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Dynamics of first-order phase transitions:
Theory of coarsening (Qstwald ripening) for open systems
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Late-stage diffusion-controlled coarsening during the process of phase separation is considered.
We derive a reduced theory in terms of ordinary differential equations for the cluster density, mean
cluster size, width of the cluster size distribution, and supersaturation. Parameters introduced by
the approximations are fixed -such as to yield agreement with the asymptotic Lifshitz-Slyozov-
Wagner theory. The theory improves upon the work of Langer and Schwartz because it includes
subcritical clusters as part of the minority phase and explicitly considers the width of the size distri-
bution which controls the rate of coarsening. The theory is constructed in a way which allows treat-
ing open systems. For a two-cell model with diffusional coupling we numerically solve the full
equation for the size distribution and prove the quality of our theory through the comparison. In
addition, we propose an approximate procedure to include the effect of a finite volume fraction of
the minority phase and the process of coagulation.

I. INTRODUCTION

A complete theory of the dynamics of first-order phase
transitions would have to account for a variety of physical
processes on different time and length scales including nu-
cleation, spinodal decomposition, growth of clusters of the
minority phase in the two-phase region, and late-stage
coarsening processes like Ostwald ripening and coagula-
tion (see Ref. l for a recent review). Up until now
theories generally have to be confined to certain aspects of
the total dynamics extending from an initial quench to the
establishment of full phase separation.

This work is concerned with the late-stage coarsening
process when, driven by their surface-to-volume ratio,
larger clusters of the minority phase grow at the expense
of the smaller ones. This process, called Ostwald ripen-
ing, results in a substantial increase of the average cluster
size and a corresponding decrease of their number density.
Depending on the kinetics of cluster growth of course, the
process may last extremely long times if other effects do
not interfere.

The theory of Ostwald ripening goes back to the
pioneering work of Lifshitz and Slyozov and, indepen-
dently, Wagner. They describe the heterogeneous system
in the two-phase region within the droplet model using a
cluster size distribution which changes due to monomer
condensation and/or evaporation in solution. Their
theory applies to closed systems with conservation of
matter and provided evidence for the existence of a
universal distribution function if appropriately scaled
variables are used and for universal power laws in time for
the physical quantities like cluster density and mean clus-
ter size. Universality here means asymptotic (t~ Oo } in-
dependence of initial conditions. Of course, the universal
distribution function as well as the exponents of the power
laws depend on the kinetics of cluster growth.

Recently, in a paper on the theory of completion time
for near-critical systems Langer and Schwartz presented

an approximate theory in terms of ordinary differential
equations for the cluster density, the average cluster size,
and the monomer concentration. Their approximations
introduce certain parameters which are chosen such that
the asymptotical evolution agrees with the more complete
theory in terms of the full droplet distribution function.
Since Langer and Schwartz need a theory which describes
nucleation and coarsening they choose to- count only over-
critical particles as part of the minority phase. This is
necessary in order to cope with the bimodality of the clus-
ter distribution function at early times after the quench
when nucleation is non-negligible. At late times, however,
the distribution function is essentially unimodal and the
cluster distribution consists of overcritical (growing) parti-
cles and undercritical (dissolving) particles which both
contain comparable volume of the minority phase.

Since our theory is intended only to describe late-stage
coarsening processes when nucleation can be neglected we
need not make the restricting assumption of Langer and
Schwartz. Otherwise our theory is similar in spirit to
theirs. We consider an additional dynamical variable,
namely the width of the cluster distribution which con-
trols the aging rate. Equations of motion are derived for
the limit of a narrow distribution function. The expan-
sion parameter is the relative width squared which is
roughly —,

' asymptotically. Since particles are confined to
have positive size a certain limit of the distribution func-
tion for vanishing size is involved in the theory. It is
parametrized in a physically plausible way as a function
of the dynamical variables considered explicitly. Parame-
ters are chosen such as to render the asymptotics in ac-
cord with the theory of Lifshitz and Slyozov.

Our theory is formulated in a way which allows the
treatment of open systems. Examples are external varia-
tions of the temperature or monomer flux across the
boundary of the system. This is motivated by research on
macroscopic pattern formation during the precipitation of
weakly soluble salts ("Liesegang phenomenon" ). Here a
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pattern develops with a length scale I which is large com-
pared to the mean particle distance n ' . An explana-
tion which has been proposed considers competitive coar-
sening mediated by monomer diffusion over macroscopic
distances. @ ' " A satisfying theory along this line of
thought should consider mesoscopic regions of a length
scale 3 with L, » l »n ' . These mesoscopic regions
undergo "local" coarsening because of Ostwald ripening
but are necessarily open to flux of monomer. Previous
theories, except for Ref. 10, have neglected the influence
of local coarsening completely.

