
PHYSICAL REVIEW A VOLUME 31, NUMBER 1 JANUARY 1985

Novel theory of the HD dipole moment. II. Computations
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In the preceding paper we derived a new theory of the dipole moments of homopolar but
isotopically asymmetric molecules {such as HD, HT, and DT) in which the electrical asymmetry ap-
pears directly in the electronic Hamiltonian {in an appropriate Born-Oppenheimer separation) and
the dipole moment may be computed as a purely electronic property. In the present paper we

describe variation-perturbation calculations and convergence studies on the dipole moment for HD,
which is found to have the value 8.51&&10 debye at 1.40 a.u. Using the two alternative formula-
tions of the electronic problem, we can .provide a test of basis-set adequacy and convergence of the
results, and such convergence studies are reported here. We have also computed vibration-rotation
transition'matrix elements and these are compared with experimental and other theoretical results.

I. INTRODUCTION

In the preceding paper' we presented a new formulation
of the theory of electric dipole moments in HD and other
homopolar but isotopically asymmetric molecules. A
canonical transformation to new electronic and heavy par-
ticle coordinates was made, such that the isotopically in-
duced asymmetry all appears directly in the electronic
Hamiltonian spec—ifically, the potential energy no longer
has D ~ symmetry, but contains a small ungerade term
proportional to the parameter ao ———,A,m /p, where
k=(Mz —Mtt)/(M&+M&) is the nuclear mass asym-
metry and m/p is the ratio of electronic and nuclear re-
duced masses (for HD, ao ——1.36)&10 ). It follows that
the dipole moment of HD may be derived as a purely elec-
tronic property within the Born-Oppenheimer approxima-
tion, and the intensities of vibration-rotation and pure ro-
tation transitions computed in the usual way for a diatom-
ic molecule. Nonadiabatic couplings (which are respon-
sible for these dipole moments in the conventional theory)
play no part in the new theory; their inclusion would af-
fect the dipole moment calculation by terms of order ao at
most.

Using this new theory, in this paper we carry out calcu-
lations of variational type for the X'X+ electronic ground
state of HD, and study the convergence of the dipole mo-
ment function in the neighborhood of the equilibrium
separation R„as a function of the basis size. Since the
dipole moment is an odd and therefore essentially linear
function of ao, the variation-perturbation scheme is most
convenient, and moreover the dipole moment functions
for the other isotopically asymmetric hydrogens HT and
DT may be obtained merely by rescaling the HD result.

Figure 1 of the preceding paper shows the resulting di-
pole moment function for HD (solid curve) and for com-
parison the function calculated by Browne and Ford us-
ing nonadiabatic perturbation theory (dashed curve). The
two are in good general agreement (1.6%%uo at R =R, ) but
there are systematic differences between them at both

large and small internuclear distances.
We have used this dipole moment function (rescaled for

HT and DT) to compute matrix elements for vibration-
rotation and pure rotation transitions arising from the
ground vibrational level for all these molecules; these are
listed (and compared with experimental and other theoret-
ical results, where available) in Tables III and IV.

General features of the electronic problem and its for-
mulation have been discussed in Sec. III of the preceding
paper. We showed in particular that there are two dis-
tinct ways of setting up the electronic Hamiltonian, which
differ slightly in the choice of electronic coordinates, the
form of the perturbation term in the Hamiltonian, and the
formal expression for the dipole moment function, and we
denoted these as "Scheme 1" and Scheme 2." However,
we also showed, using the variation-perturbation frame-
work, that the numerical value for the dipole moment ob-
tained from each scheme must be the same provided the
odd-symmetry (ungerade) part of the Hilbert space used
for expansion is' complete. We have turned this fact to
good advantage by using the agreement of results from
the two schemes as a test of basis quality. The dipole mo-
ments reported here are identical for the two schemes to
within 1.1%%uo at all R values computed, 'and to better than
0.05% for 1.0 &R ( 1.8 a.u.

