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An equation of state for a single polymer chain can be established with use of either a constant force or a
constant length ensemble. These two equations of state, often regarded as equivalent, are shown here to
be fundamentally different in the weak-stretching (Hooke's law) regime. In this limit, the equation derived
from the force ensemble is unrelated to Hooke's law. Various calculations of the influence of the excluded
volume interaction on the equation of state are discussed.

I. INTRODUCTION

f,„=2kTb r

f,„=2kTb2r

(la)

(Ib)

where f,„=If,„I. The chain behaves as an entropy spring
of zero unstretched length. f,„ is the force required to
maintain an end-to-end separation of r.

An equation of state regarded as being equivalent to Eq.
(1) can be derived from the constant force ensemble. s s In
the present work, the two approaches are shown to be quite
different; moreover, the constant-force-derived equation of
state is found to be incapable of describing the elastic prop-
erties of a chain in the weak-stretching region. Recent
theoretical work on the chain with an excluded volume in-
teraction is discussed from the viewpoint developed in this
paper.

II. STRESS ENSEMBLE

In the constant force ensemble, henceforth to be called
the stress ensemble, the chain ends are subject to a fixed
force couple, denoted by f .' 9 The average properties of
any variable, Q, can be calculated from

QP(r) exp(P f„r)dW
(Q) =

P(r) exp(Pf„r)dW

= exp( —v2/4) QP(r) exp(P f„r)dW, (2)

The so-called Hooke's-law equation of state for a single
ideal Gaussian chain has been known for over 40 years. ' By
ideal Gaussian, we mean a chain which is located in a good
solvent (heat bath) and which consists of a large but finite
number of freely orienting volumeless segments which do
not interact with one another. In the weak-stretching re-
gime the dependence of the vector force, f, required to
maintain a fixed vector end-to-end separation, r, on r is
determined with use of a constant length ensemble,
henceforth to be called a strain~ ensemble. f„„;„(abbreviat-
ed f,„) is obtained from f,„=—T(1)S/1)r) where the entro-
py S is S= klnP(r). P(r), the normalized field-free end-
to-end vector distribution function, is

b'm exp( —b r ) for Irl=r « Na

N is the number of links each of length (a) and
b2 = (3/2Na2). It follows that

where 0 is the angle between f„and r. The following ex-
pressions can be derived from Eq. (2) by expanding
exp(P f r cos8) in a power series:

(3)

I

(r) = (r)p 1+ + O(v') (4)

and

2

3kT 20
(5)

(r) p is the averaged scalar end-to-end separation in the ab-
sence of an external force. (r)p=

(2/bean

) Equation (3. )
can be written as

f~ = 2kTb2(x) (6)

which is the stress-ensemble-derived equation of state.
Equation (6) describes the projection onto the f„axis of
the averaged end-to-end separation that results from the ap-
plication of a force couple. Because of its resemblance to
Eq. (1), Eq. (6) is stated to provide an equivalent descrip-
tion of an elastic chain obeying Hooke s law. (x) is identi-
fied with the averaged end-to-end separation. In the weak-
stretching region (v & 1), however, Eq. (4) predicts that

( r ) = ( r ) p. The chain's average end-to-end separation
remains nearly constant as f„ increases from zero to a finite
value consistent with v ( 1.

Figure 1 shows such a chain where the constant force on
the ends is maintained by placing electric charges, + q, on
the ends and subjecting the entire chain to a constant exter-
nal electric field E. f„=qE. For simplicity, E is taken to
be collinear with the x axis. The end-to-end separation is
depicted as being a vector of length (r)p, which is free to
"rotate" by means of Brownian motion in the heat bath. In
the weak-force region, (cos0) = f„(r)p/3kT according to
Eq. (5). Since f = qE, and p„ the average "dipole mo-
ment" of the chain, is (qr) = q (r) p, it follows that

(cos()) = +p, E
3kT

This is the classical expression for the average orientation of

where P= (kT) ', v=Pf„/b, and dW=r2sin8d() dP dr. x
is defined to be the component of r in the direction of f„;

x = (r f„/f„)= r cos()
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v & 0.7, a deviation from a linear stress-strain relation oc-
curs. Our v is related to their q by t=q/1. 2. Webman,
Lebowitz, and Kalos reached a similar conclusion in their
Monte Carlo study of the polymer chain with an EVI. From
Eq. (4), however, it is apparent that the ideal chain
elongates by only 4% when v=0.7. One would, therefore,
expect that the chain with an EVI would also behave as a
rotating dipole in the weak-stretching region and that the
EVI would not affect the dependence of (x) of f„until
(r) had increased significantly, as observed above.

A combined Monte Carlo-molecular dynamics calculation
on the polymer chain with an EVI was recently undertaken

, by Herman and Weiner using a strain ensemble. ' They
found a nonzero end-to-end separation r„where f,„=0.
For r ) r„ f,„ is tensile (f,„)0), and for r ( r„ f,„ is
compressive (f,„(0). For a./a = 0.8 and N = 10,
r, /Na =0.2, where o. defines the magnitude of the EVI.
This result contrasts sharply with the stress-ensemble deter-
minations, mentioned above, where a tensile force is
present for all r ) 0 and "Hooke's law" is obeyed for small
forces until f„=0 for (x) =0. Herman et al. concluded
that the strain- and stress-ensemble approaches are funda-
mentally different when an EVI is present.

(cos e)

FIG. 1. Dipole analog of the stress-ensemble chain is depicted.

a thermally tumbling dipole in an electric field. The
stress-ensemble chain can be represented by an electric di-
pole which "rotates" in response to an external force.
Since (x) is the average value of the projection of r on the
x axis, it can increase linearly with the force even though
(r) remains essentially constant. While the stress ensemble
correctly describes the physical picture for the single chain
in a good solvent, it cannot describe a rubber network chain
which undergoes a change in (~r~) in response to a macro-
scopic deformation caused by an external force acting on the
bulk network.

One should recognize that when the force is strong
enough to extend the chain fully, the two erisembles ap-
proach the same limit: (r) r~ x~ (x).

III. CHAIN WITH AN EXCLUDED VOLUME
INTERACTION (EUI)

IV. CONCLUSION

Using an ideal polymer chain, we have shown that the
stress ensemble describes a chain which is incapable of de-
forming in the weak-stretching region. (r) remains nearly
constant at (r) 0', the chain responds to an increasing force
by "rotating" as if it were a permanent electric dipole of
moment p, =q(r)0. Because (x), in Eq. (6), is identified
with the chain's elongation, the stress ensemble has been
used incorrectly as a basis for describing polymer chain elas-
ticity.

Excluded volume interactions can affect an equation of
state only if the chain elongates in response to an increasing
force. The real chain maintains its integrity as a "blob" un-
til a force is able to pull it apart. Thus, the chain described
by a stress ensemble7 s has a region where Eq. (6) is obeyed
because the chain behaves as a dipolar "blob" and orients
itself with respect to the external field. When the force be-
comes sufficiently strong (u )0.7), the chain will elongate
((r) will increase), thereby permitting the EVI to destroy
the proportionality between f„and (x) .
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