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Stochastic dynamical models described by Fokker-Planck equations, in the limit of weak noise,
can be formally associated with Hamiltonian dynamical systems. Of special interest are "Fokker-
Planck Hamiltonians" with a certain smooth separatrix at zero energy, since a differentiable macro-
scopic potential was shown to exist in this case. In the present paper, integrability of Fokker-Planck
Hamiltonians with two degrees of freedom is investigated, with the aim of identifying cases in which
a smooth potential exists and cases in which the eigenvalue problem of the Fokker-Planck operator
becomes separable. Additional first integrals of polynomial and nonpolynomial form and also expli-
citly time-dependent conserved quantities are obtained. The singular-point analysis testing for the
Painleve or the weak Painleve property and polynomial conserved quantities in dynamical systems is

applied. This method is found to be useful for the purpose of identifying solvable special cases in

classes of Fokker-Planck models with free parameters. However, the utility of this method in a
search for systems with a smooth potential is found to be severely limited because it turns out that
complete integrability with polynomial conserved quantities is a much stronger requirement than the
existence of a smooth separatrix at zero energy.

I. INTRODUCTION

A useful formulation of equilibrium thermodynamics is
provided by a Fokker-Planck equation for the probability
density of a complete set of macroscopic variables which
undergo a continuous Markov process due to small
thermal fluctuations. ' The form of the drift and diffusion
coefficients of the Fokker-Planck equation for thermo-
dynamics ensures that the time-independent probability
density is given by the Boltzmann-Einstein formula

P (q) —exp[S (q)/kg ],
where q denotes some chosen values for the complete set
of macroscopic variables, S(q) is the total (constrained or
"coarse-grained") entropy of the system (including all
reservoirs to which it may be coupled) for the complete
set of macroscopic variables constrained to assume the
values q, and kz is Boltzmann's constant which serves as
a formal measure of the strength of fluctuations on a
macroscopic scale. By the well-known methods of equili-
brium thermodynamics the entropy S(q) may be ex-
pressed entirely in terms of q and the fixed intensive pa-
rameters of the reservoirs. In this way S(q) becomes the
thermodynamic potential which is appropriate for the
particular constraints provided by the reservoirs. For ex-
ample, in the case of a heat reservoir with temperature T,
S(q) can be expressed as —Ii (q, T)/T, where I' is the free
energy of the subsystem.

The basic concept of a complete set of relevant vari-
ables which undergo a Fokker-Planck process as a result

P(q) = —lim [g 1np(q, q)] ?
g —+0

(1.2)

In recent papers by two of us' '" this question was
analyzed by studying the weak-noise limit of the Fokker-
Planck equation' and its path integral solution. " In Ref.
10 it was shown that the Fokker-Planck equation in the
weak-noise limit becomes equivalent to the Hamilton-
Jacobi equation of a certain Hamiltonian dynamical sys-
tem in which the potential P(q) assumes the role of the ac-
tion on a separatrix at energy zero. The smoothness of
the potential, therefore, requires the smoothness of the
corresponding separatrix. It is well known, that smooth-
ness of separatrices is nongeneric in Hamiltonian systems,
but is guaranteed by the integrability of the latter. There-
fore, the existence of a smooth potential P(q) is exception-

of weak fluctuations has proved to be very useful also in
cases far from thermodynamic equilibrium. In such
cases the possible form of the drift and diffusion coeffi-
cients of the corresponding Fokker-Planck models is
much less constrained than in the case of thermodynamic
equilibrium. An important question, which appears in
this more general case, is the existence or nonexistence of
a nonequilibrium potential generalizing the coarse-grained
entropy S(q) in Eq. (1.1). More precisely, if g is a param-
eter which characterizes the strength of the fluctuations,
and if the Fokker-Planck equation has' the unique time-
independent solution I'(q, r)), is there a potential P(q),
with some specified smoothness properties like first-order
differentiability, which is defined by the limit
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al in nonequilibrium steady states' and a smooth P(q), if
present in a special case, is not structurally stable against
arbitrary perturbations of the Fokker-Planck equation. '

It was shown in Ref. 11 that in the general nonintegrable
case a nondifferentiable potential P(q) is defined by Eq.
(1.2) which is associated with the minimum of the action
on a certain "wild separatrix" of the nonintegrable Hamil-
tonian system. These results indicate that among the
Hamiltonian systems associated with Fokker-Planck
models in the weak-noise limit those which are integrable,
eventually at energy zero only, play a special role because
they provide examples of physical systems which have
smooth nonequilibrium potentials.

