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Diffusion corrections in electron conductance transients
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The effect of diffusion upon drift-velocity measurements in electron-conductance-transient experiments is
analyzed analytically, and the correction procedure employed by Wada and Freeman is argued to be inap-
propriate.

Electron mobilities have been determined from electron
conductance transients resulting from x-ray radiation of gas
filling a region between two plane-parallel electrodes by
Wada and Freeman. ' These authors conclude that low-
energy momentum-transfer cross sections for electron
scattering from H2 and N2 exhibit a Ramsauer minimum,
contradicting the traditional viewpoint. Cassidy argues
that the Wada-Freeman diffusion correction factor of
1+J2DLtq/l is incorrect and is possibly responsible for the
discrepancy in their derived cross sections. (Here Dt, is the
longitudinal diffusion coefficient, and tz= l/ W'is the time of
flight for electrons drifting with velocity 8'over a distance
l. ) Cassidy obtains a correction factor numerically close to
1+2Dt. tq/I from approximate solution of the diffusion
equation, but this required an involved iterative process
with three successive numerical integrations. The purposes
of this paper are (i) to show that under certain conditions
transients must indeed be corrected in the manner suggest-
ed by Cassidy, but by following an exact analytic treatment,
with any approximations left until the end, (ii) to give the
general formulas for a quantitative description of the tran-
sients under all conditions, and (iii) to point out that the
Wada-Freeman and Cassidy correction factors have ap-

parently been applied under quite different circumstances,
with the validity of the former subject to some doubt.

The experimental situation may be idealized by plane-
parallel geometry. Ionizing radiation creates electrons in the
gap, which then drift and diffuse under the influence of the
constant electric field E= V/l, where V is the voltage ap-
plied to the electrodes and l is their separation distance.
The density n of electrons is assumed sufficiently low so
that no space-charge distortions occur, and is governed by
the diffusion equation

(j,n+ 8'(j, n —DL(j2n = 0

n (z, tp) = nph (z —zp) (2)

1S

where Wand DL are the usual (constant) transport coeffi-
cients, and z is a coordinate measured normal to the elec-
trodes. Equation (1) is to be solved subject to the boundary
conditions that n = 0 at z = 0 (cathode) and z = l (anode) .
The solution obtained by separation of variables for the ini-
tial condition that electrons are produced at time t= tp by
ionizing radiation uniformly in the plane z = zp, i.e., for

2np
n(z, t) = X exp[A(z —zp) cu (Jt tp)] sin(k&z) sin(k&zp)

I
(3a)

no g exp[A (z —zp) —cot(t —tp] {cos[ki(z—zp) ] —cos[ki(z+ zp) ]}
I j=]

Symbols appearing in (3a) and (3b) are defined as follows:

8' jm
coJ = Dt. (A.2+ kj ), A.=, kj=

2DL
'

I

An alternative form to (3b) can be found by employing the well-known Poisson summation theorem

(3b)

(4)

f(is)= X E(j/s),j= —oo j=—oo

where 5 is an arbitrary parameter, and

F(k)=- I e ' '~f(x) dx

is the Fourier transform of f(x). Thus, it can be shown that (3b) transforms to

(6)

n (z, t) = exp{a [z —zp —~ 8'(t tp) ]} X {exp[——(z —zp —2jl)2/4Dt (t tp)]-
Q4n DL (t tp)— j= —oo

—exp[ —(z+ zp —2jl)'/4DL(t —tp]} (7)

The equivalent forms, (3) and (7), are exact solutions of (1) satisfying the required boundary conditions, but we find it
more convenient to work with (3) when carrying out subsequent integrations. On the other hand, Cassidy4 5 starts with an
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approximate, truncated form of (7) (only j= 0, 1 terms are retained) making it impossible to satisfy the boundary condition
at z =0. The loss of accuracy resulting from this truncation is, however, believed to be small. The main use of (7) as far as
we are concerned is that it facilitates certain limiting processes, e.g. , for small Dl.

n(z, t) = np
exp

Q4mDL .( t —t, )

1

[z —z —8'(t —t ) ]z
n05(z —zo —8'(t —tq)) as DL 0

4DL ( t to)—
(8)

Equation (8) represents a pulse starting at z = zo at time t = to and traveling with velocity 8; as would be expected in the
absence of diffusion.

