ' '. In principle, their
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FIG. 1. (a) Bifurcation diagram for the circle map of Eq. (1),
made by plotting many iterates at each co. To keep the scale fixed,
the values actually plotted are x —co+ I. (b) A blowup of the
dashed region of (a). This sequence can be continued ad infinitum;
an infinite sequence of such pictures can be obtained about any irra-
tional winding number.

scheme is valid for any winding number. In practice, the
winding number of the initial functions ( and q cannot be
computed to arbitrary precision, making it impossible to in-
definitely iterate the transformation. In the scheme of Rand
and co-workers, only the argument x of g and rl is rescaled,
while the parameter co is kept fixed. The sequence of blow-
ups given in Fig. 1 naturally suggests, however, that the
domain of the renormalized functions should be two dimen-
sional, involving both x and co. This automatically solves
the problem of controlling the winding number. Using this
new scheme the renormalized function is an entire one-
parameter family of circle maps containing all winding
numbers 0 ~ p ~ 1. This ensures that a circle map at any
winding number of interest is always present. The resulting

generalization of the renormalization equations of Ref. 2 is

g„-(x) =ng„" 'vi„(x/n)

g„-(x) = ng„" 'q„(„(x/n )

where ~=~/5+~2 and 5=1/(cot —ru2). cu2 and tot deter-
mine the boundaries in co of the renormalized domain, and
are given by

g, (0) =0= g„ t&„,(0),
(t (0) = 1 = ng„", 'v)„, (0)

As is clear from Fig. 1, o. is now a function of co, and is
given by n(t0) = [g„"q„(0)—('„" 'q„(0)] '. ( and 7l at each
~ satisfy several other conditions, given in Ref. 2. The
great advantage of formulating the renormalization transfor-
mation in this manner is that this transformation has stable
attractors, and the transformation can be iterated directly.
In contrast, using previous approaches the renormalization
transformation is unstable, making it possible to linearize
the equations in the neighborhood of a fixed point.

To iterate Eq. (2) we represent f and q as values on a
discrete two-dimensional lattice, and use a bicubic scheme6
to interpolate values between lattice points. If we choose,
we can follow a periodic winding number by specifying a
periodic sequence of n values. In this case, the solution is a
stable fixed point or periodic cycle. Since our solution
(g, q) is a one-dimensional parametrization of the function
space along the unstable manifold near the fixed point, our
method in this case can be viewed as a computation of the
unstable manifold of the fixed point (of the one-
dimensional transformation of previous theories). This
makes it clear why our transformation is stable: it coun-
teracts the effect of the instability by zooming in along it.

While a computation of the unstable manifold might be
interesting, the real power of this method is that it can be
applied to the more general case in which the winding
number is not periodic. In this case our renormalization
transformation can no longer be viewed as an unstable man-
ifold calculation, since there are no longer any fixed points
to compute th, e unstable manifold of.

As shown by Rand and co-workers, 2 the one-dimensional
version of Eq. (2) alters the winding number at each itera-
tion. by eliminating n~ from the continued fraction expan-
sion, sending p to 1/p —[I/p], where [I/p) =nt is the in-
teger part of 1/p. This map is called the Gauss map. To
iterate our renormalization transformation for arbitrary
~inding numbers, we simply pick an initial random seed po,
iterate the Gauss map for po, and generate values of n& at
each step. Numerical difficulties can be caused when ni is
too large. %e overcame this by setting nI=n, whenever
n& ) n„where n, is a fixed cutoff. The net effect is that we
sample only a restricted set of all possible random numbers.
Fortunately, for n, large the probability that n; & n, is small,
proportional to I/n, . We obtained numerical estimates of
the universal exponents in the limit as n, ~ by iterating
our equations for several different values of n„and extra-
polating the answers. For the random case, g and q fluctu-
ate, due to the fact that the renormalization transformation
does not have a simple attractor. By taking the geometric
mean of the values generated at each iteration of the
transformation, we computed the average values of delta
and alpha. For the subcritical case, our results are
8 = 10.4 +0.5 and o. = 3.2 +0.2. The value of 5 is within ex-
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perimental error of the Lyapunov number of the Gauss
map, as predicted by Rand and co-workers. For the critical
case we get 5=15.5+0.5 and n=1.8+0.1. As a test we
compared these results with those obtained from a Monte
Carlo approach. 7 The critical exponents obtained in each
case agreed to the quoted numerical tolerance.

For the critical case there is a problem, however. In or-
der to ensure cubic criticality we have to force
g'(0) = ri'(0) = ri" (0) = g"(0) = O. For periodic winding
numbers, we find that our computed values of o. and 5 are
correct to only three digits. The limited precision for the
periodic case is apparently due to a numerical instability
caused by imposing the above conditions. This does not
limit the accuracy of our calculation for o. and 5 in the er-
godic case, since this error is smaller than the more dom-
inant statistical error due to fluctuations in different regions
of the attractor. As demonstrated in Ref. 7, this does, how-
ever, wipe out the fine details of the fractal structure of the
attractor. Using a Monte Carlo approach applied to several
different maps, we have since been able to numerically
demonstrate the fractal structure, and to show that the re-
normalization transformation has a strange attractor.

We wish to emphasize that the universal numbers com-
puted here are statistical quantities, summarizing an average
property of a nontrivial global bifurcation sequence. In con-
trast, the universal exponents of previous theories are local
quantities, giving information about a much simpler, repeti-
tive bifurcation sequence. Thus, our universal numbers
contain information about the entire bifurcation diagram
shown in Fig. 1, in contrast with the usual numbers which
give information only about small local regions of the dia-
gram, corresponding to special winding numbers. The dom-
inant source of error in computing the numbers given here
is statistical fluctuation, due to the fact that we can iterate
our transformation only a finite number of times, and prop-
erties vary from point to point. This is analogous to the
study of stability properties in dynamical systems: the
eigenvalues of a fixed point are easily computed to machine
accuracy, while Lyapunov exponents are often difficult to
compute to even three digits of precision. However, the
eigenvalues give information only about the region in a
neighborhood, while the Lyapunov exponents are statistical
quantities that can summarize average properties of a nonlo-

cal object such as a strange attractor. Knowing a Lyapunov
number of a strange attractor to three decimal places is
often much more valuable than knowing the eigenvalue of
an unstable fixed point to arbitrary precision.

To summarize, the great advantage of formulating the re-
normalization transformation on a two- rather than a one-
dimensional domain is that the universal features are prop-
erties of the stable attractors of the transformation. In con-
trast to previous renormalization treatments, it is not neces-
sary to linearize the equations about special points, making
it possible to study sets of positive measure. Special cases
such as winding numbers with periodic continued fraction
expansions lead to stable periodic orbits, but the more typi-
cal case of randomly picked continued fraction expansions
leads to a more complicated universal strange attractor. The
unstable points of previous theories lie on this attractor,
which describes the regularities and universal features of
circle - map bifurcation diagrams. For periodic continued
fractions, these regularities are asymptotically exactly self-
similar; but for the more typical random case, self-similarity
occurs in only an average sense, summarized by the o. and 5
computed here.

There are two important new points in this paper. First,
we have demonstrated that it is possible to stabilize the re-
normalization equations, so that their nonlocal properties
can be studied without resorting to linearizing. To our
knowledge, this is the first time that this has been done.
Second, Rand and co-workers conjectured that the renor-
malization transformation has a strange attractor, but they
gave no evidence to support this conjecture. We have given
the first numerical evidence supporting the idea that the full
renormalization equations can have strange attractors. We
believe that this approach should have application in other
problems besides circle maps.
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