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Non-Markovian far-infrared spectra of a diatomic molecule in rare-gas liquids
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The far-infrared spectra of diatomic polar molecules, immersed in a rare-gas liquid, are calculated
using two non-Markovian formalisms: the total-time-ordering-cumulant (TTOC) and the partial-
time-ordering-cumulant (PTOC) formalisms. Both TTOC and PTOC spectra coincide in the Mar-
kovian limit. The interaction between the diatomic molecule and the liquid is described by means
of a directing intermolecular field with known statistical properties. In the secular approximation
both TTOC and PTOC spectra contain a sum of resonances which become Lorentzian in the Mar-
kovian limit. The interference effect among resonances is taken into account using iterative
methods in which the secular profile is the first term in the iterative process. We apply the theory to
calculate the far-infrared spectra (0—200 cm ') of a HCl molecule in Ar, Kr, and Xe liquids. There
is good agreement between experimental and theoretical absorption spectra.

I. INTRODUCTION

In a recent paper' two of us and coauthors studied two
different master equations for the relaxation to the equi-
librium of a multilevel quantum system S that is weakly
coupled to a thermal bath 8. Both equations are obtained
without invoking the Markovian hypothesis using two dif-
ferent temporal ordering prescriptions for Kubo's cumu-
lant expansion: the total-time-ordering-cumulant
(TTOC) and the partial-time-ordering-cumulant (PTOC)
formalisms. In the Markovian limit, i.e., when the bath
correlation time is much smaller than the relaxation time,
the TTOC and the PTOC equations coincide.

In another paper we considered that the system S has a
certain dipole moment and we related, in both TTOC and
PTOC formalisms, the corresponding absorption spectra
with the relaxation equations of S in B.

The purpose of the present paper is to use the non-
Markovian TTOC and PTOC formalisms to calculate the
far-infrared spectrum of a polar diatomic molecule im-
mersed in a rare-gas liquid. There are many experimen-
tal and theoretical' ' works devoted to the study of
the far-infrared spectra of diatomic molecules dissolved in
a nonpolar liquid solvent. Bonamy and Hoang' have
noted that these spectra can be built from a superposition
of Lorentzian resonances modified by essentially two
correcting factors: a finite correlation time of the interac-
tion and a nonadditivity effect of the resonances. There-
fore, the study of these kinds of spectra gives us a very
striking example of the application of these two non-
Markovian formalisms.

In Sec. II we shall present the model for the total sys-
tem. The bath correlation functions are proposed follow-
ing a model developed by Czalatry et al. ' ' and also
used by Bonamy and Hoang. ' ' In this model the in-
teraction between the impurity and the solvent molecules
is described assuming that the diatomic molecule is sub-

mitted to a time-independent average directing inter-
molecular field (DIF). In Sec. III we shall derive the
Markovian, TTOC, and PTOC absorption spectra in the
secular approximation, i.e., when the off-diagonal matrix
elements (coherences) of the reduced density operator of
the system S evolve independently among themselves, and
the corresponding corrected profiles when this approxima-
tion is not reasonable. Section IV contains a numerical
discussion of the absorption spectra of a HC1 molecule
immersed in Ar, Kr, and Xe liquids. These results are
also compared with the experimental spectra. Some con-
clusions are summarized in Sec. V.

II. THE MODEL

We deal with a very diluted solution of diatomic polar
molecules immersed in a rare-gas liquid solvent. In order
to explain its far-infrared spectrum, this system can be
adequately represented by a single diatomic molecule sur-
rounded by a huge number of solvent molecules.

The far-infrared spectrum of such a diatomic molecule
does not involve the vibrational motion, since it remains

'in its vibrational ground state. Therefore, the system S is
only constituted by the rotational degrees of freedom of a
diatomic molecule. All the translational degrees of free-
dom form the thermal bath B in which S is relaxed.

The total Hamiltonian can be written as

H =Hg+Hg+H',

where H& is the rotational Hamiltonian of the diatomic
molecule, Hz is the bath Hamiltonian, and H' is the S-8
interaction Hamiltonian.

The system S is described by a quantum rigid rotor
m,.

model. ' If the spherical harmonic YJ
' (0), where

0—= (8,$) denotes the orientation of the diatomic molecule
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in an adequate reference system, is represented by the
ket

I
i ) =

I j;m;), we have

Hslj&=E, Ii

with

(2.2a)
=Trtj [W'(t)e W'p~ ],

W'(t) =
(2.6a)

(2.6b)

EJ Bh——cj; (j; +1), (2.2b)

where B is the rotational constant of the diatomic mole-
cule.