Our trial wave functions were based on James-
Coolidge-type expansions, including up to second-power
terms in the interelectronic coordinate to represent elec-
tron correlation. Certain new molecular integrals in pro-
late spheroidal coordinates then arise and we have
developed new methods for doing these.

Section II of this paper is concerned with basis set
description and the molecular integral computations
which arise for our variation-perturbation calculation.
Section III presents the results of the electronic calcula-
tions, with particular attention to convergence and stabili-
ty of the dipole moment as function of basis size. In Sec.
IV the vibration-rotation and pure rotation matrix ele-
ments are presented and discussed.
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II. BASIS SET AND COMPUTATION METHOD

For computational purposes an adequate starting point
is outlined in Sec. III B of Ref. 1 and the equations found
there, to which we here refer. As indicated, the Schemes
1 and 2 are to be solved independently but in parallel for
each basis set used and the difference between the dipole
moments found for each provides a test of basis adequacy.
This is easy to do since both schefnes involve the same
molecular integrals.

g; =(r„;+r~; )/R, 1 & g'; & oo

(rgb rsg)/R—, —1&g; &+1

y; =azimuth angle, 0&@;&2m

(2.1)

and the scaled interelectronic coordinate p=2r, 2/R, and
they have the form (here a is an orbital exponent, not ao)

] mnjks;a)—:exp[ a(pi+ g2)]—g~ pqrj'jg~' . (2.2)

A basis ket
~
mnjks) is even (gerade) if (j+k) is even

and odd (ungerade) if it is odd. Since spin and Pauli sym-
metry require that the coefficients for

~

nmkj's ) and

~
mnjks ) are equal, they are not counted as distinct kets.
We included basis functions with s =0, 1, and 2. In

our convergence studies, we found that the selection of
basis sets by the prescription of Bishop and Cheung is
appropriate and efficient for both g and u subspace com-
ponents. In their notation a basis set denoted by (G or
U):(aoa ia2 ~

b) consists of all basis kets (of g or u symme-

try) such that a, = max(j+ m)=m ax( k+n) for the kets
of the given s, s =0, 1,2 and b= mxa(j k++ m+ )nin

any case. As indicated by Bishop and Cheung the ra-
tionale for this prescription is the inclusion of all func-
tions capable of simulating a given maximum number of
nodes.

In principle the orbital exponent a may be varied versus
R and also may be different for the g and u components.
We did some limited calculations with a =0.75 to test the
sensitivity of the even (ungerade) component to changes
in a, but we found this had no significant effect on the re-
sults. Accordingly we did all the computations reported
here with the value a=0.95 which is an appropriate
choice for R =R, =1.40 a.u. , and used the same value, for
both subspaces for maximum computational efficiency in
evaluating the molecular integrals. As noted below, this
limits the quality of the results at internuclear distances R-
significantly different from R, .

A. Basis set description

As given in Eq. (3.22) the variation-perturbation wave
function has a zeroth-order even (geode) component

~ its ) and a first-order odd (ungerade) component
~ p„);

each of these is expanded in basis functions of the proper
symmetry (denoted I gk I, I u„ I, respectively in Ref. 1). We
have used James-Coolidge-type basis functions for both
components; these employ prolate spheroidal coordinates
for each electron (i = 1,2),

B. Molecular integrals

A new type of molecular integral arises in this problem
and we had to go to some trouble to compute it accurate-
ly. Except for the matrix elements of h,

' in Eq. (3.25b),
all matrix elements in the determining Eqs. (3.25a),
(3.25b), and (3.26) lead to integrals done by standard
methods or whose evaluation is well known and is done by
widely available computer routines. A new type. of in-
tegral however arises from the correlated gradient terms
in Eqs. (3.28a) and (3.28b), and unfortunately it is imper-
vious to the upward recursion type of approach used by
the existing programs for the functions H,"(m, n;a) de-
fined by James and Coolidge. We therefore had to
develop an alternate procedure for the new integral, and to
test its accuracy and speed we also used it to generate the
related but simpler functions H"(m, n;a). The resulting
package yields values for H,"( m, n;a) which are more ac-
curate and allows a substantially wider range of indices
than the conventional packages. An account of our
evaluation method is given in the Appendix.