In the present paper it is, therefore, our goal to investi-
gate by the available methods the integrability properties
of Hamiltonians corresponding to Fokker-Planck models
in the weak-noise limit, which are shortly denoted as
"Fokker-Planck Hamiltonians" in the following. Section
II summarizes the framework in which these Hamiltoni-
ans appear. The questions which we then ask and answer
in the subsequent sections are as follows.

(1) What is the relationship, if any, between the smooth
potential and the second conserved phase-space functions
in obviously integrable (e.g., symmetric) cases (Sec. III)'?

(2) What are the conserved phase-space functions in
other obviously solvable cases like the Ornstein-Uhlenbeck
process or the case of Brownian motion (Sec. III)?

(3) Can one apply to the Fokker-Planck Hamiltonians
the singular point analysis which has been developed' to
test for the Painleve or weak Painleve property of ordi-
nary differential equations, and which has in conservative
systems so far been applied to motion in potential wells;
and how useful is this method in practical cases for dis-
covering completely integrable Fokker-Planck Hamiltoni-
ans and models with a smooth potential? What are the
consequences of complete integrability for the eigenvalue
problem of the Fokker-Planck equation (Sec. IV)?

(4) Finally, what is the relationship between integrabili-
ty and the existence of a smooth separatrix. In particular,
under which structural perturbations of the Fokker-
Planck drift is the smooth separatrix of an integrable
Fokker-Planck Hamiltonian preserved, while otherwise
the property of integrability is destroyed (Sec. V)'?

Even disregarding the particular application to
Fokker-Planck models which originally motivated our
work, the results we obtain are of interest because they ex-
tend considerably the class of Hamiltonian models which
have up to now been investigated from the point of view
of integrability. In particular, the Hamiltonians. we con-
sider include contributions from vector potentials. Gen-
erally speaking, for the class of models we consider we
find a richer spectrum of possibilities than has been en-
countered up to now in the investigation of motion in sca-
lar potentials. For instance, we find systems which are in-
tegrable only on a particular energy hypersurface (E =0),
while lacking integrability for all other energies. In other
cases we find that a smooth separatrix at E =0 exists, al-
though the system is nonintegrable on this energy hyper-
surface. These findings can be summarized with the ex-
isting body of knowledge in a hierarchy of integrability
properties of differing strength, which are interrelated by

II. MECHANICAL ANALOGY IN
THE WEAK-NOISE LIMIT OF STOCHASTIC

PROCESSES

We consider systems characterized by a few macroscop-
ic variables I q, v= 1,2, . . . , n I the dynamics of which is
governed by Langevin-type equations

j"=K'(q)+g'~ g (q)g'(t), (2.1)

where K' stands for a deterministic drift term, generally
nonlinear in q, while the noise g' describes the influence of
the fast variables coupled to the slow ones through g; .
(Summation over repeated lower and upper indices is im-
plied. ) g' is assumed to be a Gaussian white noise with
(P(t) ) =0, (g'(t)g (0) ) =5' 5(t); the intensity of the noise
is measured by. the dimensionless number g. We shall be
interested in the limit of weak noise, g~0, which is quite
realistic for macroscopic systems. It is worth noting that
the case q=0, the deterministic case, and the limit q~O
must be distinguished. The latter means, by definition,
that in all quantities the leading contribution in q will be
kept only. Such a calculation is analogous in spirit with
the semiclassical approximation of quantum mechan-

s 14, 15

When turning to the description of the probability den-
sity P(q, g, t) associated with (2.1) there is no need to de-
cide whether the Ito or the Stratonovich ' calculus is used
since the drift terms which appear in the equation of the
probability distribution in the two different interpreta-
tions coincide in leading order in q Thus, (2.1) in. the
weak-noise limit leads to the Fokker-Planck equation

(2.2)

mutually forming necessary or sufficient conditions for
each other. Denoting by A ~B that 3 is a sufficient con-
dition for B (and, therefore, B is necessary for A ) we may
write the hierarchy we find as follows: Positive result of
the singular-point analysis ~ weak Painleve or Painleve
property —+ complete integrability ~ integrability on a
special energy hypersurface ~ smoothness of a special
separatrix.