The TTOC, PTOC, and Markovian reduced equations
of motion for cr(t) are given as follows. ' '

its reduced density operator:

WsX:fi '[—Hs, X], WtjX =A' '[He, X],

W'X=fi '[H', X] .
(2.7)

where ( ) means the bath average and Ws, W~, and W'
are the Liouvillians corresponding to the Hamiltonians
H~, Hz, and H', respectively, defined by

cr( t) =Tr~ [p(t)], (2.3)
Equation (2.5) has been obtained with the assumption

( W') =Trz(W'p~ )=0, (2.8)

where p(t) is the density operator of the total system SeB
and Trjj refers to the trace over the degrees of freedom of
the bath. Neglecting initial statistical correlations be-
tween the system S and the bath, we can write

which can be always assumed by redefining Hz and H' in
a suitable way. [In the present model, due to Eq. (2.25),
such redefinition will not be necessary. ]

In the free-rotational Hamiltonian eigenvectors basis set

I I

i ) =—
I j;m; ) J, Eq. (2.5) takes the form:

p(0) =o(0)ptj, (2.4)

where o(0) is the density operator of S at t=0 and pz is
the equilibrium density operator of the bath.

The TTOC, PTOC, and Markovian reduced equations
of motion for cr(t) are given as follows. ' '

(i) TTOC master equation:

0fj ( t ) = jr'fj jr—fj( t )

dr Wfj f''(t r)of; (r)—,
f', i'

where, taking into account Eq. (2.2b),

cofj A'(EJ ——Ef)—,

(2.9)

o(t) = i Wscr(t) —— dr W(t r)o(r),—
0

with

(2.5) =2rrBc [jfj(f+1)—j;(j;+1)]

and, from Eq. (2.6),'

(2.10)

\

Wf, f, ,(t)=g $,,' g e
'-" "' (Hf'f-(t)Hf'-f )+5ff g e '(H; H;(t))

f"

—e
' " (H j(t)Hjf ) —e

'"" (H;Hf'f'(t)) (2.11)

Henceforth, a sum over an index i denotes a double sum
over the quantum numbers j; and m;:

where, from Eq. (2.14), one gets
t l Syr ~ i7

Kfj f' (t)= I dr 'e f '
Wf f''(r)' (2.16)

J =0 m. = —j.l l l

(2.12) (iii) Markovian master equation: In the Markovian lim-
it both Eqs. (2.5) and (2.13) have the same form

(ii) PTOC master equation:

o'( t) = i Yso(t ) K( t)o—(t), -— . (2.13)

jr(t) = i Wso(t—) Ro (.t),— (2.17)

Gf (t)= i (of'of ' ( t) —$'Kf—f' (t)of' '(t)'''
f', i'

(2.15)

where

K(t)= J dr W(r)e

In the representation of the basis set { Ii ) I, Fq. (2.13)
leads to: ofj(t) jcdjof j(t)—$ Rf f of (t)'''

f', i'

where, from Eq. (2.18), one gets

(2.19)

R =K(oo )= I dt W(t)e (2.18)
0

In the representation of the basis set { I
i ) I, Eq. (2.17)

yields
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00
iaaf

~ f ~
Rftf; = dte '

Wf f; (t)

Wfl, f I +f I (2.20)

Following the model developed in Ref. 14 we assume
that E(t) is a Gaussian randotn variable with the statisti-
cal properties

The superoperators (tetradic) W(t}, K(t), and R deter-
mine the relaxation properties of the system S in the
TTOC scheme, PTOC scheme, and Markovian limit,
respectively. From Eqs. (2.11), (2.16), and (2.20), their
matrix elements are determined by the natural frequencies
cof; of the system S, given by Eq. (2.10), and by the bath
correlation functions

(E (t))=0,
(E (ti)Ep(t2)) = —,

' (E )4(ti —t2)&(zp

(2.25)

(2.26}

@(t) = exp( —
~

t
~
It, ) . (2.27)

where the function @(t) has an exponential form with a
decay constant t, ':

( Hfj ( t)Hf't' ) —Try [Hft( t)Hf't'pp ]
In addition, the following identity holds

( Hfj Hf'' (t) ) —(Hj'f' ( t)H jf )

(2.21a)

(2.21b)
( Hff (t)Hf'j ' ) —

3 p (E ) g (u~)fp (u(z )f'pC (t) (2.28)

Equation (2.25) implies that the condition (2.8) is fulfilled.
Substituting Eq. (2.26) into Eq. (2.24) we can write

When H' is known, the bath correlation functions
(2.21) may be calculated from an adequate model for the
bath. Here we shall follow the model developed in Refs.
13—17, where one assumes that the translational degrees
of freedom of the molecules are treated classically. In this
model the interaction Hamiltonian H' is given by

H'= —p, E= —pEPi(cos8), (2.22)

where

u )f =(jfmf lu
I
j'm (2.23b)

Substitution of Eq. (2.23a) into Eq. (2.21a) allows us to
obtain

where p, is the permanent dipole moment of the diatomic
molecule, E is the so-called directing intermolecular field
(DIF) which depends on the configurations of the solvent
molecules surrounding the diatomic molecule, and Pi is
the first-order Legendre polynomial.