III. DIPOLE MOMENT CALCULATION@

All the convergence studies reported here are for basis
sets including terms in the interelectronic coordinate p
with powers s =0, 1, and 2. We performed a large num-
ber of preliminary calculations for basis sets limited to
s =0,1 only, but these showed no definite stability or con-
vergence in the dipole moment behavior and the differ-
ence between the results for Schemes I and 2 remained
large (1% or more even for R =R, ). When terms with
s =2 are included, immediate improvement is found in
convergence of results, both for a given scheme versus
basis size and in comparison of the two schemes.

We made extensive studies of convergence vs. basis size
only near the equilibrium separation, R,=1.40 a.u. Hav-
ing established from these studies the general trend of re-
sults and the basis sizes needed to achieve stability and
convergence of the dipole moment, we then studied the
behavior of dipole moment for both schemes as function
of internuclear distance R for a selected subset of bases.

Energies reported in the tables are the zeroth-order
values associated with the even (gerade) basis component

~ gs). Corrections to this energy are of second order in
ao, i.e., smaller than 5)& 10 a.u.—less than the last sig-
nificant digit reported in the energy; as is well known the
first-order perturbation wave function minimizes the
second-order energy.

We have not reported specific information on the struc-
ture of the first-order wave, function

~ g„), on the
grounds that this has less direct physical significance than
the measurables or near-measurables we do report.

Table I summarizes our convergence studies at
R =1.40 a.u. : for each g, u basis-set pair indicated by
Bishop-Cheung indices in the first column, we have tabu-
lated the total number of basis functions, the dipole mo-
ments (in units of 10 debye) for Schemes 1 and 2, and
the zeroth-order energy (a.u.). As expected, since the
agreement of Schemes 1 and 2 is a test of completeness in
the u portion of the Hilbert space, changes in the u basis
set have a marked effect on this agreement. Changes in
the u basis set, especially changes in the number of func-
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TABLE I. Dipole moment vs basis set at R=1.40 a.u. Basis sets (g, u) (notation of Bishop and
Cheung); dipole moments p (10 debye) for Schemes 1 and 2.

Basis set
(g) (&)

(666
i
6) (666

i
6)

(666
i
6) (666

i
5)

Number of
functions

180,150
180,90

Dipole moment ()&10 )

Scheme 1 Scheme 2

8.5086 8.5085
8.5049 8.5049

Energy
eg (a.u. )

—1.174475
—1.174475

(555
i
5) (666

i 6)
(555

i
5) (555

i
5)

(555
i
5) (444

i
4)

108,150
108,90
108,48

8.5084
8.5049
8.5121

8.5086
8.5050
8.5176

—1.174474
—1.174474
—1.174474

(AHA.
i
4) (555

i
5)

(A.AA
[
4) (PEA

i
4)

(~4
[
4) (333

)
3)

(434
i
4) (434

i
4)

(434
(
4} (333

)
4)

66,90
66,48
66,24

63,46
63,42

8.4994
8.5066
8.5568

8.5006
8.4315

8.4982
8.5109
8.4797

8.5087
8.4328

—1.174471
—1.174471
—1.174471

—1.174471
—1.174471

(333
i
4) (434

i
4)

(33314) (333
I
4)

(333
i
3) (444

i
4)

(333
[
3) (333

(
4}

(333
)
3) (333

)
3)

57,46
57,42

33,48
33,42
33,24

8.4952
8.4274

8.4951
8.4225
8.5501

8.4968
8.4210

8.4934
8.4181
8.4681

—1.174456
—1.174456

—1.174 364
—1.174 364
—1.174 364

(323
i
3) (333

i

(323
(
3} (323

(

(323
i
3) (332

i

(323
[
3) (323

[

4)
4)
4)
3)

31,42
31,36
31,36
31,22

8.4226
8.4366
8.3886
8.5588

8.4175
8.4043
8.4062
8.4682

—1.174 363
—1.174 363
—1.174 363
—1.174 363

(332
~
3) {332

~
4)

(332
)
3) (332

)
3)

31,36
31,22

8.3895
8.5478

8.4089
8.4741

—1.174 363
—1.174 363

tions with s =2, also affect the value of the dipole mo-
ment strongly, until a u basis size of about 90 is reached.
Changes in the g basis size, on the other hand, have little
or no effect on the value or convergence of the results for
bases larger than (444/4) (66 g functions).