The application of the singular-point analysis turns out
to provide a practical tool to detect special separable cases
in parametrized classes of Fokker-Planck models. A con-
crete example is given in the Appendix. On the other
hand, the same method does not provide an efficient tool
for detecting models with a smooth potential, partly be-
cause nonpolynomial and explicitly time-dependent first
integrals are not well handled by the available methods
but are quite common in integrable Fokker-Planck Hamil-
tonians, and partly because the tested property of com-
plete integrability in the entire phase space turns out to be
unnecessarily restrictive. Integrability at E =0 is a more
relevant condition, appropriate methods for testing it are,
however, not yet available.
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with Q'"(q)=g; (q)gj."(q)5' as the diffusion matrix, as-
sumed to be positive semidefinite. In spite of the explicit
g dependence, the second term cannot be ignored since
P(q, ri, t) proves. to be a singular function of g.

We focus our attention on the stationary probability
density P(q, rj), the time-independent solution of (2.2).
For small values of g it has the form

P (q, g ) =X(q ) exp[ —P(q) /g], (2.3)

where %(rI) is a normalization constant and P(q) is a con-
tinuous (and g independent) function. This follows from
the path integral solution of the Fokker-Planck equa-
tion. " We call P the potential of the macroscopic system.
If P is in addition smooth, (2.3) is of the same type as the
distributions governing fluctuations around thermo-
dynamic equilibrium (where I/g is proportional to
Avogadro's number). There are well-known nonequilibri-
um systems (undergoing also instabilities) which possess a
smooth potential. ' This is, however, not the case in
general. "

The equation determining P follows immediately after
inserting (2.3) into (2.2) and keeping the leading terms be-
ing of order 1/g. It reads

l
Qvy( )

~0 W +Kv( )
~4 0

V
Q P Q

V
(2.4)

K (q) = ——,
' Q""(q) +r'(q)

Bq"
(2.5)

r'(q) =0 .
Bq

(2.6)

The circulation r defined by (2.5) is, therefore, that part
of the drift which corresponds to a motion along equipo-
tential surfaces. A given potential can characterize
several systems differing in their circulation terms. A
substantial difference between equilibrium and nonequili-
brium systems is that in the former class r can be deter-
mined simply since it transforms like q under the micro-
scopically defined transformation of time reversal. '

Thus, a smooth potential always exists which can be ob-
tained by integrating Qz (K —r ). In the nonequilibri-

Next', we have to specify the boundary conditions under
which (2.4) is to be solved. First, we note that the deter-
ministic dynamical system q =K (q) has, in general, one
or more attractors. Then, it is possible to speak formally
about a stationary distribution also for g =0, which con-
sists ot 6 tunctlons concentrated on the attracting set. If a
weak, nonvanishing noise is switched on, the distribution
will be broadened with a width typically of order g'
o.)2, but, in the same leading order, it will not be shifted.
Thus, in the weak-noise limit P(q) must have a minimum
on the attractors of the deterministic system. Similarly,
on the repellors the probability density must have a
minimum, i.e., P must be maximal. (On the saddles P is
extremal. ) That P can be considered as a potential is be-
cause of these properties and of the fact that the drift al-
ways contains a gradient term in P. One may always
write according to (2.4)

um case, however, neither r nor P are known. One has to
solve (2.4) before r can be specified.