, Making use of Eq. (2.22) and writing p =pu, where u is
a unit vector in the p, direction, one gets

Hf (t) =(f
~

H''(t)
~

i ) = —p g (u~)f;E (t), (2.23a)

The equilibrium average (E ) of the DIF square modulus
and the bath correlation time t, have been calculated in
Ref. 14 using a cell model for the equilibrium liquid
structure.

II'I. SPECTRAL THEORY

Assuming that there is no interaction between two im-
purity diatomic molecules so that each system S is relaxed
in its own bath B, the linear-response theory allows us to
write the absorption coefficient as

a(~) = (1—e ~)4mna)

3'
)&Re te' ' pt p0, =1 T,

(3.1)

where n is the number density of the impurity diatomic
molecules, p(t) is the dipole moment of a diatomic mole-
cule in the Heisenberg picture, and (( )) denotes the
equilibrium average over the total system SSB.

If the only available information on the total system is
its temperature T, we can consider for the equilibrium
density operator p of SS8 that

(Hft(t)Hf'; ) =p' g (u~)~, (up)f; (E~(t)Ep(0)), (2.24}
a,P o o 0

P =Pa ~ (3.2)

where the indexes a and P label the vector components in
the given reference system. It is interesting to note that
Eq. (2.22} has allowed us to separate in Eq. (2.24) the rota-
tional and the translational contributions to the bath
correlation functions (2.21), contained in p, and in E,
respectively.

where oo and pa are the canonical distributions referring
to the systems S and B, respectively.

Making use of the free-rotational eigenvectors basis set

I ~

i ) I and following a similar method that in Sec. II of
Ref. 5, Eq. (3.1) can be written as

4&neo ~ . 0a(co) = (1—e ~) $ o;pf;3'
(f &i)

OO

|Mpf~Re dt e o'y~& (t)
fI ~ I

(f'+i')

4&n co 0 (fi)(1—e )p g g o;(u )f; g (u );f Re[of; (co)],3'
(f &i) (f'~i')

(3.3)
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where

o,:—oj ~, ——Zs 'exp( PE—
& ), P= llkT,

with

PHs
Zs =Trs(e ),

(3.4a)

(3.4b)

where Trs means a trace over the rotational states
I
i)

and k is the Boltzmann constant. Moreover, in Eq. (3.3),
o/,"(t) denotes the matrix element jrf; (t) derived with the
condition

0 rg CO

l 5f'f 5grg

~ ~f'g'+ lWf'g f g

(3.6)

which substituted into Eq. (3.3) allows one to write the
secular absorption coefficient as

ao (co) = (1—e ~ )p3'

equation, the spectral function o' I'(jo) associated with
oj,' '(t) is given, in the secular approximation, ' by

jrf ' j'(0 )=5f'f5;'; V (f',i '
) (3.5)

A. Markoviari secular spectrum

Equation (3.3) relates the absorption coefficient a(jo)
with the problem of the relaxation of S in B W.e shall
obtain two different expressions for a(jo) depending on
whether the evolution of o(t) to the equilibrium is
governed by the TTOC [Eq. (2.9)] or the PTOC [Eq.
(2.15)] equations. Both absorption coefficients must coin-
cide in the Markovian limit.

where

Afr ( jo) —1 (N Cofj +i I"fj )

with
I

cog —cog +6fg

5fj —Im(Rf nfl )

I fj ——Re(Rf;fj) .

X g rT; g (u )f;(u~)fRe[Af;(jo)]
f,i a

(f)g)

(3.7a)

(3.7b)

(3.7c)

(3.7d)

(3.7e)

In the Markovian limit the rotational relaxation of the
diatomic molecule is governed by Eq. (2.19). From this

Making use of Eqs. (2.11) and (2.28), from Eq. (2.20) one
gets

(u~)ff-(u~)f f@(off )+ g (u~)jj-(u~)j jC(~oj j)
f"xf g +i

+[I(u~)ff I
+ I(11 )"

I
2(u )"(u )ff]4(0) (3.8)

where 4&(jo) denotes the Fourier-Laplace transformation of tg)(t),

@(jo)= J dt e'"'C&(t) =[ i jo+t, ']—
On the other hand, the following identity can be easily verified:

X r ( )ff"(u )f"f r ~jf~f-
a f" Jyr r

with

(3.9)

(3.10a)

Jf f jflt
Aj I —Q g (Jfjjlf I u~ I JJ P1f )(Jf Pjjf

I u+ IJfjjlf) —(2Jf +1) () () ()
Q mar

2

(3.10b)

where the term in large parentheses is a Wigner 3-j coefficient. '

In Eq. (3.10b) the triangle rule requires that

I Jf Jf" I
& I . —

Thus the only nonzero A1 j „coefficients areJJ'Jy"

(3.11)

Jy Jy —
&

JJ 1JJ +&

jf
2Jf+1
jf+ I

2jf+ 1

(3.12a)