From these studies we conclude that the dipole moment
of HD at 1.400 a.u. is (8.5086+0.004) X 10 debye. This
value is in sufficiently good agreement with the results of
Ford and Browne (8.371X10 ) to establish the general
validity of the theoretical results obtained by either their
method or ours, but the difference (1.6%%uo) is significantly
larger than the probable uncertainty in our result. We
note that in all the nonadiabatic perturbation calculations
certain rovibronic energy denominators were replaced by
average electronic term-difference values, in order to use
closure in sums over vibration-rotation levels and reduce
these to simpler matrix elements. This procedure may
perhaps have introduced errors of the magnitude of the
discrepancy with our variational result.

Table II shows the behavior of the dipole moment
p, (R) vs R for three reasonably large basis sets. Both the
energy and the discrepancy between the values for
Schemes 1 and 2 show that at the extreme ends (R =0.50,
R=3.00) even the largest basis used is not really adequate
to achieve satisfactory convergence, but the situation is

much better for 0.75 & R & 2.50.
There are certain limitations to the validity of the

theory and calculations at both small and large internu-
clear distances. For R~O, the formulation of the elec-
tronic model Hamiltonians given in Sec. III of Ref. 1

breaks down because the condition
~
r;

~
&&R/ao is not

satisfied for all regions covered by the bound-state wave
function, so that even in principle we cannot use the
present theory to discuss that limit. In our actual calcula-
tions however the major limitations arise from our use of
James-Coolidge expansions, and from the use of a fixed
orbital exponent appropriate to R =R, . At the smallest R
studied (0.5 a.u.), our use of the orbital exponent a=0.95,
which is the value appropriate to R =R„has a noticeable
effect on the convergence of the expansions, and there is
correspondingly a 0.25%%uo discrepancy between the dipole
moments from Schemes 1 and 2. On the other end, for
R ~ 2.0 a.u. the James-Coolidge expansion's explicit use
of p to describe electron correlation becomes inadequate to
simulate interatomic correlation which would be more
properly represented by a valence-bond type of expansion;
there is a 1.1%%uo discrepancy between results of the two
schemes at R=3.00 a.u. (basis set A). Nevertheless the
results should be good enough to provide accurate transi-
tion matrix elements for the vibrating rotor spectra.
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TABLE II. HD dipole moment p (10 debye) vs distance R, for three different basis sets.

R (a.u. ) p, Scheme 1 p, Scheme 2 Ford and Browne
Basis set A:g, (666

~
6), 180 functions; u, (666

~

6), 150 functions
Energy (a.u. )

0.50
1;40
2.50
3.00

23.876
8.5086
6.6771
5.5690

23.830
8.5085
6.6855
5.6112

27.390
8.371
6.375
5.271

—0.525 084
—1.174475
—1.093 933
—1.057 307

Basis set 8:g, (SSS
~
5), 108 functions; u, (666

~

6), 150 functions

0.50
0.75
0.80
0.90
1.00
1.10
1.20
1.30
1.35
1.40
1.45
1.50
1.60
1.80
2.00
2.25
2.50
2.75
3.00

22.913
15.305
14.174
12.395
11.107
10.161
9.4533
8.9180
8.6998
8 ~ 5084
8.3400
8.1915
7.9734
7.5840
7.3237
7.0282
6.6730
6.1924
5.5606

22.856
15.303
14.173
12.395
11.108
10.161
9.4536
8.9183
8.7001
8.5086
8.3403
8.1918
7.9738
7.5849
7.3259
7.0346
6.6883
6.2249
5.6212