For a continuously differentiable P we may write the
boundary condition discussed above in a somewhat weak-
er form:

BP

qCr
(2.7)

H q,
as

'Bq (2.8)

where H stands for a Hamiltonian of a mechanical system
with generalized coordinates q, E, and S(q) denote the
energy and the action, respectively, and BS/Bq =p de-
fines the momenta. A comparison with (2.4) gives E =0
and

H (q,p) = ,P.P„Q'"(q)+P—.K'(q) (2.9)

as the Hamiltonian associated with the macroscopic sys-
tem. Since H can be uniquely constructed from the coef-
ficients of the Fokker-Planck equation we call (2.9) a
Fokker-Planck Hamiltonian. It is useful to note that in
(2.2) H appears as an operator, which we obtain from (2.9)
if we put p = —gB/Bq and preserve the order of p and q
defined by (2.9). The first term of (2.9) can be interpreted
as a kinetic energy term with an anisotropic mass tensor,
the second one, however, is different from the usual po-
tential energy. Similar terms appear when describing the
motion of charged particles in an external magnetic field;
K'(q) is, thus, analogous with a vector potential. The
part of K"(q) which is derivable from the macroscopic
potential P(q) [cf. (2.5)] is of pure gauge type. It can be
transformed into an equivalent scalar potential by the
gauge transformation p ~p with

where I denotes the union of the limit sets (attractors, re-
pellors, saddles, . . . ) of the deterministic system. If there
exists a smooth solution of (2.4) with (2.7) it is a global
smooth potential for the macroscopic system. In general,
however, such a solution does not exist. ' Condition (2.7)
must then be weakened by requiring the disappearance of
the derivative at the attractors only since in the vicinity of
them, contrary to that of repellors, P is always smooth
(this follows again from the path integral solution" ). The
potential obtained from (2.4) is then typically multivalued.
Among the different branches the minimal one is to be
kept because it gives the dominant contribution to P(q, q)
for small values of g." Therefore, the potentials of rnac-
roscopic nonequilibrium systems are, in general, nondif-
ferentiable functions.

In stable systems the probability density P(q, rl) must
be normalizable in q. This implies an extra condition for
P(q) which we shall investigate after (2.4) with (2.7) has
been solved. According to our experience the normaliza-
bility is in many cases automatically satisfied.

When studying the question of solvability of (2.4) with
(2.7) in more detail a mechanical analogy turns out to be
helpful. It should be noticed that the nonlinear equation
(2.4) has the form of a Hamilton-Jacobi equation
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1Pv=Pv+ 2
Bq

(2.10)

(2.11)

which after taking into account (2.6) changes the Hamil-
tonian into

ministic motion, described by q =K'(q), takes place.
One sees directly from the canonical equations that So is
defined by p =0. Thus, the limit sets of the deterministic
system appear on the plane p =0, but being embedded
into the 2n-dimensional space, they become hyperbolic
objects. They have, therefore, stable and unstable invari-
ant manifolds also transverse to So on which not all p
vanish. We are interested in the action p just on these
separatrices since the relation

Owing to the special form of the Hamiltonian (2.9) or
(2.11) the mechanical motion described by the canonical
equations is typically unbounded in q even at energy zero.
Another unusual feature of Fokker-Planck Hamiltonians
follows from (2.11). At a given value of the energy a cer-
tain component pr of the momentum is given by solving a
quadratic equation. This means that in a case with non-
vanishing circulation there are, in general, two different
values of pr associated with any accessible points leading
to a double foliation of the energy hypersurface (Fig. 1).
For vanishing circulation, when (2.11) is of the form
describing the motion in a scalar potential, the two values
of pr are equal in modulus and the foliation becomes de-
generated.

It follows from (2.8) and (2.9) that the potential P plays
the role of an action in the mechanical system. In fact,
we are only looking for the special action satisfying also
(2.7). In the mechanical picture it means that the momen-
tum associated with this action must vanish in those
points- q which belong to the hmit sets of the deterministic
systems. This statement becomes clearer by noting that
the 2n-dimensional Hamiltonian phase space contains an
invariant n-dimensional hypersurface So, where the deter-

py —,v= 1,2p ~ ~ ~ p n
Bq

(2.12)

on them automatically ensures condition (2.7) if P is de-
fined globally. If it turns out that the nontrivial (trans-
verse to So) separatrices are smooth and are given by
unique functions p, =p (q), the potential is obtained by
simply integrating (2.12). Thus, the existence of a smooth
potential requires the existence of a single nontrivial
smooth separatrix in the Hamiltonian phase space con-
necting all limit sets of the deterministic system.