Section II of this paper describes the derivation of our
theory. In order to evaluate the quality of its predictions
we apply it to the idealized model of competitive coarsen-
ing between two homogeneous systems ("cells" ) coupled
by monomer exchange. In this case the numerical solu-
tion of the complete theory in terms of the full cluster dis-
tribution is readily possible and serves as a means for
comparison. The approximate theory proves to be fairly
accurate in spite of the crude approximations involved.
This will be described in Sec. III. Our theory was
developed for a particle growth law valid in the limit of
zero volume fraction y of the minority phase. Recent
work"' has shown that a finite cp produces a correction
proportional to y' to the particle growth law as well as
an additional collision term and nonthermal fluctuations.
In Sec. IV we propose an approximate way to include the
renormalization of the growth law. In addition, we show
how coagulation may be accounted for within our theory
and furthermore discuss the stability of the symmetric
state of the two-cell model used in Sec. III.

II. THEORY

We consider the time evolution of an ensemble of parti-
cles of the minority phase distributed in the bulk of the
majority phase. The latter is described as a solution of
monomers which are the constituents of the minority
phase. Within the traditional droplet model the system is
completely characterized by the particle size distribution
function f ( r, t), where r is the radius of an individual par-
ticle of the ensemble, and the average monomer concen-
tration c(t) in solution. The distribution function f(r, t)
is normalized to the total particle density n (t)

dv f(v, t). Instead of the monomer concentration
0

one conveniently uses the supersaturation ratio
ov(t) = [c(t)—c,z( ca )]/c,z(oo ) where the concentration
c,~(oo) which is in equilibrium with an infinitely large
particle of the minority phase has been introduced.

Since we are interested in the late-stage evolution of the
system when o.(t) is small, the creation of new particles
because of nucleation events is negligible. In addition we
shall neglect coagulation and the reverse process of split-
ting of particles into smaller ones for the moment. Then
the particle size distribution will change due to monomer
condensation and/or evaporation only. If we denote the
growth rate of a particle of radius r in the presence of su-
persaturation o. by v = V(r, cr) the distribution function
f ( r, t) fulfills the continuity equation

f(r, t)+ V(r, a)f (r, t)=0—. (1)

Conservation of matter implies

Duc, ~( oo )
V(r, o)= (oa/r. )—. (3)

D and a are the monomer diffusion coefficient and a
capillarity length, respectively. The growth law (3) results
from the stationary solution for the diffusion field around
a single spherical particle of radius r subject to the boun-
dary conditions c,~(r) =c,„(ao )(1+ a/r ) at the particle
surface and c at infinite distance from the particle. The
perturbation of the homogeneous concentration c turns
out to be long ranged with a dependence on distance like a
Coulomb potential. Nevertheless, the growth law (3)
neglects the interaction of the diffusion fields of neighbor-
ing particles in the ensemble. This is justified in the limit
of vanishing volume fraction of the minority phase. Re-
cent work has shown that corrections to (3) and the con-
tinuity equation (1) are proportional to the square root of
the volume fraction. "' We neglect these corrections for
the bulk of this paper but an approximate way to incorpo-
rate them into our theory is proposed in the discussion
(Sec. IV).

In what follows we first perform a reformulation of the
given set of equations without any further approxima-
tions. In order to improve the transparency of the presen-
tation we do this in two steps. First, it is convenient to
measure the particle radius in units .of the critical radius
r, (t) =a/o(t) which is in equilibrium with a solution of
supersaturation o (t). In addition, we characterize the par-
ticles by their volume instead of their radius and intro-
duce the variable

z = [o(t)r/a] (4)

The corresponding distribution function F (z, t) which is
still normalized to the particle density fulfills

F(z, t)+3o'(t) A(z'~' —1)+, z F(z, t)=0.
Bt Qz a (t)

o(t)+ f dr r f (r, t) =q(t) .
3uc,q( oo )

The volume per monomer in the minority phase and the
total amount of matter in terms of supersaturation are
denoted by u and q(t), respectively. For a closed system
the latter may be expressed as q =[c;„—c,~( ao )]/c,~( ao )
where c;„ is the initial concentration of monomer immedi-
ately after the quench but before nucleation has started.
In general, q may be time dependent if exchange of matter
with the environment, e.g. , by diffusion of monomer
across the boundaries of the system, is possible or if
c,~( &x&) depends on time, e.g. , via its temperature depen-
dence.