(3.12b)

Taking into account Eqs. (3.10) and (3.12), Eq. (3.8) can be written as
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2 2 2Rf;fc=R, f ..= , p-(E )fi t,fi~ fi .
~ 2jf+1

jf Jf+ 1
+

Jf—] Jf ~+ Jf+ jf ~+

j;+11+ +.
2 +1 t'co t +1 tee t +1 (3.13)
JI J&Ji 1 C Ji'Ji+~ &

which is independent of the quantum number m. Therefore, Af;(co), given by Eq. (3.7b), is also rn independent. Due to
this property it is possible to carry out in Eq. (3.7a) the summations over all the m; and mf which appear only in the
matrix elements of u~. A straightforward calculation leads to the following absorption coefficient in the Markovian lim-
it and secular approximation:

j,.=0

where Az +& J (co) can be obtained from Eqs. (3.7) and (3.13).

(3.14)

B. TTGC spectrum

I. Secular approximation

In the TTOC scheme the rotational relaxation of the diatomic molecule is governed by Eq. (2.9). Taking the Fourier-
Laplace transformation in Eq. (2.9) and making use of the secular approximation, the spectral functions cr jfI (co) are
given by

0 ~& CO

co —co~ '+/W ' ~ '( )cof
(3.15)

Inserting Eq. (3.15) into Eq. (3.3) we obtain

ao(co) = (1—e t )p g og g (u~)f;(u~)yRe[Af;(co)],
4&Pl CO

(f )i)

(3.16a)

Afj (co)—i [co cofc+i Wfj f/(co)]

where Wj; f'(co) is the Fourier-Laplace transformation of Wf- f'(t).
A similar method used for the derivation of Eq. (3.13) leads to

Wf;f;(co)= WJ f f j (co)

(3.16b)

=3p (E )A g AjJ„@(co coJ„J)+ g—Af j„(co coj J„)—
Jfi& J.ii

2jf+1 t (cof +) 1co)t,+ 1 , i(co—j ( I co)t, +1—
1 j;+1

2j;+1 i (co~ f +) co)t, +. 1 i ( co—jj, ) co)t, +1— (3.17)

which is m independent. Therefore, Af;(co) is also m independent. Substituting Eq. (3.17) into Eq. (3.16) one obtains for
the TTOC absorption coefficient in the secular approximation the expression:

j-=0t

where AJ. + ~ J (co) can be obtained from Eqs. (3.16b) and (3.17).

(3.18)

2. Interference effect

If the effect of the nonsecular terms of the kind of Wf;f;(co)of;(co), with (f, i)&(f', i'), in the Fourier-Laplace
transformation of Eq. (2.9) is small but nonnegligible, we can tackle the problem of the derivation of the spectral func-
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tions cry,' (co) by an iterative method. Taking the secular solution (3.15) as the zeroth-order solution, one gets for the first
order in the iterative process

cT '(co) =—( i) 1

co —co-'+E W-' -'!co)f 2

E5f'f 6g'g + Wy; y;(co)

co —cop + E Wy&. I;( co )

(1—A@5;;) (3.19)

which, substituted into Eq. (3.3), leads to the TTOC absorption coefficient:

a (co) =ao(co)+a~ (co),

where ao(co) is given by Eq. (3.18) and

(3.20)

a) (co)= — (1—e ~)p g g cT;(u~)g;3'
(f &i)

f', i'
(f'&i')

(f', i')&(f, i)

(u );g Re[WI; j;(co)Aj~;(co)Ag;(co)] (3.21)

is the correcting term, up to the second order with respect to the interaction, due to the interference effect between the
time evolution of the coherences cT~;(t) and o~(r). This correction can be significant if the functions AI;(co) and
Ay;(co) take appreciable values in the same range of the co values (overlapping effect).

Proceeding in a similar way to the derivation of Eq. (3.17), one has

Wf'c' fj (co) = ——,p & E &A' $ (u~ );; (u~ )f'f [4(co coy'; ) +4(c—o —coy; )], f'gf, E'gi (3.22)
a'

Substitution of Eq (3.22.) into Eq. (3.21) leads to

a, (co)= (1—e )p ( —,p &E &A' ) g g c7;(u )~;

(f &i)

(u (g' ) "(u(g ) 'f'(u~' )f'f

(f'&i')
(f', i')~(f, i)

x Rej Ag; (co)Ap(co)[@(co—coy;)+C&(co —cop )]I.T T

(3.23)

Since the populations cT; and the last factor in Eq. (3.23) are m independent, we can carry out the summations over all
values of m ( m;, m~, m;, m~ ) in this equation. In order to do so, we now introduce the coefficients

&Jimmy I
u

I Jcmc & &J mi I ua
I J m & &JI™i'

I ua I jy my & &Jg™yI
ua I Jimmy &

a,a' m;, m& m;, m&.

