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Conservation laws and nonclassical states in nonlinear optical systems
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It is shown that the states produced from the vacuum by subharmonic- and harmonic-generation
processes are nonclassical for all times. This is a consequence of the Manley-Rowe relations. The
stability of the nonclassical nature of these states under small perturbations (such as noise) is also
discussed.

I. INTRODUCTION

It is possible in many circumstances to describe the
electromagnetic field classically. There do exist, however,
quantum states of the field for which no classical analog
exists. That is, the set of correlation functions which
characterizes such a state cannot be reproduced by a clas-
sical field. Such nonclassical states are of interest because
they provide instances in which the quantum-mechanical
nature of the field manifests itself and, hence, demon-
strate the necessity of the quantum-mechanical descrip-
tion.

Nonclassical states can often be generated by nonlinear
optical processes. For example, squeezed states, which are
nonclassical, can be generated by a degenerate parametric
amplifier' and in harmonic generation processes. '

Both of these processes also produce states whose photon
statistics are subpoissonian, another class of nonclassical
states. ' It is also possible to produce nonclassical
states by means of four-wave mixing. '

These processes are generally described by model Ham-
iltonians. Despite the apparent simplicity of these Hamil-
tonians the resulting equations of motion have not been
solved exactly. The results quoted above are obtained
from either lowest order time-dependent perturbation
theory or from the consideration of the steady state of the
system in an oscillator configuration. Recently progress
has been made in going beyond simple perturbation theory
in the time-dependent problem, though these calculations
are rather involved. ' ' The difficulty in obtaining solu-
tions leads one to ask whether there are any properties of
these systems which allow one to make statements about
the nature of the states produced without having to solve
the equations of motion.

The answer to this question is, in fact, yes, and the re-
quired properties are nothing other than the quantum-
mechanical versions of the Manley-Rowe relations. These
are simply conservation laws, and they constrain the
dynamics of these systems to such an extent that it is
often possible to predict that the states which are pro-
duced will be nonclassical for all times. This allows one
to make statements about a time domain which is inacces-
sible to perturbation theory.

In this paper the production of nonclassical states in
harmonic- and subharmonic-generation processes will be

discussed. Subharmonic processes will be considered in
Sec. II and harmonic processes in Sec. III. In both cases
it will be shown that if the signal mode (the harmonic or
subharmonic) is initially in the vacuum state then the
state at later times is either the vacuum state or nonclassi-
cal.

II. SUBHARMONIC PROCESSES

g=g ~n„)(n„~ . (2.1)

The set S can be either finite or infinite. If the expecta-
tion value of g in the state p is zero, i.e.,

( g) =Tr(pg) =0, (2.2)

then either p is the vacuum state or p is nonclassical.
This is relatively straightforward to show. Let us as-

sume that p is classical, so that its-P representation, P(a),
satisfies conditions (a) and (b). Equation (2.2) can then be
expressed as

2'
( g) —g J d aP(a)e- lai I I

"
() (2 3)

(np )!

where, by definition, f d aP(a)=1. The only way in
which this equation can be satisfied if P(a)&0 is if S
does not contain the vacuum state and P(a) =5' '(a), i.e.,
only if p=

~
0) (0

~
. Therefore, if p is classical and satis-

A. A criterion for finding nonclassical states

Before proceeding to a discussion of the states produced
by subharmonic-generation processes it is useful to first
discuss a result which allows one to identify nonclassical
states. In order to do this it is first necessary to define
what a classical state is more precisely. A state is classi-
cal if (a) its P representation has no singularities worse
than a 5 function and (b) its P representation is positive
definite. ' A state which does not satisfy these conditions
is nonclassical.

The criterion which we want to use to identify nonclas-
sical states is as follows. Let p be the density matrix (or
reduced density matrix) describing a mode of the radia-
tion field. Consider a set of number states of this mode
S =

I ~
n~ ) ] and the operator which projects onto this set
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fies Eq. (2.2) it must be the vacuum state. Any other state
which satisfies Eq. (2.2) must be nonclassical. Note that
if S contains the vacuum state and Eq. (2.2) is satisfied
then we have the stronger result that p must be nonclassi-
cal.

P p(t)=0 (2.13)

unless m =ln.
Consider now the operator

unless m =ln for some integer 1. From Eq. (2.9) it fol-
lows that

(2.5)

i.e., the signal mode in the vacuum state and the pump
mode in an arbitrary state.

