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New electrostatic resonance driven by laser radiation at perpendicular
incidence in superdense plasmas
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Contrary to the well-known (Denisov) resonance absorption of obliquely incident p-polarized laser light

on plasma, we derive and evaluate a second-harmonic resonance for perpendicular incidence at four times
the critical density, from hydrodynamics, including unrestricted electric fields.

I. INTRODUCTION

In laser-plasma interactions, numerous parametric excita-
tions occur' and a p-polarized obliquely incident radiation
(on an inhomogemeous plasma along the depth x) causes a
resonance maximum of the E„field in the evanescent wave
field (resonance absorption) derived by a magnetic field
treatment by Denisov, the electric field treatment without
collisions in the plasmas by White and Chen, 4 and with col-
lision in Chapter 12 of Ref. 5 where the quiverdrift of the
electrons was the reason for the absorption. An alternative
absorption process is wave breaking. The earlier micro-
scopic computation basically covers all these details. '

As essentially distinct from this case we derived .a reso-
nance process at perpendicular incidence of the laser radia-
tion. Following a basically new hydrocode for two genuine
electron and ion fluids with unlimited coupling by Poisson's
equation~ we arrived at an undamped oscillation with twice
the laser frequency of the laser-driven electrostatic field,
where a typical resonance factor results in high amplitudes
at densities four times the critical density. In view of the
very high profile steepening measureds or calculated, 9 the
evaluation of the field by Airy functions in the superdense
(evanescent wave) range nevertheless arrives at significant
effects. This type of resonance —contrary to the usual reso-
nance absorption at oblique incidence —appears at perpen-
dicular incidence of the laser pulse.

It should be noted that the longitudinal oscillations of the
electrons in a laser field with the frequency 2' (where ru is
the laser radian frequency), are known as a basic property
of nonlinear laser-plasma interaction. '

Based on the results of the new hydrocode, 7 this paper
considers the marcoscopic result of 2' oscillations in the
plasma produced by gradients of the gas dynamic and elec-
trodynamic (nonlinear force produced) pressure. We are
not considering here the 2' pumping that causes wave-
breaking superthermal electrons, " as this cannot be
described hydrodynamically with equilibrium energy distri-
butions but requires kinetic models or multiparticle simula-
tion.

II. THEORY

We consider the model of fully ionized plasma of two
genuine fluids in which the electron and ion motions are
coupled due to collisions and due to the electrostatic interac-
tions of charge separation. The corresponding momentum
balance equations discussed in detail by Lalousis and Hora
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where use has been made of the Poisson equation

QE = —47re(n, —n, )
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and we have assumed the ionic charge (Z) to be unity.
Now, the nonlinear force f„~ (acting on the electrons) due
to the external laser field is given by4

f„)=—x (Ey'g, + 8,2L) (5)
8m 9x

where E~L and H,~ are the y and z components of the elec-
tric and magnetic fields, respectively, associated with the
(linearly polarized) laser beam propagating perpendicularly
in a one-dimensional inhomogeneous plasma with spatial
density variation in the x direction. In Eq. (5), the addition-
al subscript L signifies that the fields correspond to the laser
beam. In the WKB approximation, Eq. (5) is consistent
with the following equation (see, e.g. , Sec. 8.1 of Ref. 4):
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permit the study of general electrostatic fields, contrary to
the earlier theory with a quasineutral plasma. The equations
of motion are
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~here e is the electronic charge; n„nIare the number den-
sities of the electrons and ions; m„mI are the masses of
electrons and ions; ~„u&are the velocities of electrons and
ions; P„PIare the electron and ion pressures; E is the elec-
tric field due to charge separation; v is the phenomenologi-
cal electron-ion collision frequency; and f„~is the (pondero-
motive) nonlinear force due to the external laser field. We
are considering one-dimensional fluids with a dependence of
n„nI, T„TI,~„andvI on time t and the spatial variable x.
The electric field is then directed along x only and can be
determined from the following equation:
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where

EyL = Ey sin(Ql t ), Qlp =
2 '1/2

4m. n,
me

(7)

where its value is
t 1/2
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where

represents the plasma frequency and we have assumed the
time dependence of the laser field to be of the form of
sin(cut). We should mention that f„&in Eq. (6) represents
the unaveraged nonlinear force. If we substitute Eqs. (1)
and (2) into Eq. (3), use Eq. (6), and carry out some ap-
proximations (see Ref. 6), we would obtain

The last terms in Eqs. (17) and (18) are valid when e is
small compared to unity. The full width at half maximum is
approximately 2e; thus, for e « 1 (which would be usually
the case), the function is very sharply peaked at
Q =—4+~~ .