r

if &i i
=(2j&+1)(2''+1)(2J'+1)(2J'+1)' ~ ~ 0 p 0 p p 0 p 0 p 0 p 0 pii' jf' (3.24)

where the term in large curly braces is a Racah 6-j coefficient. '

In Eq. (3.24) the triangle rule requires that

(3.25)

Thus for j~=j; + 1, the only nonzero AJ J J,z coefficients areJfJi Jf'Jj'

(j;+ 1 )(j;+2 )
Jg + 1 Ji'Jg +2i

g
+ 1 2ji+

j;+1
(2J, +1)(2J,+3) '

j;(j;+ 1 )

J;+ 1,J;,J, ,J, 1 2 ~ ~ ~
~

(3.26a)

(3.26b)

(3.26c)

From Eqs. (3.23), (3.24), and (3.26) a straightforward calculation leads to
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(J,.+1)e ' ' "+ '
ReI AJ. , +2 J. +)(co)AI~+) J (co.)[@(~ ~J, +z,J,. )+%~)]I

j,- =0 Zjr +3

ReI A, ,(co)A, +, 1 (co)[4(co—~, +),, ))+C&(co)]J
jr+1

Re[AJT J +,(co)AJ +) J. C&(a),)]
(2j;+ l)(2j;+3)

(3.27)

where the AJ z (co) can be obtained from Eq. (3.16b) and

4(co) is given by Eq. (3.9).
As can easily be seen, there are three contributions in

the right-hand side of Eq. (3.29). All of them are due to
influences on the absorption line j~j+ 1. The first one
(Rl) represents the one arising from the absorption line
j+ 1~j+ 2. The second term ( R2) represents the one
coming from the absorption line j—l~j. Finally, the
third term antiresonant (AR) comes from the influence of
the emission line j+l~j. Notice that only these three
contributions appear. This is due to the fact that we have
considered an interaction of the type P) (cos8) [Eq. (2.22)]
which implies the selection rules (3.25}.

C. PTOC spectrum

1. Secular approximation

From Eq. (2.15), the o/,"(t) is given in the PTOC
scheme and in the secular approximation by

( i) l
Cliff

I 'lto; (t)=e ' exp — dt, K~; ~;(t)) 5~I5;; . (3.28)

P( ) (1 —Phrs) 23'
o.; g (u )~, (u )~Re[Ay;(~)],

f,i a
(f )i)

(3.29a)

p
( } d

t{cu—cu&;)t n~ (,t)—
0

and, taking into account Eq. (2.16), one has

Qf (t) = dt)Kf'f (t))''
d~t —we ~' 8'y;g; ~

(3.29b)

(3.29c)

From Eqs. (2.11), (2.28), and (3.10), Eq. (3.29c) can be
written as

Substituting Eq. (3.28} into Eq. (3.3) one obtains for the
PTOC secular absorption coefficient

Qy;(t) =QJ ) (t) = —,p, (E }A

t (icoJ j —te ]+ jy + 1 —iJ + ),j,& jI —i~)
X dr(t r)e ~' — . e ~ '' + . e

2jj +1 2j~+ 1

j~ + 1 —leo +i1 j~ —LN ~

2j;+1 2J;+ 1
(3.30)

Since Q~;(t) is m independent, from Eq. (3.29b), A~;(co) is also m independent. Then, carrying out the summations
over m; and m~ in Eq. (3.29a), one gets

(3.31)

where AJ +) J (co) can be calculated from Eqs. (3.29b) and (3.30).
We would like to show now that using an expansion procedure we can obtain a simpler expression than Eq. (3.31) for

ao(co) which will give results very close to the exact (numerical) solution (3.31), as we shall see later on. To do so, we
note that the factor exp[ —Q~;(t)] can be written with the help of Eq. (3.29c) as

exp —A, f dr(t r)f(r)—
L

where A, is a parameter that characterizes the intensity of the interaction. Using the expansion
/

exp —A, f dr(t r)f (r) = exp —Atf d—rf,(r) 1+A, t f deaf (~) f dr(t r)f(r) —+O(A, )—
(3.32)
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OO jg~.g w
dr e '

Wf;,I;(r)=Rf; I; =I I;+ibf;,
we can write, up to the second order in the interaction,

(3.33)

Substitution of Eq. (3.33) into Eq. (3.31) yields for the PTOC secular absorption coefficient

ao(co)=ao (~)+ao(~),
where ao (co) is the Markovian secular absorption coefficient, given by Eq. (3.14). The term ao (co), given by

(3.34)

with

3'
l

(3.35a)

D
JyJt

(3.35b)

gives the PTOC deviation with respect to the Markovian behavior due to the fact of considering a finite bath correlation
time.