27.390
15.350

10.926

9.305
8.762
8.556
8.371
8.172
8.050
7.763
7.392
7.091

6.375

5.271

—0.521 719
—0.976 310
—1.020046
—1.083-640
—1.124 538
—1.150056
—1.164 933
—1.172 345
—1.173962
—1.174474
—1.174055
—1.172 853
—1.168 581
—1.155 065
—1.138 127
—1.115628
—1.093 916
—1.074249
—1.057 191

Basis set C:g (444
~
4), 66 functions; u, (555

~

5), 90 functions

0.50
0.75
1.00
1.20
1.30
1.35
1.40
1.45
1.50
1.60
1.80
2.00
2.50
3.00

19.536
15.017
11.075
9.437
8.906
8.689
8.4994
8.333
8.186
7.940
7.584
7.325
6.653
5.498

19.414
15.004
11.071
9.434
8.904
8.688
8.4982
8.332
8.186
7.942
7.590
7.336
6.710
5.686

27.390
15.350
10.926
9.305
8.762
8.556
8.371
8.172
8.050
7.763
7.392
7.091
6.375
5.271

—0.511 55
—0.976 16
—1.124 53
—1.16493
—1.172 34
—1.173 96
—1.174474
—1.17405
—1.172 85
—1.168 58
—1.155 06
—1.138 11
—1.093 74
—1.056 17

IV. VIBRATION-ROTATION TRANSITION
MATRIX ELEMENTS

We can use the dipole moment function computed for
HD (and displayed in Fig. 1 of Ref. 1) to compute
vibration-rotation and pure rotation transition matrix ele-
ments for all three isotopic species HD, HT, and DT,
since the functions for HT and DT are merely rescaled by
the corresponding value of the parameter ao. For the
three species, the values for ao are as follows:
ao(HD) = 1 359 94X 10; az(HT) = 1.807 79 && 10
ao(DT) =0.451 668 && 10 . The data used to generate the
dipole moment function for HD are the averages of the
values from Schemes 1 and 2 given in Table II, basis set B
[g, (555

~
5);u, (666

~
6)], except for the value at 0.50 a.u. ,

where we took the result from basis set A, and the value
at 3.00 a.u. , where we averaged the results from basis set

A with those from 8; we have used a smooth interpolat-
ing device to generate data at any desired R.

Given the electronic dipole moment functions p, (R) for.
the X'X+ ground states of these molecules, we need not
use electronic potential functions computed with the
present theory to generate the vibrational eigenstates and
transition matrix elements. The vibrational eigenstates
R FJ satisfy the equation

2 +, 2 + U(X'X+;R) F~(R)

=E„gF„g (4.1)

and it is easily proved that our effective potential
U(X'X+;R) is given by
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TABLE III. Dipole vibration-rotation transition moments for HD, HT, and DT (10 debye; each entry lists, in order, the values

for HD, HT, DT).

Line
Band

0-0

2-0

3-0

5-0

6-0

&(4)

8.420
11.232
2.812
0.326
0.439
0.110
0.144
0.187
0.0404
0.065 4
0.082 0
0.015 8
0.0303
0.037 1

0.00645
0.015 2
0.018 1

0.002 85
0.008 15
0.009 47
0.001 35

P(3)

8.440
11.256
2.816
0.374
0.497
0.120
0.156
0.200
0.042 6
0.069 8
0.087 1

0.016 5
0.0324
0.0394
0.006 77
0.0163
0.0193
0.003 00
0.008 75
0.010 1

0.001 42

P(2)

8.455
11.273
2.819
0.421
0.554
0.130
0.167
0.214
0.044 8
0.0742
0.092 3
0.017 3
0.034 5
0.041 8
0.007 08
0.017 3
0.020 5
0.003 15
0.009 35
0.010 8
0.001 50

8.463
11.283
2.820
0.466
0.609
0.140
0.179
0.227
0.046 9
0.078 6
0.0974
0.0180
0.036 5
0.0442
0.007 40
0.0184
0.021 7
0.003 29
0.009 96
0.011 5
0.001 57