It is well known that smooth separatrices are structural-
ly unstable against weak general perturbations, ' there-
fore, the existence of a smooth potential is exceptional
among nonequilibrium systems.

Since integrability guarantees the smoothness of all tra-
jectories, the complete integrability of the Hamiltonian
system (2.9) is obviously a sufficient condition for finding
a smooth separatrix. (By complete integrability is meant
the existence of n independent globally defined smooth
functions of q,p, and eventually of the time, whose time
derivative vanishes. ) Therefore, it is interesting to look
for the conserved quantities of the Hamiltonian system
and to discuss the relation between the potential and the
constants of the motion in the associated mechanical sys-
tem.

0

FIG. 1. Foliation of the plane E =0, y =const in the
Fokker-Planck Hamiltonian system defined by the unit dif-
fusion matrix aud (3.1) with f(r )=1—r, g{r )=1. The
dashed lines give the boundary of the domain accessible on the
E =0 hypersurface. Through all points in this region there pass
two constant-L curves. We have plotted couples of these curves
passing through the points rQ ——0.25,0.5, . . . , 1.5, p, Q= —rof (ro). Curves with negative L intersect the r axis, those
with positive L do not. The potential is associated with the
L =0 curve given by p, = 2rf(r ). For g~O the acces—sible
domain shrInks to that between p„=O and p„= 2rf (r ) and-
constant-L curves with opposite L values coalesce, as in the
usual case of motion in a scalar potential.

r'=rf(r ), jo=g(r ) . (3.2)

Consequently, the limit sets are circles of radius r such

III. FOKKER-PLANCK HAMILTONIANS AND
CONSERVED QUANTITIES

Statements on integrability of the Fokker-Planck Ham-
iltonian (2.9) can only be made for special examples and
subclasses. The most important points can be illustrated
by considering relatively simple examples. In what fol-
lows we restrict ourselves to stochastic systems with two
variables (four-dimensional Hamiltonian phase space
x,y,p„,p~) and with a constant diagonal diffusion matrix.
To prove integrability we have to find then a conserved
quantity independent of the Hamiltonian.

As a first example we consider a macroscopic system
specified by the unit Q matrix and the drift terms

K"=xf (r ) yg (r 2), —
(3.1)

K~=yf (r )+xg (r )

with f and g arbitrary smooth functions and r =x +y .
The system possesses a rotational symmetry. In polar
coordinates r,y the equations of motion for the deter-
ministic system become
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L =p =xpy —3'p (3.4)

is a conserved quantity. Consequently, this Hamiltonian
system is integrable at all values of the energy. The value
of L specifying the smooth separatrix associated with the
potential is L =0 since p vanishes at the attractors. Fig-
ure 1 shows some constant-L curves on the E =0 hyper-
surface in the special case of f(r )=1 r, g(r )—:1 il-—
lustrating the double foliation mentioned in Sec. II.

This example demonstrates how the potential and the
conserved quantity are, in general, related. The
knowledge. of P is not sufficient to reconstruct the con-
served quantity, not even at H =0, since P is not the gen-
eral action but rather a special one restricted to the
asymptotic trajectory connecting the limit sets of the
deterministic system transverse to the hypersurface So.
Inversely, the conditions H =0, L =L (q E I, p =0)
uniquely specify P. In the present case H =0, L =0 im-
mediately yield p„= 2xf (r ), p» —— 2yf—(r ) which —are
just the equations for the smooth separatrix emanating
from the limit sets.

It is worth mentioning that one can specify integrable
Fokker-Planck Hamiltonian systems by means of the rela-
tions (2.10) and (2.11) in the following way. If among the
integrable systems associated with motion in a scalar po-
tential V(q) and with a non-negative mass tensor Q a case
is found where a smooth function P(q) exists so that

that f ( r ) =0, and in addition a singular point at the ori-
gin. A circle of radius ro is an attracting limit cycle if
f'(ro) &0; the origin is a stable focus for f (0) &0. (Prime
denotes derivative with respect to the argument. ) A direct
substitution shows that

P(x,y) = —f f (z)dz (3.3)

is a smooth solution of (2.4) satisfying (2.7). Moreover, p
is minimal at the attractors of (3.2) and maximal at the re-
pellors. Thus, (3.3) represents a smooth potential. The
circulation terms [cf. (2.5)] are identified as r~ = —yg(r ),
r» =xg(r ). From (3.2) one can see that they generate a
deterministic motion along the equipotential lines which
are concentric circles. This explains why the potential is
independent of g.