In addition to the time dependence of q, we have to
specify the particle growth law V(r, o). We consider the
limit of sufficiently fast interface kinetics such that the
growth is limited by the diffusion of monomer towards
the particles. The traditional growth law for this case
is2, 13
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Conservation of matter is expressed as

o(t)+[nocr (t)] ' f dzzF(z, t)=q(t) .

We have introduced the rate constant

A, =Due, q( oo )/a
and a particle density

3uc,q( co )
no= 4'

which for typical values of the material constants are
about 10 s ' and 10' cm, respectively. ' Note that
due to the time dependence of the critical radius an addi-
tional drift term proportional to the time derivative of the
supersaturation appears in Eq. (5).

As the second step in our reformulation we introduce a
distribution function P(z, t) which is normalized to unity.
This is motivated by the existence of the asymptotic re-
gime for closed systems characterized by

o'(t) = —3Aq.cr (t)
(z'"—1)

&z&
(16)

3q

and, again using (16),

o'(t) = —AP(0, oo )o"(t) .

(19)

From Eq. (12) one readily calculates the time derivative of
the first moment of P(z, t),

&.& =» '(t)[&.'"—»+q(O, t)& &]+3
cr(t)

which by means of (16) becomes in the same limit
o(t) &&q

(z) = —9Aqcr'(t)(z'~' —1)+3Acr'(t)P(O, t)(z) . (18)

If an asymptotic distribution P(z, ~ ) with a certain first
moment (z) exists this implies

F(z, t)~n(t)P(z, oo), as taboo . (9) The differential equation can be integrated to yield

P(z, t) =F(z, t) f dz F(z, t)

and obtain the following set of equations:

(10)

The asymptotic time dependence of the particle density
n(t) as well as the shape of the normalized distribution
P(z, cc ) are the result of the Lifshitz-Slyozov-Wagner
theory. ' Recently, asymptotic corrections to (9) have
been calculated by analytic means. ' In a numerical study
the evolution of F(z, t) and o(t) has been investigated for
various initial conditions and the existence of an asymp-
totic regime has been demonstrated explicitly. '

We define the normalized distribution function

o( t) = [3A,Q(0, ~ )t] (21)

which agrees with the asymptotic result of the Lifshitz-
Slyozov-Wagner theory if we choose P(0, oo)= —„.The
time dependence of the particle density n (t) follows from
(21) and the conservation law (13) but needs additional
knowledge of (z )„.

%'e continue our general discussion and derive the time
derivative of the expectation value (zr ) for a positive y
which needs not necessarily be integer. The result is

(zr) =3ykcr (t)(zr '(z'i' 1))—
ri(t) = —3icr'(t)n(t)P(O, t), +3y (zr)+3Ao'(t)P(O, t)(zr) .

cr'(t)

o(t)
(22)

P(z, t)+3Ao'(t) k(z'~' —1)+, z P(z, t)
Bt c)z o ~(t)

=3Ao'(t)P(0, t)P(z, t),
o.(t)+, (z) =q(t) .n (t)

n ocr'(t)

(12)

(13)

Equation (13) contains the expectation value (z ) which is
defined according to the prescription

&. . . &=f d (. )P( t). (14)

For further use we note the differential form of (13),

ci(t) =q(t) 3A. (z' ——1) .
no

(15)

This completes our formal manipulations which
transformed the original set of equations (1)—(3) into Eqs.
(11)—(13). Before proceeding towards an approximate re-
duced theory we shall demonstrate that the transformed
set of equations without any involved analysis predicts the
correct asymptotic behavior for closed systems if only one
constant is fixed appropriately.

For a closed system at constant temperature we have
q=O and asymptotically o(t) &~q. Using Eqs. (13) and
(15) this implies

i, =6m~'(t) [(z'")—(z) (z'~3) ]+6o(t).
+3k,cr'(t)P(O, t)(IC, —(z)') . (23)

The derivation involves a partial integration which yields
vanishing boundary terms at z =0 only if y is positive.
At first sight it might seem that Eq. (22) constitutes a
hierarchy of coupled equations since a moment of order y
is coupled to moments of order y ——', and y —1. Howev-
er, starting with a certain y there is no way to escape the
appearance of moments with negative exponents through
the application of (22) which in turn ceases to be applic-
able. The deeper reason for this is the nonanalytic
behavior of the drift term in (12) for z~O which stems
from the singularity of V(r, cr), Eq. (3), for r ~0.