Next, in order to determine d(E~q+ HL)/dx we assume a
linear variation of the refractive index and neglect collisions
as a small perturbation for this procedure for solving
Maxwell's equations so that
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(10) where N(x) represents the electron density, N, is the criti-

cal density, and we have assumed

N(x) = N, (1+n2x) (2o)
(

P mey= —1+
2 mi

The plane x=0 corresponds to the critical layer. Thus, the
wave equation

The solution of Eq. (8) can be readily obtained and is given
by

d2E 0)'+ n'(x)" E =O
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becomes
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+ G cos(2cut) + H sin(2cut) (12) where

g = (neo/c)2t3x (23)
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where C1 and C2 represent the integration constants and
The solution of Eq. (21) which decays as ( ~ is the Airy
function Ai whose (here applicable) asymptotic forms are as
follows:
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III. EVALUATION OF THE
RESONANCE TERM

(14) E (g) = a Ai(g)
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The last two terms in Eq. (12) are of considerable interest
as they represent the driving of oscillations at twice the laser
frequency. The term proportional to sin(2cut) would
resonantly dominate at cop=2co and its coefficient H can be
written in the form

(E„',+H,',), (IS)

where

(= Till"'= T(~~/c) lxl"' . (27)

At x = —I/n2, N(x) = 0 beyond which (i.e., for
x & —I/n2) we assume the refractive index to take a con-
stant value (equal to unity). Now, at x= —I/n2 we find

where e=y/cu and 0 = (co~/cu)2 and the overbar means
averaging over one laser period. The maximum of the
function

f= (~/cn ) t (—= (o)

and we may set

(28)
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occurs at
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where Eo is the amplitude of the electric field associated
with the incident laser beam. Thus,

(17)
a = Jm(cu/cn2)' E (30)
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and for large positive values of x we have [see Eq. (25) j
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where
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Substituting Eq. (33) into Eq. (12) we get
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where

~3/22 co
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(35) 10-8

P = 0.025
Now, when f(Q) attains its maximum value [=—1/e, see
Eq. (18)], 0 =—4, i.e., A~~ =—4co which occurs when
N =4N, ; the corresponding values of x and q are 3/4n2 and
3, respectively.

IV. RESULTS

--———P-0001

I

2 3

o, = 5.67 x 10 and 1.13x 10 cm (36)

In Fig. 1 we have plotted H as a function of q (=n2x)
for c0/cn2=1. 0 and 5.0. Assuming the frequency of neo-
dymium glass lasers cv =1.7x 10' Hz, these will correspond
to

FIG. 1. Ampii««H lEqs. (14) and (34)1 for the 2' longitudinal
(electrostatic) oscillation in the laser irradiated plasma in a super-
dense linear density profile increasing within about one wavelength
(co/cn2= 1) from the critical density n, (g =1) to 4n, (q =3) as ex-
pected (Refs. 8 and 9), or increasing more moderately, five times
more slowly (co/can2= 5). The resonance at 4n, is higher and with
smaller half-width if the collision frequency v is smaller (e = v/s&).

respectively, which are of the same order as has been mea-
sured7 and calculated for the steepened density profiles at
laser-plasma interaction for laser intensities near 10'
W/cm2. In Fig. 1 for each value of ao/cn' there are two sets
of curves corresponding to

=0.025 and 0.0012' (37)

where n, is the electron density in cm, T, the electron
temperature in electron volts and lnA is the Coulomb loga-
rithm factor which we may assume, to be —3. Further,

1
Te Tth+ ++osc

For q =1.7x 10' Hz the above values of ~ will correspond
to v=1.7x10' s ' and 6.8x10' s '. We may note that
for laser field amplitude EI —=109 V/cm (I—10'6 W/cm2)
in vacuum, the maximum value of the electric field (corre-
sponding to the frequency 2ao) is about 108 V/cm for
~/cn2 =1 and e =10 . For smaller values of e one ob-
tains a higher value of the electric field at resonance. We
may mention here that the electron collision frequency is
approximately given by (see Sec. 2.5 of Ref. 4)

v=—2.72x10-'
3/2

1nA
ng

Tg

where T,h represents the contribution due to thermal effects
and e',"„represents the oscillation energy (in electron volts)
which depends on the intensity of the laser beam. Now
Tth~ 100 eV and for I=10' W/cm, e„,=10"eV. Thus,
for T, =10 eV, n, =4x10 ' cm we get

v =0.2x10" s-'

and therefore the value of ~ for the collisional damping is
the smaller and the resonance should then be even sharper
and higher. This increase of the resonance, however, may
be reduced by microscopic processes, not covered by this
macroscopic treatment, or by a nonlinear feedback where
the usually high profile steepening may be reduced by the
resonance.

From Fig. 1 for e= 10 3 and c0/cn2=1 one sees that the
resonance at ~~ = 2m causes a longitudinal electrostatic oscil-
lation which is 105 times higher than near the critical densi-
ty. The fact that its amplitude for 10' W/cm laser intensi-
ty is 10% of the laser field in the vacuum indicates that a

- reasonable transfer of optical energy into second harmonic
oscillations can be expected. As the amplitude of the field0 increases by Ej, there will be a saturation for 10'7
W/cm, if the profile steepening is conserved.
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