R (0)

8.463
11.283
2.820
0.552
0.715
0.158
0.200
0.253
0.051 0
0.0870
0.107
0.0194
0.040 5
0.048 7
0.007 99
0.020 5
0.024 1

0.003 57
0.0112
0.012 7
0.001 71

R(1}
8.455

11.273
2.819
0.592
0.764
0.167
0.210
0.265
0.052 9
0.0909
0.112
0.020 1,
0.042 4
0.0509
0.008 27
0.021 5
0.025 2
0.003 70
0.0117
0.0134
0.001 78

R (2)

8.440
11.256
2.816
0.630
0.810
0.176
0.219
0.276
0.054 7
0.094 5
0.116
0.020 8
0.0442
0.052 9
0.008 55
0.022 5
0.026 2
0.003 83
0.012 3
0.0139
0.001 84

R {3)

8.420
11.232
2.812
0.665
0.853
0.184
0.228
0.286
0.056 5
0.097 9
0.120
0.021 4
0.045 8
0.054 8
0.008 82
0.023 3
0.027 2
0.003 96
0.012 8
0.014 5
0.001 90

U(X'X+'R) = V (X'Xs,'R)+(2p) '(X'X+
i [P~+ ~ (p i+p q)+ —,

' (pi pq)] i
X'X+)

I

(4.2)

to within term~ of order ao, where Vo(X'X+;R) is the
Born-Oppenheimer potential for the X'Xs+ state of Hz
(computed using mo as electron mass) and is independent
of isotopic mass. Both terms in Eq. (4.2) have been com-
puted by Kolos and Wolniewicz; Vo(X'Xg+;R) is the en-
try labeled E in their Table III, and the second term in
(4.2) is the entry labeled E„„,i (for the case of Hq), and
need only be rescaled for the appropriate isotopic mass.

The resulting vibrational transition matrix elements, de-
fined by

R(v,J)= J dR F„q+i(R)p, (R)Far(R)

I

by Ford and Browne. Our results appear to be in slightly
better agreement with most of the vibration-rotation tran-
sition matrix elements measured by McKellar and co-
workers 'o than do previous theoretical values, but we do
not think this improvement is very significant. It is likely
that a more elaborate calculation on the lines presented
here, especially with optimized orbital exponents and al-
lowing explicitly for valence-bond-type interatomic elec-
tron correlation at larger 8 values, would lead to small
but significant changes in the curve for p, (R) and appre-
ciable changes in the transition matrix elements.

and (4.3) ACKNOWLEDCxMENTS

P(v,J)= I dR F~ i(R)p, (R)F'ar(R),

are presented for all three isotopes in Table III, for
v =0, 1, . . . , 6 and J=(0),1,2, . . . . In each box the top
entry is for HD, the second one for HT, and third for DT.

In Table IV we present a comparison for HD between
our results, those of Ford and Browne, and some avail-
able experimental values, ' similar to Table VIII given
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The calculations reported here were performed on the
Amdahl 580/5860 digital computer operated by Comput-
ing Services at the University of Alberta. Preliminary cal-
culations not reported here (bases with s =0, 1) were done
using computing facilities at the College of William and
Mary (S.K.K.).

APPENDIX: EVALUATION OF NEW MOLECULAR INTECxRALS

Nontrivial two-electron integrals in this problem may all be expressed in terms of two fundamental molecular integrals
defined as follows:
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Y'(M;N i,N2, Ki,K2', A )
00 00 +1 +1 2' 2'—=(4~')-' f dpi f dg2 f, dpi f, dg, f, dpi f dq2(1/p)cosM(qz q—i)

X [(g i
—1)($2—1)(1—ll i) (1—712)]

N) N2 E( K2
Xexp[ —A (pi+$2)g'i gp 9i 92

and

X'(M;Ni, Ng, Ki,K2, A)
00 00 +1 +1 2' 2m'—:(4 )

' f dpi f dg2 f, dpi f di12 f dpi f dq&2(1/p)cosM(q)2 —yi)(gi —gi)