2. Interference effect

If the nonsecular terms of the kind of Kf; f; (t)of; (t), with (f, i)&(f', i'), in Eq. (2.14) are not neglected, the effect of
such terms can be analyzed by an iterative method similar to the one developed in the TTOC scheme. Taking the PTOC
secular solution (3.28) as the zeroth-order solution one gets, for the first order in the iterative process,

(3.36)

Substitution of Eq. (3.32) into Eq. (3.3) leads to the following PTOC absorption coefficient:

a (co) =ao(co)+a~(co), (3.37)

where ao(co) is the PTOC secular absorption coefficient, given by Eq. (3.31). The term a&(co) which has the form

ai(co)= — (1—e )p Q g cr;(u )f;
p 47Tn CO p~ 2 0

a f,i
(f )i)

with

f', i'
(f'&i')

(f', i')&(f, &)

(u );f Re dte ' e '
I~~ f''(t), (3.38a)

0

I ()= d K ()t

(3.38b)

as is the correcting term in the absorption coefficient, up to the second order in the interaction, due to the interference ef-
fect between the time evolution of the coherences crf; (t) and af;(t) in the PTOC scheme.

The matrix elements Kf; I;(t), with f'&f and i '&i, are given by

EEOC, 7 ~
Kf'' f (t)= dre ' W'~'' f(r)'

= —,p (E )A' y(u~ );g (u )ff[(e " ' —ll@~' )+(e )@~ff')j
a'

(3.39)

Substituting Eq. (3.39) into Eqs. (3.38), carrying out the summations over all m (m;, mf, m;, mf ) and taking into account
the selection rules for the coefficients Aj I t,i, given by Eq. (3.24), one gets for the PTOC absorption coefficientJ)Jj ~JI'Jt'
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( 1) & "'~~ ~~+ ' R f
j,.=0 2j;+3

i(a)—e +2 J +))t —Q- +P J +)(t)
e ' ' '

Iq'+)& i+~q +((t)

i (co—co
~

)t —Q ~(t)

+ . Re dte ' ' e ' ' IJ+, J JJ,.(t)
2j; + I 0

r

1 i(co—coj J +])t Qj J +)(t)
Re dte "' e "' I)'+)J 1 J+)(t)

(2j;+1)(2j;+3)
(3.40)

where

i (~j j j J' )& —I Qj J' (7 ) —Qj (/)]
, , (t)= d~e 'f ' 'f"' ejfJg~ jfJ; p

I

(iM ~ —t )& (ECO ~ ~ —t )&

&&[(e ' ' —1)C(coj J )+(e f f —1)4(coj. J )] (3.41)

and the corresponding Q~ 1 (t) can be obtained from Eq. (3.30). The three contributions in Eq. (3.4()) have a srmilar phys-JfJi
ical interpretation as the one given for the expression (3.27).

IV. NUMERICAL ANALYSIS AND DISCUSSIONS

t, =(2mBc)t, . (4.2)

The HC1 rotational constant (in the ground vibrational
state) is taken as B=10.4 cm

The absorption coefficient a(co) depends on the param-
eters A, , t„and the temperature T of the liquid. Values
for the parameters A, and t, have been calculated by
Hoang and Bonamy' using a cell variational Kirwood
model for the liquid structure. Table I shows the values
for A. , t„and T, used in the present analysis.

We emphasize that the summation over j which appears
in the different expressions for the absorption coefficient
has been performed up to some maximum value j
which depends on the temperature in each case. The

In order to apply the results obtained in Sec. III to the
derivation of the far-infrared spectra of HC1 in Ar, Kr,
and Xe liquids, we introduce reduced units (2mBc for fre-
quencies and Bhc for energies) which will be expressed by
tildes ( —). Thus, the reduced mean square of the inten-
sity of the interaction A, is given by

2(~2)
(4.1)

(Bhc )

and the reduced bath correlation time t, by

present set of calculations was carried out in simple pre-
cision (Eclipse MV4000) with j,„never greater than 10,
which is sufficient to ensure the convergence of all sum-
rnations which appear in the problem.

Equations (3.14), (3.18), and (3.31) show that in the sec-
ular approximation the absorption coefficient can be built
as a superposition of basic resonances located close to the
natural frequencies coj+& J and given by the real part
«AJ+i J(~) [Eq. (3 7b)], AJ+i, j(to) [Eq. (3.16b)], and

AJ+ & J(co) [Eq. (3.29b)] in the Markovian limit and TTOC
and PTOC schemes, respectively.

In the Markovian limit these resonances are Lorentzian
with linewidth I J+& J and shift Aj+~ J with respect to the
corresponding frequency cd+& J. Table II gives the values
of I J + & J and EJ + & ~

calculated from the real and the
imaginary parts of Eq. (3.13) for different j values. This
table shows that the shifts are very much smaller than the
corresponding linewidths and that both decrease rapidly
with increasing j.