The difficulties with the hierarchy of moments can be
avoided if one uses cumulants and expands the expecta-
tion values of noninteger powers of z in terms of the cu-
mulants. In this paper we only consider the second cumu-
lant K2 ——(z ) —(z) and assume cumulants of order 3
and higher to be negligible. It is straightforward to im-
prove on this. However, even this crude approximation
turns out to yield satisfying results in comparison with
numerical solutions of the full partial differential equa-
tions (see Sec. III). From (22) one derives
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Expectation values (zr) are approximated in the follow-
ing way:

P(0, co)=—„,cf. Eq. (21) and the discussion thereafter.
One obtains

(*"&=(*)"(&+
6z

&z)
p0 ———,', (z ) „x„~ . (31)

=&z)' 1+ ),(), 1) K2

z ' (24)

x =A2/(z) (25)

Note that x plays the role of an expansion parameter in
Eq (24). The equations of motion for (z), x, and o be-
come approximately

(z) =3k''(t) 1 ——(z)'~' —1+/(O, r)(z)
9

(26)

x=Ao (r) 2x(z) ——2+3(z)
3

—3(1+x)p(0,r) (27)

n(r)
CT g —3A,

n0
(z)'"—1

9
(28)

where 5z denotes z —(z). Obviously one has (6z) =0
and (5z ) =%2. It is convenient to use a normalized
second cumulant

The asymptotic values (z) and x are given by the
(physical) stationary point of Eqs. (26) and (27) in the lim-
it o(t) &&q. Their magnitudes are (z ) „=1.112 and
x =0.313. The agreement with the corresponding quan-
tities for the asymptotic distribution of the Lifshitz-
Slyozov-Wagner theory is excellent for (z ) ( (z )„= 1.130) and reasonable for x (x"„=0.261). An
additional restriction on p is provided by the demand that
the asymptotic stationary point of Eqs. (26) and (27) be
stable. This yields an inequality p ~p;„with p;„some-
what larger than unity. Details of these considerations
may be found in Appendix B.

I.et us briefly summarize the main result of this section.
We have derived an approximate theory of coarsening in
terms of coupled ordinary differential equations for the
particle density n (t), the average particle size (z) in
terms of the volume of the critical particle, the relative
width x of the distribution function, and the supersatura-
tion o.(t) The co. rresponding equations are (11), (26), (27),
and (28), respectively, supplemented by Eq. (30) for P(O, t).
The theory contains one parameter, say the exponent p in
(30). Because of the presence of the term q(t) in Eq. (28)
it is in principle applicable to open systems. In order to
test the quality of the theory we shall compare its predic-
tions with numerical solutions of the full partial differen-
tial equation.

p(0, r) = &)' (29)

where p(x) is an increasing function of x. This form
agrees with our intuitive expectation about the dependence
of P(O, t) on the average value (z) and the width of the
distribution which we denote by M =IC2 ——(x (z ) )

'

In terms of (z ) and M Eq. (29) reads

y(o, t)=(z) 'P[(WI(z)) j . (29')

P(O, t) decreases if (z ) increases for fixed M but increases
if M increases with (z) fixed, both in agreement with our
expectation. In addition we assume a power-law depen-
dence of P(x) on x, i.e.,

y(O, r)=p, x&y(z) . (30)

It turns out that P0 and the exponent p in (30) are not
independent parameters if one prescribes the asymptotic
time dependence of the supersaturation o(t) in accord.
with the Lifshitz-Slyozov-Wagner theory. This imposes

The equation for n (t), Eq. (11), remains unaffected by
these approximations.

In order to have a closed system of ordinary differentia1
equations we have to specify the boundary value P(O, t)
suitably. We assume that it is only determined by the ac-
tual values of (z) and x. In Appendix A we give an ar-
gument that, in the limit of small x, a reasonable func-
tional form of P(O, t) should read

III. COMPARISON %ITH EXACT SOLUTIONS

In Sec. II an approximate theory was derived for coar-
sening (Ostwald ripening) in the limit of vanishing volume
fraction of the minority phase and for diffusion-
controlled particle growth. Our starting point was a for-
mulation in terms of the particle size distribution f(r, t)
as given by Eqs. (1)—(3). Despite the fact that this
description necessarily involves certain approximations it
will be termed the "exact" theory against which our ap-
proximate theory has to be compared.