X [(g'i —1){gi—1)(1—gi)(1 —g~)]
Ni N2 K) K2

Xexp[ —A(ki+kz)]41 42 91 Vz ~

(A 1)

(A2)

(A3a)

The integrals Y' are well known and arise from matrix elements of both h, and h,'; the integrals X' are the new ones,
arising from matrix elements of h,'. Using the well-known Neumann' expansion for (1/p), they may both be reduced to
sums over certain basic radial integrals 6& &, 62& ..

r

(L —M)!Y'(M;Ni, Np, Ki,Kp, A) = g (2L +1) C (Ki,L,M)C (K2', L,M)Gii(L, M;Ni, Ni,'A)
L=M L+M!

(where K( is the lesser of Ki,K2), and

Ez+M (L —M)!X (MiNi ~N2, K1~K2~A) = Q (2L + 1)
(

C (K2iL~M)G2i(L)M ~K1~N1 ~N2&A)
L=M +

The coefficients C (K;L,M) are just the integrals defined
+1

C (K;L,M)= f dye (1 g) /Pl —(g);
they vanish if (L —M) )K, or if (L —M),K have different parity, and their nonvanishing values are

(A3b)

C~(K;L,M)=P (K+L)
(L +M)!2' M+'K! -+ +1 !

2

(L —M)!(K+L —M+2)! !
2

(A4a)

where

$0(J)= 1 pi( J)= 1/(J+2)~ pg( J)= 1 /( J+ 1 )(J+3)

'{(3(J)=1/[(J)(J+2)(J+4)], etc.

(we only need to compute M =0, 1,2, 3 for the bases' we use). The basic radial integrals Gi i, G2i are defined

(A4b)

and

Gii(L, M;Ni, N2, ,A) —= f dpi f dkg~i'kz '~ ' '
qL, (4) )pl. (4() {ASa)

(A5b)

(A6)

and the function C ~(K;L,M;x) is defined

G2i(L,M;K;Ni, N2', A)=—f dpi f dkgi 'g2'e ' 'ql. (g, )pl. (g, )C

where (g),g() are, regsectively, the greater and lesser of gi, g2, the functions pP(x), ql (x) are related to the associated
Legendre functions PI (x),QI (x) of first and second kind' by

I( ) ( 2 1 )M/2PM( ) M( ) ( 1 )M(x 2 1 )M/2g I(

E( 1 2)M/2 M( )
C ~(K;L,M, x)=x 'I —,

' [1+(—1) + ]I f—1 X —'g

G&i(L,M;N„N2, A) is just equal to the function IIL, (Ni, Nq, A) defined by James and Coolidge.

(A7)
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The functions C ~(K;L,M;x) may be generated efficiently using the recursion relation

C~&(K+1;L,M;x) =(2L +1) '[(L —M+1)C+&(K;L +1,M;x)+(L +M)C~&(K;L —1,M;x)]
and the easily proved formula

C ~(0;L,M;x)=(2lx)ql (x) .

The radial integrals G~~, Gz& may be written in the forms

G»(L, M;N, ,N„.~)= dx x 'e ""F'~-'(N, ;L,M;~,x)
1

and

Gzi(L, M;K;Ni, N2', A) = f dx x 'e "F ~ (N2,'L,M;A, x)C ~(K;L,M;x),

(A8b)

(A9a)

where the functions F ~ are defined
r

Fp&'(N .L M A x):— q (x) f dyy 'e ""pr, (y)+pL, (x) f dyy e qr. (y)

The final integrations [Eqs. (A9)] are performed numerically, but to do so accurately we must take into account the loga-
rithmic character of the integrand fa,ctors F ~ (x) and C ~(x) near x =1: Defining z =x —1, we break the integrals
into two pieces, 0 &z &zo and zo &z & ao, the outer piece (zo &z & oo) is done by direct Gauss-Laguerre quadrature in the
scaled variable t =A (z —zo), and for the inner piece we make the mapping transform z =zoe ", dz = —zoe
0&u & ao,, and use Gauss-Laguerre quadrature in u. Provided tables of the integrand factors F ~ (x) and C ~(x) are
computed efficiently and accurately at the required quadrature points, both sets of integrals (A9a) and (A9b) may be ac-
curately evaluated with 24- to 32-point quadratures for each range; the results, depending on the indices for F~ and
C ~ and the power Ãi, are stable and precise to 8—10 significant figures for break points zo in the range 0.75 &z & 2.00.