As explained in Ref. 4, it is the total number of electrons within the gap at any time t which is effectively determined in
experiment. If electrons are produced uniformly across the gap by an instantaneous pulse of ionizing radiation at time tp,
then at a later time t the number is

r I pl
N(t —to) = dz 'I dzon(z, t)~p ~p

47lp —co (t —tp)
e

l

k
z z

[1+( —l)~+'cosh(XI)]
A+kg z (9)

If, on the other hand, the radiation pulse is of finite length v, the number of electrons in the gap at ti'me t is given by
Pt

N, (t) = N(t —t, ) dt,J p

4 oo k2
z 3

[1+ ( —l)~+'cosh(Z!)](1 —e ~ ), t ~ r
IDt. J=) (A.z+ kjz)3

(loa)

ol

gT 4 co k2
N, (t) =J, N(t —to) dto 'g—,—~, , [1+( —1)~+'cosh() I)](e J ' —e "J ), t & r

p IDL ~=) (A.z+ kj2)3
(lob)

These expressions are exact, and in a form suitable for
numerical computation. The current in the circuit external
to the electrodes is proportional to N, (t) [see Ref. 4, Eq
(4), but note that this is in error by a factor equal to the in-
verse of the electrode spacing]. Thus we have theoretical
expressions which can be compared with experimental data
to furnish 8 and DJ, at least in principle. For practical pur-
poses, however, we do not use the full expressions above,
but rather approximations to them valid for a certain time
regime, viz. , the linear decay region. To see that N, (t)
does in fact exhibit linearity in t under certain conditions, it
is sufficient to show that N(t) of Eq. (9) also has this prop-
erty, and then integrate as in (10b).

The subsequent discussion is aided by employing dimen-
sionless quantities

I'= ll, t'= t/t, , N'= N/n, l, 5 = m/I', n = —,
' I' t",

and then we have from (9) that

mation formula (5) and the corollary

5 g ( —l)&f(j5) = ——,5f(0)+ F(1/25)+F(3/25+ .

=F(I"/2~)+F(3I /2~)+

where F is found by substituting (14) into (6).
For large I' (typically I'& 10), it can be shown that

S&(t') is significant only for times such that n(1, i.e. ,
t'& 2/I', and decays rapidly at later times. Thus for times
t" & 2/I', we have from (12) that

N'(t')= ' . S,(t'),mI'

to a good approximation. Further restricting the discussion
to times

1/2—&t &1——2 2
l' I'

N'( t")=, [Si ( t') + cosh l'Sz( t') ] (12) it can be shown that

where

S) =5 g f(j 5)
J=1

Sz= —5 g ( —l)jf(J5)
J=1

(13a)

(13b)

e. '(1+ I'—t' I-') —e-" ' I"—. (17)
2n 2 (I')2

The last term is negligible for I » l.
Thus from (13b), (5'), (l5), and (17), it follows that

N'«) =1———t'+ O(e "), -

i.e., a linear time dependence.
For no diffusion (or for an infinite gap) I' ~ and

f(x) -=e
(1+x')' (14)

N (t') —1 —t', (18')

These summations can be evaluated using the Poisson sum- precisely the result which one would obtain starting from
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(8) and carrying out the integrations (9).
For times t' ) 1 —v'2/I, S2( r') decays exponentially

with time and N'(t') deviates from the linear behavior
(18).

To find the expression for the quantity corresponding to
radiation of finite duration r'= r/tq, we integrate (18) as in
(10b):

N, (r)
n pity

1 ———(r —to ) dro
0 l'

as defining an apparent time of flight [cf. Ref. 1, Eq. (2)],
with a corresponding apparent drift velocity

8'= 1 ——, 8'=--1 8'
1+ (I/I )

(23)

i.e., by dividing the empirical drift velocity by the correct fac-
tor

I —(I/O)

where the last step follows from (22) and the definition
rz= i/ W. Hence, the true drift velocity W may be found
from the empirical quantity 8" through the formula

1 ——+Tv1 (19)
1 + —= 1 + 2DL / Wl = 1+ 2DI. tg / l1=

fP
(24)

r'+ —& r" &I J2/I' —. (20)l'

Figure 1 shows a transient calculated for l'=10, v'=0. 2
from Eqs. (10a) and (10b). The linear segment is evident,
and the extrapolation of this to the time axis gives an inter-
cept of to = 1, in agreement with (19), which indicates, in

general, that

I;p =. 1 ——+ ~7'
l fj

or, equivalently,

tp= tg 1 ——+ —7
1

0 d (21)
)

as the intercept on the base axis for arbitrary ~ and I'. Also
shown in Fig. 1 is the transient for the case where 1/l' 0,
i.e., no diffusion effects. Diffusion, then, clearly has the ef-
fect of reducing the value of intercept on the time axis ob-
tained by extrapolation of a transient with a linear portion.
We might think of the quantity

I ] 1
ty = tp —~v'= 1 ——„ (22)

0.2-

This expression indicates a linear transient, and is valid in

the time interval The present calculation is therefore consistent with
Cassidy's numerical calculations, 4 5 and is what might have
been anticipated on the basis of earlier work in connection
with other experiments.