What will now be shown is that p(t) describes a state
which contains only numbers of signal photons which are
a multiple of n This . result is plausible because each
pump photon produces n signal photons and we started in
a state with no signal photons present. It then follows im-
mediately that the state of the signal mode is either non-
classical or the vacuum. This is because the reduced den-
sity matrix for the signal mode

p (t)=Trb[p(t)]

satisfies

Tr, (p, ~
n+1), , (n+1 j )=0,

(2.6)

(2.7)

where
~

n + 1 ), is the state with n + 1 photons in the a
mode. We can then apply the result from Sec. II A.

In order to show formally that one obtains a signal
mode state in which only states whose number of photons
is a multiple of n are present we first note that the opera-
tor

M„=nb b +a a

commutes with the Hamilionian

(2.8)

[M„,M„]=0 . (2.9)

Define the subspaces of the total Hilbert space of the sys-
tem A,

(2.10)

and let P~ be the projection ogt;o A . The operators P
form a resolution of the identity, i.e.,

(2.11)

B. Subharmonic generation

Subharmonic generation is a two-mode process in
which a pump mode at frequency neo produces a signal at
to through the action of a nonlinear medium. It is
described by the model Hamiltonian

H„=ncob tb +coa "a +a„[a"b t+ (a")"b), (2.4)

where b and b are the annihilation and creation opera-
tors for the pump mode, and a and a are the operators
for the signal mode. The initial states which we will con-
sider are of the form

This operator has the following two properties:

Tr[K„p(t)]=Tr, [ ~
n, ), , (n,

~ p, (t)] (2.14)

and

K„P =0 (2.15)

unless m =n, + ln for some integer I. We now have that

Tr[K„p(t)]= g Tr[X„P p(t)]
rn =0

(2.16)

As can be seen from Eq. (2.15) each term in the sum in
Eq. (2.16) will be zero unless n, is a multiple of n The.re-
for e,

(2.17)

unless n, is a multiple of n.
It should be noted that the production of nonclassical

states from a subharmonic-generation process does not de-
pend upon the initial state of the pump. This is in con-
trast to squeezing which requires a pump with a well-
defined phase. Any phase uncertainty degrades the
squeezing. This uncertainty does not, however, affect the
nonclassical nature of the state produced.

Let us conclude this subsection by showing how one
can use the nonclassical states produced by subharmonic-
generation processes to produce other types of nonclassi-
cal states. For simplicity we consider the case of second
subharmonic generation ( n =2).

Consider the following Cxedanken experiment. Suppose
that we have a cavity containing radiation produced from
the signal-mode vacuum by a second subharmonic-
generation process. This state, p„will contain only even
numbers of photons (even photon state) and is nonclassi-
cal. It is possible to use this state to produce another
state, p,', which will contain only odd numbers of photons
(odd photon state). This state will also be nonclassical.
The state p,

' can be generated by injecting a two-level
atom, which is resonant with the signal mode, in its
ground state into the cavity and allowing it to interact
with the radiation for some time T. The atom is then re-
moved from the cavity and measured. If it is found to be
in its upper state then the state of the radiation field in-
side the cavity will contain only states with odd numbers
of photons. This assertion is proved in Appendix A.

P~p(0) =0 (2.12)

The density matrix at t =0 is given by Eq. (2.5) and one
can see that

C. Stability of nonclassical nature

The nonclassical states which we have been considering
are generated by somewhat idealized models of certain
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nonlinear optical processes. Let us now consider the ef-
fects of making the systems less ideal. What happens, for
example, if the system is connected to a reservoir? One
can show that coupling the pump mode to a reservoir does
not change the fact that the only states which become
populated are those containing a number of signal-mode
photons which is a multiple of n It. is, therefore, useful
to consider the effects of noise and dissipation in the sig-
nal mode upon the nonclassical nature of the states which
are produced. One would expect that the resulting state
would contain both even and odd numbers of photons
though more of one than the other. Is this state still
nonclassical? In this subsection it will be shown that
under certain conditions this is indeed the case.