F ~ (Nz, L,M;A, x) is computed most efficiently by direct assembly from its four components for
z =(x —1)&0.015—0.020. pL (x) and the indefinite integral containing it are computed with suitable recursion rela-
tions, standard methods and the convenient polynomial expansion'

J
M( )

~ (L+M)! ~ (L+J)! z (Al 1)
(L —M)1 ~ 0 (L —J)!J!(J+M)! 2

ql (x) is generated using downward recursion relations and the hypergeometric series expansion'

2 L t(L +M)i(x —1)qM(x) =
(2L + 1 )~x I.+I+ 1

(L +M+2)(L +M+ 1)
(2L +3)

(L+M+4)(L+M+3)(L+M+2)(L+M+1) 2 2 —2

(2L+5)(2L +3)2!
(A12)

The incomplete integrals

(A13)F~ (Nz, L,M;A, x)= f dyy 'e ~qI (y)

are computed by recursion relations from tables of F~ (N;0, 0;A,x) and Fq (0;L,O;A, x), and these in turn are expressed
by term-by-term integration using the expansion (A12) in terms of the standard functions E„(Ax) and a„(Ax) defined by
Abramowitz and Stegun. '

For z & 0.015—0.020, direct computation of F ~ from its components is not accurate; instead we write

F ~ (Nz, L,M;A, x)=pl (x) dyy 'e "~ql (y) S~ (Ni, L,M;A, z),—
1

where z =x —1 and

(A14)

S~~I(N2;L, M;A, z)=e "f du(1+u) 'e ""[qL, (1+u)pL, (1+z)—qL (1+z)pL (1+u)] (A15)

and we compute S ~ directly, using expressions for ql (1+z) valid for small z, and performing certain cancellations in
the series obtained for S ~ analytically. The relevant expression for qL (1+z) at small z is

qL (1+z)=( —1) —,'pl (1+z)ln —coL, (1+z) (A16)

where pL, (1+z) is given by (All) and col is a polynomial in z of order (L +M —1),
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( I )~ 2 (L +M)!(L +I M)!(M —I—I)!
(L —M)!(L +M —I)!I!

z

(L +M)!(L +J)!
(L —M)!(L —J)!J!(J+M)!

where the coefficients h(L M J) are corn utedb therelations

h(L, M;J) (A17)

(A18a}

(A18b)

p

b(L,M;L —1)= 1

L, +M '

b(L,M+1;J)=[2(J+1)(2L+1)] '[(L +J+2)(L +J+1)h(L +1,M;J+1)—(L —J—1)(L —J)b(L —1,M;J+1)];

b,(L,O;J)=gL —gJ, (Algc)

where

Since cancellations in the resulting expressions for S ~
can still occur to 9—12 decimal places, it is necessary to
use quadruple-precision arithmetic at certain points to en-
sure the accuracy required (our routines otherwise use
only double-precision arithmetic throughout). To evaluate
the first term in Eq. (A14}, we compute F ~ near the
limiting region (z=0.015—0.020) by direct computation
methods and then add to it the value for S ~ at the same

point.
Using the above techniques we have been able to com-

pute both 611 and 621 to somewhat higher precision
(8—10 significant figures) and for a wider range of indices
(L —M &30, N„X2 &20) than is achieved by the usual
routines for G» (based on upward recursion relations
given by James and Coolidge, and using quadruple-
precision arithmetic throughout). For computation of
G~& alone, our procedure is probably about a factor of 10
more costly since it Gas large core storage requirements
and involves recursion of integrand functions rather than
only of the final integrals.
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