It is important to note that the correction factor (24) is to
be applied only when the transient has a linear segment,
and is not to be directly compared with the dada-Freeman
factor of 1+J2Dl. rq/I = 1+ I/Jl', as a reading of Cassidy' s
work might suggest. Although the intended manner of ap-
plication of this correction factor is not clear, even after
close examination of Refs. 1 and 2, the situation is, ap-
parently, that Wada and Freeman have found drift velocities
from an examination of the tail of the tansient through

Ed
—fc~d— (25)

where "t,„&" is what Dada and Freeman regard as the
"end" of the transient, and we have written tq (instead of
just tq as in Refs. 1 and 2) to emphasize an apparent drift
time. On the basis of some qualitative discussion, Wada
and Freeman then effectively conclude that the true time of
flight, corrected for diffusion, is

ty

1+ 1/Jl' (26)

and that the drift velocity is therefore [cf. Ref. 2, Eq. (2))

W= l/tg= W'(1+ 1/ Jl')
the correction factor having the effect of increasing the drift
velocity. The above interpretation is based upon informa-
tion supplied by a collaborator7 of Wada and Freeman, who
indicates that such a correction factor was found necessary
only at very low fields when the transient is curved.

Before commenting on this, it is instructive to reexamine
the equations developed in the present paper. Firstly, it is
clear from (20) that a transient can have a linear segment if
and only if

r'& 1 —4(2/l") —(2/I") . (28)

0.5 $.0

FIG. 1. Transients corresponding to ~ =0.2 with l =10 (curve
a) as calculated from (10b) and l=~ (no diffusion, curve b). Ex-
trapolations of the linear segments to the time axis are shown by
the dashed lines. Whereas curve b has a sharp cutoff at time

t~„& 1+~ =1.2, the diffusion-affected transient curve a decays
exponentially at long times.

This imposes an upper limit on r' for given /'. (In fact it
also restricts l' to above a critical value of l,

' & 5 for a linear
transient to be possible under any circumstances. )

Thus, we can generate nonlinear transients from (10a)
and (10b) for I'= 10 by taking r' & 0.4; these have an ap-
pearance similar to the "tail" of curve a in Fig. 1, but of
course they occupy the entire region t' & ~ . Similarly, in
the absence of diffusion l ~, and the transient is non-
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linear for v & 1, being described by the quadratic

N,' = T (1+~' —r')' . (29)

Whereas this has a definite cutoff at a time t,„d=7+ tq,

the finite I transient has no such sharp termination. The
tails of curves b and a, respectively, in Fig. 1 exhibit this
behavior. It is therefore not physically meaningful to desig-
nate a t,„d for a diffusion-affected transient. One might say
for practical purposes that the transient has ended when its
value falls to (say) 1'/0 of peak value, but &ada and Free-
man have given no such quantitative criterion, and it is dif-
ficult to reconcile their use of a qualitative diffusion correc-
tion factor in connenction with such an ill-defined concept
as tend.

A more satisfactory procedure for analysis of electron
conductance transients (ECT's) would therefore seem to be
as follows.

(i) For ECT's with distinct linear portions, extrapolate to
the base line and use (22) and (23) to estimate drift veloci-
ty.

(ii) In all other cases, use (10a) and (10b) and adjust the
transport parameters until the experimental and theoretical
curves agree. As a first step in the procedure, the time con-
stant of the exponentially decaying "tail" could be deter-
mined and equated to the asymptotic time constant (mt)
of Eq. (10b), thereby furnishing W directly if Di. can be es-
timated.

It may well turn out that these corrections for diffusion
do not plyy a crucial role in generating the discrepancies in
cross sections referred to earlier, and that the suggestion of
Crompton and Morrison, relating to experimental pro-
cedure, is more indicative of the source of error. Neverthe-
less, it would seem appropriate for %ada and Freeman to
reinterpret their experimental data in the light of the

theoretical implications described above.
Finally, a note of warning should be sounded regarding

computation of the correction factor from the Nernst-
Einstein relation. It is known that to a good approxima-
tion, in many cases,

~Te
l

d 1QPI+
e d 1nE/N

(30)

and that the electron temperature T, is well represented
through the relation9

2 kT, = ~kT+ ~MW

(32)
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where T is the neutral gas temperature and M the mass of a
gas molecule. The strongest variation with field usually
comes through T, and, hence, ignoring the term in large
parentheses, we have

1

I8' eIE Te~E

2DL 2kTe kT+ TtMW

At low fields (MW ((3kT), l'= e!E/2kT, and I" ini-
tially increases with applied voltage V= El. Ho~ever, at
very high fields (MW » 3kT) I'= TelE/MW can actu-
ally decrease with increasing voltage if 8' increases faster
than E'i2. At intermediate fields, I' attains a maximum.

The third suggestion is, therefore, the following.
(iii) The generalized Einstein relation (30) should be em-

ployed in all but very weak field situations in computation
of diffusion corrections.
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