The Fokker-Planck Hamiltonian (2.9) for this system is
invariant under rotation. Using polar coordinates one
finds that the angle y is a cyclic variable and, therefore,
the conjugated momentum

It follows from (3.5) that the deterministic motion re-
stricted to the hypersurface p =0 possesses also a con-
served quantity, consequently, the limit set points of the
deterministic dynamics can be reached only along the
curves specified by p =0 and the surface yBPIBx
=xBP/By. Therefore, the condition H =0, L =0 is ful-
filled only on the intersection of the nontrivial separatrix
and this surface.

Another obviously integrable case is realized if the
Euler-Lagrange equations are decoupled. This is always
found for

and

K"=f (x), K»=g (y) (3 6)

0

L =Q„p„/2+p„f (x) . (3.8)

It is now quadratic in p„and again L =0 specifies the
smooth separatrix at E =0.

The examples shown above all have the property that
for a polynomial choice of f and g the conserved quanti-
ties are polynomials, too. The majority of the explicitly
known systems among the Hamiltonians describing
motion in scalar potentials also supports this rule. We
turn now to Fokker-Planck Hamiltonians where this is
not the case.

We start with a linear system specified by the drift

E =Bq, (3.9)

where B is a constant matrix, and by a constant (sym-
metric) diffusion matrix Q q denotes the column vector
(x,y) . (The results will be valid for arbitrary dimen-
sions. ) The limit set of the deterministic system is the ori-
gin. It is attracting if B is negative definite. Equation
(2.1) then describes the stochastic approach of a stable
steady state.

The potential has a quadratic form

where f and g are arbitrary smooth functions vanishing in
the limit sets and Q„,Q» are constants. This corresponds
to a situation where the stochastic equations (2.1) for x
and y are independent. The potential is then

P(x,y) = —2 f f(z)dz/Q„—2 f g(z)dz/Q» . (3.7)

A possible choice for the conserved quantity is given by

V( ) Q~I( )
W(q) BP(q)

8 Qq~ Qq~
' P= —,q~C 'q . (3.10)

L=J px- 1By
2 Bx

1 BP—X Py—3' 2 gy
(3.5)

the application of the inverse of (2.10) leads to an integr-
able Fokker-Planck Hamiltonian system with vanishing
circulation on the potential P(q). For example, the con-
served quantity of the Fokker-Planck Hamiltonian associ-
ated with a two-dimensional system with unit Q matrix
and rotationally invariant scalar potential V(x +y ) is
obtained from the angular momentum as

C stands here for the solution of the matrix equation

BC+CBr+Q=O (3.11)

L =exp( Bt)[q(t) —Cp(t)] . — (3.12)

as it can be checked by a direct substitution into (2.4).
According to (3.10) the elements of the symmetric matrix
qC yield the quadratic mean values in the steady state.
The circulation is given by r = , (B—CBrC ')q. —

After rearranging the canonical equations one finds a
vector of time-dependent first integrals
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Along the nontrivial separatrix of the origin L is identi-
cally zero.

Next, we consider a model introduced by Hietarinta
(case A in Ref. 24). In the original version g is the unit
matrix but one of the drift terms is rather singular.
Therefore, we perform a canonical transformation leading
to

X"=0, Zy=xy (3.13)

Gwing to this change the diffusion matrix becomes
(o &). The integrability of this system at any values of
the energy was established by finding a conserved quanti-
ty. In the variables we use, a possible choice is

L =exp(p )(1—p„—xy p ) . (3.14)

The line y =0 is a limit set of the deterministic system
(which for negative values of x is attracting). Therefore,
on the nontrivial separatrix of the limit set L =1. Now,
by means of the conserved quantity we construct the po-
tential. From H =0 and L, = 1 one obtains an implicit set
of equations for the separatrix in the form