In a recent publication' we have presented numerical
solutions of the exact theory for closed systems. The
same method can be applied to open systems where the to-
tal amount of matter q(t), cf. Eq. (2) or (13), is not con-
stant. Instead of prescribing a certain time dependence of
q(t), however, we found it more interesting to study the
following idealized situation depicted schematically in
Fig. 1. Two spatially homogeneous systems described by
size distributions f;(r, r) and supersaturations o;(r) with
i = 1,2 are open with respect to monomer exchange across
their mutual boundary. The idealization is that diffusion-
al relaxation within the cells is quick enough so that the
concentrations can be assumed spatially constant. The
rate of monomer exchange is modeled proportional to the
concentration difference o&(t) —crz(t). Since the total sys-
tem is assumed to be closed we have
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fi (r, t),

n)(t)
xi (t)

~)(t) '
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I
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f2(~. t), ~2(t)
cI
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I

1.75

1.50

d=o
(a} C(0)=0.25
(b) o(0}=0.50

cell {a) cell (b)

FIG. 1. Schematic representation of the two-cell model with
diffusional coupling (coupling constant d). Within the boxes the
level of description is indicated for the exact theory (upper part)
and the approximate theory (lower part).

q] (t) =A.d [cr2(t) —cr/(t)],

q2(t) =Ad [cr](t)—cry(t)] .
(32)

The rate constant A, is given by (7). The parameter d mea-
sures the dimensionless strength of diffusional interaction.

In order to perform the numerical solution of the exact
theory we have to specify initial conditions. For the nor-
malized distributions P; (z, t) we use

i.00 I

log)0{ t/T)

FIG. 2. Mean particle size for two uncoupled systems (labels
a and b} with different initial conditions (see inset and text) as a
function of the reduced time ~=1/T. Solid lines, approximate
theory; dashed lines, exact theory.

P;(z, O) = Yi(z) I dz Y;(z)

with

Y ( ) 1/3+ 2/3
2

(33)

(34)

This functional form has the property that the singularity
of the derivative of the drift term in Eq. (12) for z~O is
compensated for by an appropriate singularity of the
derivative of P(z, O). The parameters z~ and M" control
the average size (z ); and the width x; of the initial distri-
bution. For the calculations to be reported we chose
z"=M"=1 for both subsystems. As the initial super-
saturations we chose cr&(0)=0.25 and cr2(0)=0. 50. The
initial particle densities were fixed such that the total
amount of matter is unity in both subsystems initially.
This implies n;(0)=nocr;(0)[1 rc;(0)]—/(z);(t =0) where
(z);(t =0) is the average calculated from P;(z, O), Eq.
(33).

The numerical solution of the approximate theory de-
rived in Sec. II is straightforward since only ordinary dif-
ferential equations are involved. The initial values are
cr;(0) and n;(0) as given above and the mean value
(z);(t=0) and the relative width x;(0) as calculated
from P;(z, O). The numerical values are
(z);(t =0)=1.678 and x;(0)=0.249. The remaining pa-
rameter, namely the exponent p in Eq. (30), was chosen
p =3 for the results to be shown in the figures. The
dependence on the precise value of p is weak. Figures
2—12 are selected graphs depicting solutions of the ap-
proximate theory (full curves) in comparison with exact
results (broken lines). The two subsystems are labeled a
(i =1) and b (i =2).

Let us first discuss the time evolution for closed sys-
tems. This is realized if the diffusional coupling constant
d is zero. The subsystems are closed systems with dif-
ferent initial conditions. Figures 2 and 3 show the mean
particle size (z ) and the relative width x = ((z

0.35

N

N
0.30

N

0.25—g

0.20'

d=0
{Q) G(0) =0.25
{b) G(0) =0.50

I I I

log g{t/T)

FICx. 3. Relative width of the distribution function as a func-
tion of time. Same conditions as Fig. 2.

—(z ) ) ) /(z ) as a function of the dimensionless time
~=t/T where T =1/A, is a typical time scale of the sys-
tem. One realizes an initial time regime up to ~=10 dur-
ing which the average (z) relaxes towards its asymptotic
value and the width x approaches a magnitude which is
the asymptotic value for the approximate theory (solid
lines) but an intermediate value for the exact theory. The
reorganization of the shape of the distribution function
which occurs for r & 10 is not contained in our theory
and shows its shortcomings. Probably the agreement will
improve if higher cumulants are included. We note in
passing that the evolution of n(t) and o(t) is virtually
identical for both theories in a double-logarithmic plot.