In Fig. 1 the basic resonances in the secular approxima-
tion for the specific case of HC1-Kr are drawn. Note that
the non-Markovian TTOC and PTOC formalisms lead to
different predictions for the higher j values. So, Fig. 1

suggests the range of validity of the Markovian hy-
pothesis. This hypothesis is valid when the bath correla-
tion time t, is very small compared with the inverse
linewidths, ' i.e.,

T {K)
2

A,

c

HC1-Ar

105
40
0.18

HC1-Kr

125
40
0.20

HCl-Xe

175
40
0.20

TABLE I. Parameters used in the calculations. Values of
Hoang and Bonarny {Ref. 14).

t~ Q(I j+& j VJ (4.3)

We check this condition in the third column of Table II
and, clearly, condition (4.3) is verified for the higher j
states.

Figure 2 illustrates the shape of the secular absorption
coefficients ao (co), ao(co), and ao(co), given by Eqs. (3.14),
(3.18), and (3.31), respectively. Two essential remarks
should be made in regard to this figure. Firstly, there is
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TABLE II. Shifts and linewidths obtained 'from the imaginary and real parts of Eq. (3.13). The
Markovian limit is checked in the third column: these values must be compared to unity. The secular
approximation is checked in the fourth column: these values must be compared to unity.

HC1-Ar

J'+ 1,J
HC1-Kr
HC1-Xe HC1-Ar

J+& j
HCl-Kr
HCl-Xe HC1-Ar

I g+],J4
HC1-Kr
HC1-Xe HC1-Ar

2 I J+] J.

QC1-Kr
HC1-Xe

0
1

2
3
4
5

6
7
8

9
10

0.261
0.241
0.132
0.063
0.030
0.015
0.008
0.004
0.002
0.001
0.001

0.358
0.294
0.143
0.062
0.028
0.013
0.007
0.003
0.002
0.001
0.000

3.886
3.058
2.217
1.582
1.149
0.859
0.661
0.522
0.421
0.346
0.289

4.149
3.156
2.202
1.525
1.086
0.802
0.611
0.480
0.385
0.316
0.263

0.699
0.550
0.399
0.284
0.206
0.154
0.118
0.093
0.075
0.062
0.052

0.829
0.631
0.440
0.305
0.217
0.106
0.122
0.081
0.077
0.063
0.052

1.943
1.529
1.108
0.791
0.574
0.429
0.330
0.261
0.210
0.173
0.144

2.074
1.578
1.101
0.762
0.543
0.401
0.305
0.240
0.192
0.158
0.131

no big difference among the curves sketched. This is a
consequence of the fact that even for low j states the sys-
tem is not very far from the Markovian limit. Secondly,
the rotational structure remains only in the high-
frequency range. This effect is a signal that for low j
values the linewidths I J+ ~ J are very much larger than for
higher j values (see Table II).

In Fig. 2 also the PTOC secular absorption coefficient
ao(co) obtained from exact Eq. (3.31) and from approxi-
mated Eq. (3.34) are compared. In the range of u values
analyzed (0—200 cm ') the difference between both equa-
tions is never larger than 2.5%%uo. Thus, Eq. (3.34) is a very
good approximation for the PTOC secular absorption
coefficient and it has the ad'vantage that, in the present
case, it can be calculated analytically. Figure 2 also shows
the correction ac(co) [Eq. (3.35)] which gives explicit in-
formation on the effect of the finite bath correlation time
considered in the PTOC scheme.

In a spectroscopic framework the secular approxima-
tion corresponds to the additivity of the basic resonances

08
j=0

f 0

5
1

0.5--
~~

3
0.0

0 50

Hct -Ar

r-
f00 f50 200

(cm ')

W

L

1.0--

0.5

which should be obtained if they were decoupled among
them. Therefore, this approximation is equivalent to
neglect the interference effect among such resonances. In
Ref. 1 we have seen that when the relaxation of the sys-
tem takes place in conditions not too far from the Marko-
vian limit, the secular approximation will be guaranteed
by the sufficient conditions

t3

0,4

0.2
CX.

O.P

0.8-

pg

0.4

0.2

~P ~~~e

)=2

~0
~ 0

1=3

s
0.0

&.0 .-

50
'~g.~ ~ ~ T

f00 f50 200
v ('crtl ')

O. P
fp 20 0 f0

EU

15 20

FIG. 1. Basic resonances Re[AJ+ ~ J(co)] ( ),
Re[A&+~ J(co)] ( ———), and Re[AJ+~ J(co)] ( ~ ~ ~ ~ ) for
j=0,1,2,3, and parameters given by Table I for HCl-Kr.

r

200
Mao

0 50 1Q0 f50
(d (CrA )

FIG. 2. Secular absorption coefficients ap(co) ( ), ep(co)
( ———), and ap(co) ( ~ ~ ), and the non-Markovian correct-
ing term ap(co) {—- ——~ ) for HC1 in Ar, Kr, and Xe liquids
and parameters depicted in Table I.
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IRf fi I, IRf; f; I
« I~fi ~fi I, (4.4a)

I
Rf'i', fi I

«
I ~fi ~f'i'

I
(4.4b)

FJ+]JQ+2VJ (4.6)

where (f, i)&(f', i'). In the present case the modulus of
the off-diagonal matrix elements of R are smaller than
the modulus of the diagonal matrix elements and, thus, it
is only necessary to analyze the condition (4.4a).