Consider for simplicity the case of second subharmonic
generation. Define the projection operators

Q, = y l2l&. .&2l l,
r=0

(2.18)

= J d'aP(a)e '~' sinhlal

& sup(e "sinhx) = —,
'

@)0
(2.19)

where we have made use of the fact that for a classical
state, P(a) contains no worse than 5 function singulari-
ties. Therefore, a state is nonclassical if & Qo & & —, and be-
cause

&Q. &+&Q. &=1 (2.20)

we have that a state is nonclassical if &Q, & & —,'. This
proves proposition (1). In order to prove proposition (2)
we note that for a classical state

&Qo& &Q' &
—J d P( )

x[»nh
l
a

l

' —(cosh
l
a

l

' —1)]

&0. (2.21)

A state is then nonclassical if & Q,
'

& ) & Qo &.

Let us examine the consequences of all of this. Suppose
we tried to generate an odd photon state through some
process which was similar to that in our Gedanken experi-

Q, = g l
2l+1&..&2l+1

l
.

1=0

We now prove two propositions.
(1) If a state has the property that the expectation value

of Q, in that state is less than —,', i.e., & Q, & & —,, then the
state is nonclassical.

(2) If a state has the property that &Q,
'

& & &Qo &, then
the state is nonclassical.

Both of these statements are relatively straightforward
to prove. Let us start with statement (1). If a state is
classical, then

7 lal ~ + ~

&Qo&= f d'aP(a)e
i=o 2l+1 f

III. HARMONIC-GENERATION PROCESSES

Harmonic generation is also a two-mode process but in
this case n pump photons combine to form one nth har-
monic photon. This process is also described by the Harn-
iltonian in Eq. (2.4) but now the a mode is the pump and
the b mode is the harmonic. The initial state of the sys-
tem is now taken to be

P(0)= la&" &al l0&bb&01 (3.1)

where
l
a&, is a coherent state for the a mode. It will be

shown, as before, that for later times the harmonic is ei-
ther in a nonclassical state or in the vacuum state.

The initial state in Eq. (3.1) is considerably less general
than that in Eq. (2.5). It is not necessary to be quite so
restrictive. The results in this section will also be true if
the a mode is in a classical state with the property that its
P representation is identically zero for

l
a

l
)& for some

R. It should be possible to generalize this result still fur-
ther.

The essential idea behind the proof is that it takes n
pump photons to produce one harmonic photon. The
number distribution of the harmonic will, therefore, tend
to be more concentrated around zero than that of the
pump. It will, in fact, become sufficiently concentrated
for the resulting state to become nonclassical.

For simplicity let us consider the case n =2 though the
result holds for arbitrary n In order t.o proceed we again
note that [Mq, Hq] =0 so that the total Hilbert space A is
the direct sum of the subspaces A ~ which are invariant
under the action of the time development transformation.
Define the operator Q„aslib

ment only this time when the signal mode was coupled to
a reservoir. The result would not be a pure odd photon
state because the noise and damping would have caused
some of the even photon number states to become popu-
lated. On the other hand, we would expect that if the
noise were small and we were considering times short
compared to the damping time these even-number states
would be populated far less than the odd-number states,
i.e., &Qo& &&&Q, & or &Q, & & —,

' so that the resulting state
would still be nonclassical. Similarly if we were trying to
produce an even photon state from the vacuum by means
of a subharmonic-generation process in the presence of
noise we would expect to find that some of the odd pho-
ton number states had become populated. Again, for
weak noise and times short compared to the damping time
we would expect .that the population of the odd-number
states would be smaller than that of the even-number
states with occupation numbers greater than zero (these
states become populated in time 1/a2 while the noise and
damping are assumed small enough so that the odd-
number states become populated much more slowly).
Thus, &Q,

' &) &Qo& and the state which is produced is
still nonclassical. Our two propositions, then, indicate
that even in the presence of noise subharmonic-generation
processes should be capable of producing nonclassical
states.
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(3.2)

&Q.,&= g &P.g., &.
m &2nb

One can use the fact that [P,Q„,]=0 to show

(3.3)

Q„,= g ln&bb&n I
eI, .

n &nb

Because P~(
I g), e

I
n )b )&0 only if m & 2n, we have f d2pp(p)=r&0.

Because the function

(3.13)

(3.14)

This is proved in Appendix B. Assume now that for some
R )0 that

&P.g., & «P. &.