Next we consider coupled systems with a small cou-
pling constant d =0.01. Figures 4, 5, 6 and 7 show the
evolution of n;(t), (z);(t), x;(t), and q;(t), respectively.
Physically, subsystem b (i =2) has a higher initial mono-
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2

I I

d =0.01
0.36 —(g) O{0)=025

(b) o(0) =0.50

CD

C7l
O

0.28

~s&

b

d=
(n)
(b

8 2
(og)o(t/T)

FIG. 4. Particle density for coupled cells (d =0.01) with dif-

ferent initial conditions (see inset) as a function of time, Solid
lines, approximate theory; dashed lines, exact theory.

mer concentration. Therefore, qz is negative and subsys-
tem a gains matter at the expense of subsystem b, com-
pare Fig. 7. In addition, -the term proportional to o' in the
equation of motion of (z), Eq. (26), implies that (z)&
exceeds (z)z (Fig. 5). This in turn has the consequence
that xz will be bigger than x& (Fig. g) which is explained
by a careful inspection of Eq. (27). Both the relative mag-
nitudes of (z); and x; tend towards an increased aging
rate p(0, t), Eqs. (29) and (30),. for subsystem b (i =2) in

comparison with subsystem a (i =1). This, finally, ex-

plains the observation (Fig. 4) that the particle density

nz(t) decreases more rapidly than n &(t), compare Eq. (11).
The positive-feedback loop which results in the accretion
of matter in one subsystem at the expense of the other one
essentially stems from the back-reaction of o. on itself
through the average particle size (z). However, we men-

tion that the symmetric state of an equal distribution of

0.20 I

~
t g„(t/T)

FIG. 6. Relative width of the distribution function as a func-

tion of time. Same conditions as Fig. 4.

2.0

matter between the subsystems is not unconditionally un-
stable against small fluctuations which break the symme-
try. Instead, the coupling constant d has to exceed a cer-
tain (time-dependent) threshold. This will be discussed in
more detail in Sec. IV.

Finally, we consider a case of even larger diffusional
coupling strength, namely d =0.1. Figures 8—12 show
the results of both theories. We include a graph of the su-
persaturations cr;(t) (Fig. 9) showing the degree of agree-
ment which is typical for -this observable in all the simula-
tions we performed. Dissolution of the particles in sub-
system b is rather quick and virtually complete within less
than z= 10 . The simulation of the exact theory was
stopped when qz(t) (curve b in Fig. 12) became indistin-
guishable from oz(t) (curve labeled b').

Summarizing, the numerical results of this section have
demonstrated that our theory in terms of a few ordinary
differential equations represents a fairly accurate approxi-

1.5

0.5

0.5

d =0.0)
(a) G(0) =0.25
(b) o(0)=0.50

I

2
I I

I 6
(og &0(t/T)

FIG. 5. Mean particle size as a function of time. Same con-
ditions as Fig. 4.

I I

(og„(t/T)

FIG. 7. Total amount of matter in each cell as a function of
time. Same conditions as Fig. 4; Curve b' denotes the super-
saturation in subsystem b.
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CJ)
O

-4—

3.0

2.0

cI= 0.1

{a)G(0) =0.25
{b)a(0) =0,50

1.0

!
I

1

b I

1

1

I

I

I
h

d =0.1

{a}a{0)=0.25
(b} G(0}=0.50

I I

4
{og)o{t/T)

6

0 I I

2 4 {og, (t/T} 6

FIG. 10. Mean particle size as a function of time. Same con-

ditions as Fig. 8.

FIG. 8. Particle density for coupled cells (d =0.1) with dif-

ferent initial conditions (see inset) as a function of time. Solid

lines, approximate theory; dashed lines, exact theory.

mation to the more complete theory for the full size dis-
tribution function. The comparison has been performed
for closed as well as for coupled open systems with dif-
ferent coupling strengths and extended over 7 orders of
magnitude on the reduced time scale ~=A, t. In addition,
our simulations contain interesting physics if one accepts
our idealized model as a prototype for competitive coar-
sening and growth extending over macroscopic distances.

IV. DISCUSSION

This final section provides suggestions on how our
theory may be generalized to go beyond the limit of van-
ishing volume fraction and how to include the
phenomenon of coagulation in an approximate way. Be-

(z) =3Ao'[(z' ' —1)+{{(O,t)(z)]+3—(z) . (35}

If we insert Eq. (15}and use (13) in order to express n in

terms of o, q, and (z ) we find

(z) = —9Aqo 1 — (z'/ —1)— P(O, t)(z)
3g 3g

3A,Q 0

fore coming to these points, however, let us consider the
effect of competitive coarsening between macroscopic re-

gions (different cells in the model of Sec. III) from a dif-
ferent perspective.