The selection rules (3.11) imply that only the diagonal
matrix elements of R with jf=j; + 1 are not zero, and,
taking into account Eq. (2.2b), condition (4.4a) can be
written as

I
Rj;+ 1,j;;j;+ &,j; I ~ I Rj, , + t,j,,;j, + 1,j;. I &&2

I Ji Ji '
I

The smaller value of the right-hand side (rhs) in condition
(4,5) occurs for j; =j;+1, which corresponds to consider
the distance between consecutive resonances. Moreover,
we have seen that 6j+& j && Ij +& j and so

I RJ+'J'J+'J I =~J+'J
Therefore, the sufficient condition (4.5) for the validity of
the secular approximation can be written as

In the fourth column of Table II we can see that the con-
dition (4.6) is verified only for very high j states. Thus,
the main j states (j & 6) which give a significant contribu-
tion to the absorption coefficient are excluded of the range
of validity of the secular approximation.

Since the values of —,
' I ~+& 1 in Table II are not

very large compared to unity, we can apply the iterative
methods developed in Sec. III. These methods incorpo-
rate the effect of the nonsecular terms in the evolution
equations. Such terms give rise to the interference effect
among resonances through a correcting term over the sec-
ular results, which constitute the first-order term in the
iterative process.

Figure 3 shows the behavior of a~(co) [Eq. (3.27)] and
a~(co) [Eq. (3.40)] and the contribution of the resonant
terms Rl and R2 and of the antiresonant term Ar. This
figure presents some interesting features. It shows the im-
portance of the interference effect: a~(co) reaches values
up to 30% of the corresponding secular absorption coeffi-
cient ao(co). It also gives information on the contribution
of a~(co) to the total absorption coefficient: The interfer-
ence effect implies an increase (decrease) of the absorption
in the low (high) frequency range. Lastly, it is shown
there that the explicit contribution to a~(co) coming from
the resonant and antiresonant terms: the contribution of
the antiresonant term AR is practically negligible.

Figure 4 shows the total TTOC [Eq. (3.20)], PTOC [Eq.

0.2

Q1

QO

i"

—
Q, 1

0.5--
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50 300

. c) (cm ")
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g —Q.3
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0 50 F00
z(cm ')
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FIG. 3. Correcting term-a~(cu) due to consider the overlap-
ping effect in the TTOC and PTOC formalisms for HCl-Kr
(continuous curves). The dotted curves refer to the resonant
(R1 and R2) and antiresonant (AR) contributions. (Same scale
as that in Fig. 2.)

FIG. 4. Far-infrared spectra of HCl in Ar, Kr, and Xe
liquids: experimental spectra ( ), TTOC spectra ( ———),
and PTOC spectra ( ~ ~ ~ ~ ). The theoretical spectra correspond
to the values of parameters depicted in Table I. (Same scale as
that in Fig. 2.)
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(3.37)], and the experimental ' absorption coefficients to
the cases of HC1 in Ar, Kr, and Xe liquids. The most
striking point is that both non-Markovian formalisms
lead to very similar results. This is due to the fact that
the rotational relaxation under study is not very far from
the Markovian limit. In any case, there is very good
agreement between the experimental and the TTOC and
PTOC spectra.

V. SUMMARY

In this paper we have shown how the non-Markovian
TTOC and PTOC formalisms can be applied to the prob-
lem of the calculation of the far-infrared spectra of a di-
atomic polar molecule immersed in a rare-gas liquid. We
have shown that in the secular approximation (i.e., when
the nonsecular terms in the reduced master equation are
neglected and, therefore, the coherences evolve indepen-
dently among themselves) such spectra can be built as a
superposition of resonances located near the rotational

frequencies of the diatomic molecules whose shapes
should be the same as if they were decoupled among
them. These resonances are different in each TTOC and
PTOC formalism, but they become Lorentzian in the
Markovian limit. Using an iterative method in which the
secular result is the first term in the iteration, we have ob-
tained a correcting term which incorporates the interfer-
ence effect among such resonances.

We have calculated the absorption coefficient in the fre-
quency range from 0 to 200 cm ' for a HC1 molecule in
Ar, Kr, and Xe liquids. Although the main j states which
contribute significantly to the absorption coefficient are
not very far from the Markovian limit, they are excluded
of the range of validity of the secular approximation. Us-
ing the expressions which take into account the interfer-
ence effect, both non-Markovian TTOC and PTOC spec-
tra are in agreement with the experimental results. How-
ever, the PTOC spectra give a slightly better agreement in
the wings of the whole band profile. On the other hand,
the use of the TTOC formalism is easier from a computa-
tional point of view.
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