For a pure state qI this follows from

IIQ.,P 'PII'& IIP +II'

because

(3.4)

(3.5)

is monotonically increasing for x &0 (as is easily demon-
strated by taking its derivative), we have

F„(R )I f d pP(p)F„(
I pl )

& f d'pP(p)F„, (
I p I

') (3.15)

so that

and I (e(R —(a[ )g (R2
I

t2
I

2} (3.16}

(3.6)

The inequality (3.5) itself is a result of the fact that
I lg„ I I

=1. The extension to the case of a density matrix
is straightforward Sub.stituting inequality (3.4) into Eq.
(3.3) yields

&g., && g &P.).
m &2nb

(3.7)

&g )= g f d'pP(p)
n&nb

(3.8)

where P(p) &0. It is also possible to find &P ) because
this quantity does not change with time. Therefore,

Let us now suppose that the reduced density matrix for
the b mode is classical. We then have that

Because of Eq. (3.12) we see that I =0. Therefore, for all

I p I
&0 we have that P(p)=0 and because P(p) cannot

be more singular than a delta function it must also be true
that P(p)=5' '(p). Thus the harmonic is either in a
nonclassical state or it is in the vacuum state.

IV. CONCLUSION

%'hat has been shown is that both harmonic- and
subharmonic-generation processes produce nonclassical
states from the vacuum. That is, at any time t, the har-
monic or subharmonic is either in a nonclassical state or
the vacuum state. This result follows directly from the
conservation laws which these systems obey and does not
depend upon any approximations. %"e thus see that non-
classical states occur commonly as the output of nonlinear
devices.

& P ) =Tr[p(t)P ]=Tr[p(0)P ]

mt
(3 9)

ACKNOWLEDGMENTS

I would like to thank W. Becker and M. S. Zubairy for
interesting and useful conversations.

Substituting these expressions into inequality (3.7) we ob-
tain

P e —I~I'
n&nb

mt
m &2nb

(3.10}

lim A„(x,y)=0 .
n~oo

(3.12)

The object now is to show that if P(p) is non-negative
and satisfies inequality (3.10) for all nb then it must be the
case that P (P)=5' '(P).

In order to prove this let us first note that if the func-
tion A„(x,y) is defined as

yl
A„(x,y) =

1t
(3.11)

I &2n

then for any value of x & 0 we have that

APPENDIX A

q'(0) =
I g &

I 4 & (A 1)

where
I g ) is the ground state of the atom ( I

e ) is the ex-
cited state) and

I f, ) is a state of the field which is a su-
perposition of states containing even numbers of photons.
The system is described by the Hamiltonian

H = ,' co( o 3+I)+boa ta +—Ao ~ (a t+ a ), (A2)

where co is the energy level spacing (and mode frequency),
and Pauli matrices are being used to describe the atom.
Define the unitary operator

0 ——03e'~~ ' (A3)

Here it will be shown that if an atom absorbs a photon
from a state which contains only even numbers of photons
then the result is a state with only odd numbers of pho-
tons. For simplicity let us consider the case of a pure
state so that at t =0 the state of the system is
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and note that

Uoa UO' ——a, Uoo. DUO' ———Oi,—1=

Uoavo' ———a .

This implies that

r r —iHt r r—& —iHtUoe Uo =e

Therefore,

(A4)

(A5)

We first note that for 2n +1)y,

ym y2n oo ym —2n

~~„m! (2n)! ~~„m (m —1) (2n + 1)

(2n)! 0 2n +1

2n+1
(2n)! (2n +1)—y

(82)

Uo+(t) = Upe ' 'Uo 'Uo'II(0) = %(t—) (A6)

because o'3
I g & = —

I g & and e ' ' '
I f. & =

I 4. &. It 1s also
possible to express 0'(t) as

and

mt nf
(83)

'p«)= Ig&101&+ le& l@~& (A7)
Therefore, we have that

where
I gi & and

I Pq & are field states. If Uo is applied to
Eq. (A7) and use is made of Eq. (A6) we find

e' ' 'IA&= l@x&

2

A„(x,y) (
X

n! 2n +1
(2n)! (2n + 1)—y

(84)

2 = 2

so that
I P&& is a superposition of states with an even

number of photons and
I gq & is a superposition of states

with an odd number of photons. Therefore, if the atom is
measured and found in the excited state the field contains
only odd numbers of photons.

APPENDIX B

In this appendix it is shown that

lim A„(x,y)=0.
n~oo

It is also the case that
'n

n! e (n + 1)"+'
(2n)! 4

i
n~n

so that

(n+ 1)(1+1/ll)y2
A„(x,y) (

n X

2n +1
(2n +1)—y

(86)

As n —+ oo the first group in parentheses goes to 0 and the
second group in parentheses goes to 1. Equation (81) then
follows.
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