From Eq. (12) which is still exact on the basis of our
theoretical starting point, namely Eqs. (1)—(3), one derives
the following expression for the time derivative of the
mean size (z ):

0.7
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N
0.5—

t

N

d =0.1

(a) o(0) =0.25
(b) o(0) =0.50
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o(0) = 0.50

I I

2
I

tag )o(t/T)

I I

logio(t/T)
6

FIG. 9. Supersaturation as a function of time. Same condi-

tions as Fig. 8.
FIG. 11. Relative width of the distribution function as a

function of time. Same conditions as -Fig. 8.
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systems with a linear .stability analysis of the two-cell
model. Consider deviations 6o. and 6q from the sym-
metric state o; =o and q; =q (i =1,2). In linear approxi-
mation we find from Eqs. (32) and (39)

6o ~ A,4 —
~~ A,o 60

~ 2 o 16 —3

6q= —A,d 6o .
(40)

The symmetric parts of o of the supersaturation and q of
the total amount of matter fulfill Eq. (20) and q=O,
respectively. Equation (40) implies stable behavior if

0.5 8&8~= 9qo (41)

0 I

4
ogIO (t/T)

6

FICx. 12. Total amounts of matter in each cell as a function
of time. Same conditions as Fig. 8. Curve b' denotes the super-
saturation in subsystem b.

For closed systems with q =0 and in the limit o.=q this
reduces to (18). An inspection of (36) indicates that the
dynamics of (z) will generally be determined by a fixed
point which is time dependent but attractive if o. «q
holds and q is not too large. The fixed point is deter-
mined by

The coupling between 6o. and 6q is trivial in the sense that
the relaxation matrix corresponding to (40) has one van-
ishing eigenvalue. If one includes corrections in o/q this
eigenvalue becomes negative for sufficiently small d
which fulfill (41). We emphasize our conclusion that the
coupling strength d has to exceed a (time-dependent) criti-
cal value d, (t) in order to yield unstable evolution within
a linear analysis. This is important for the discussion of
instability in continuously extended macroscopic systems.
There, A,d has to be replaced by Dk where D is the
monomer diffusion constant and k the wave number of
the perturbations. This will be discussed in a separate
publication. '

Our second remark concerns an approximate extension
of our theory beyond the limit of vanishing volume frac-
tion. We follow Marqusee and Ross" who derive the re-
normalized growth law

3q
p(O, r)+

3kqo.
Duc, ~( oo )

V(r, o ) = (o. a/v)(1+ r/4mn—(r )).
r

(42)

(37)

We use this equation in order to adiabatically eliminate
the expectation values of powers of z from the differential
equation for the supersaturation o. Also, using Eq. (13)
again we obtain

1 — o = — q —AP(O, t)o. 1——4o. . o. 4 0

3q 3q
(38)

The approximate equality stems solely from the adiabatic
elimination. Keeping only the lowest-order terms in cr/q
and approximating P(O, t) by its asymptotic value

P(0, oo ) =—„ for closed systems we finally have

oo= — q — A,a
3q 27

(39)

This is of course equivalent to Eq. (20) which holds for
closed systems. For open systems we have found the im-
portant fact that an increase of the total amount of matter
(q &0) results in an additional decrease of the super-
saturation. This is true even if the matter is supplied to
the system in the form of monomer flux across the boun-
dary and is the reason for the observed unstable evolution
of the model of Sec. III in response to unsymmetrical per-
turbations.

We conclude our remarks on competition between open

which has to replace Eq. (3) in our paper. We propose ap-
proximations

r(4nn(r))' =(r)(4rrn(r))' =(4mn(r ))'~ (43)

to the correction term. The first approximation amounts
to averaging with the distribution function f(r, t) and the
second one to the replacement (r) =(r ). Then our
theory can be reformulated to contain effects of finite
volume fraction by simply replacing the rate constant k
by the following function of o. and q:

A~A(1+ @v'q —o ), (44)

= (1—0.577+y )( —,
'

Ar ) (45)

which has to be compared to the correction
1 —0.815(y )'~ obtained by Marqusee and Ross." They
performed a more accurate analysis and took into account

where y= [3Uc,~( oo )]' is an additional material constant
typically of the order of 10 . ' We note that
y(q o. )'~ =(3—P)'~ where p=(4n/3)n (r ) is th. e
volume fraction of the minority phase. For the asymptot-
ic behavior of the supersaturation our extended theory
predicts

o( t) = [—,At(1+ +3/„)]'~'
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the change of the asymptotic distribution function
P(z, co), an effect which is excluded by our approxima-
tions (43). Despite the 30% error in the numerical prefac-
tor, we consider the result to be satisfying because it
predicts the correct trend. We finally note that the result
of the stability analysis for the two-cell model changes
qualitatively if the correction (44) is included. The q
dependence of the renormalized A, implies a coupling be-
tween 50. and 5q which forces the zero eigenvalue to be-
come positive even if d is very small. This is important
for the dynamics of long-wavelength perturbations in ex-
tended systems. '

We finally propose an approximate way to include
coagulation of droplets of the minority phase. A particu-
larly simple model of coagulation is provided by the as-

sumption that the rate of coagulation is independent of
the sizes of the two particles which collide and form a
new and bigger particle. If we denote the coagulation rate
by q we obtain the following contributions to our equa-
tions of motion:

APPENDIX A

P(z, r)=P (Al)

P(y) is an essentially time-independent scaling function
defined for —ao &y & oo. It is normalized and has zero
mean value and a width of unity. It is a unimodal distri-
bution but not necessarily Gaussian. The time depen-
dence of P(z, t) enters through the parameters z (t) and
M(t). In the limit M/z~ && 1 one easily shows &z & =z
and x =(M/z ), and Eq. (Al) becomes

(A2)

This appendix gives an argument to support the ansatz
(29) for P(0, t) in the limit of a small relative width x of
the distribution function P(z, t). Assume that P(z, t) be
given by

2n
~
coag=

2

&z& ~„,g ———"n&z&,coag

(46)

(47)

Therefore the value at z =0 is

P(0, t)=P( —z /M)/M

=&z& 'P( —I/Vx )/Vx (A3)

x
~ „,s —— n(l —x) .coag (48)

We identify P(x)=P( —1/~x)/Vx. Since yP( —y) has
to be a decreasing function of y for y »1 we finally ar-
rived at Eq. (29) with the desired property of ft(x).

The influence of coagulation obviously depends on the
magnitude of g. For "fast coagulation" where the rate of
coagulation is limited by the mobility of the particles due
to Brownian motion in an aqueous solution one has
q=10 " cm s '. It turns out that in this case the con-
tribution of coagulation to coarsening is comparable to
that originating from diffusion-controlled Ostwald ripen-

ing alone. However, the asymptotic time dependence in-
duced by Eq. (46), for instance, is the same as before,
namely n(t) oct '. If particle growth is limited by slow
interface kinetics one may have coagulation dominating at
early times and driving the average particle size & r & to-
wards values large compared to the size of the critical
particle r„ i.e., &z »&1. At later times coagulation slows
down and the approximate equilibrium between particle
sizes and supersaturation is restored and Ostwald ripening
dominates.

We believe that the approximate theory of aging
presented in this paper is sufficiently flexible to include
additional effects operative on the time domain of coar-
sening during a first-order phase transition. We have in-
dicated this for the effects of finite volume fraction and
coagulation. The theory can be reformulated for alterna-
tive laws for particle growth. The corresponding equa-
tions for first-order interface kinetics as well as results of
numerical simulations for macroscopic inhomogeneous
systems subject to these kinetics have been reported. ' An
interesting application of the theory may also be the study
of the effect of externally imposed temporal variations of
the physical parameters. Variations of the temperature
have been shown experimentally to increase the effective
aging rate.

APPENDIX 8

(1—x /9)&z&' —1=0 . (Bl)

From (27) and (Bl) using P(0, oo ) =—„one obtains

2x &z &
——,

' (1+x ) =0 .

Elimination of &z & yields

x —18x +63x —18=0 (B3)

which gives three real solutions for x . Only
x =0.313, however, is acceptable physically because the
other two solutions either yield a negative &z & or corre-
spond to an unstable stationary point (see below). The
physical solution for the average size follows from (Bl),
&z & =1.112.

Next we perform the linear stability analysis around the
asymptotic stationary point just determined. The ele-
ments of the relaxation matrix A are

(B4)

B&z&
12=

Bx (B5)

We consider the asymptotic [taboo or o(t) &&q for
closed systems] properties of the stationary point with
respect to the variables &z & and x. I.et us first determine
its position in phase space, i.e., &z & and x „.Because of
(19) and (24) we have
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,Bx
21 g( )

A,
3 .2x„—1 — "

(z ) '„i3—3

+ -,'(1+x„)(z)„

Without any calculation one realizes that the trace of A is
negative since

~
A»

~
&&Azz holds because of o. &&q. This

implies that both the eigenvalues of A are negative if and
only if its determinant is positive. After some tedious but
straightforward algebra one obtains

Bx Ao

( )
.2 3—2 1 — (z)' detA= A—q,cr (z) [4.957—1 02.5p(0 31.3)—

&] (B8)

4 P'(x „)I+(1~x )

(B7)

We have used the exponential ansatz (30) and the numeri-
cal values of (z) and x given above. It is easy to veri-
fy that detA is positive if p &p;„=1.2. This is just the
condition for the stationary point to be stable.
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