1 I. 1 px —e"p—( px )J'—
X g 2 exp( —p„)—1+p„—p /2

(3.15)
1 —p„—exp( —p„)

XP P.
Py

where p„=BQ/Bx, p~=BQ/By. This suggests an ansatz
for the potential

2 3 4 5 6 7 8 9 Z

FIG. 2. Plot of the function h(z) specifying the potential P
through (3.16) obtained by numerimlly integrating {3.17) with
h (0)=0.

where y denotes the velocity, y stands for the damping
constant, and f represents the external force depending
smoothly on x. Since a random- force appears in the equa-
tion for the acceleration only, one can write

0 0
&= 02y

with a constant y'. If ks T is identified with g and y =y',
the fluctuation-dissipation theorem is fulfilled and a ther-
modynamic equilibrium state (at temperature T) will be
reached. In general, one obtains for the potential

P(x,y) =xh (xy) (3.16) P(x,y)=, —,y —J f(z)dz (3.21)

h(z): 9z + 27z &z, 5z
4 2 4 4 92 (3.18)

with an even function h. By inserting it into the condi-
tion H =0 we find a quadratic equation for the derivative
of h and choose the branch of its solution which is con-
sistent with (3.15) for x,y —&0. Thus, h (z) is specified by

h +z +z(2h —h +z )' 2

(3.17)
ck z(1+z')

and the free parameter in h is fixed by (3.15). The asymp-
totic form for h is obtained as

L =exp(yt) y(t)
py(t)

(3.22)

Making use of H =0 and the conservation of L, the
canonical equations are reduced to

implying a circulation r"=y, r~=f(x).
We have found a first integral at H =0 but have not

succeeded in finding any at nonzero energies. The con-
served quantity at H =0 is again explicitly time depen-
dent

for z~0, and

h (z) = —21n(z)+2 —ln2 —z ln (z)+ (3.19)

L exp( yt) —y'—/y y+f(x), x=y . (3.23)L exp( —yt) +y'/y

It is to be noted that (3.23) describes the deterministic
motion of a particle in the potential —f f(x) dx with a
time-dependent damping coefficient. As for t~ao, the
damping goes to a constant this motion cannot be chaotic.
The smooth separatrix of the potential is specified again
by L, =0.

The examples considered in this section show that it
may occur quite often that a polynomial Fokker-Planck
Hamiltonian possesses a nonpolynomial or time-
dependent conserved quantity. Unfortunately, there are
no standard methods available for finding such first in-
tegrals in Hamiltonian systems. On the other hand, the
last example suggests that integrability may occur at ener-

gy zero only which also makes the search for integrability
in this class difficult.(3.20)K"=y, K~= —yy +f(x),

for z~ ao. According to the numerical solution of (3.17)
the asymptotic regions are smoothly connected (see Fig.
2). The conserved quantity (3.14) on the separatrix with
(3.16), (3.17) has been found to remain equal to one show-
ing the consistency of the ansatz in the whole regime.
The potential is thus minimal along the negative x axis
and maximal along the positive one. The probability dis-
tribution is not normalizable not even for x (0 owing to
the extended structure of the attractor.

Finally, we turn to the example of the Brownian motion
of a particle in an external potential. The drift terms are
then given by
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IV. PAINLEVE ANALYSIS

a( ) y a Pa+J~d

j=p
(4.1)

where ~=t —tp, and the p 's are positive rational num-
bers with a common integer denominator d )0. With an
integer p~ and d =1 (4.1) describes a pole singularity.
According to Ref. 29 the system has the weak Painleve
property if all solutions around movable singularities are
of the form (4.1) with d&1.

As the first step of the analysis, only the most singular
terms (j =0) of (4.1) are kept, and inserted into the equa-
tions of motion. For certain values of p, ex=1, . . . , n it
may turn out, in general, that some terms of the equations
balance, while others can be ignored. The former ones are
called the dominant terms of the equations. This step
provides the equations determining the amplitudes ap,
a = 1, . . . , , n. All possibilities of dominant behavior speci-
fied by the sets [(p,a 0, a = 1,2, . . . , n J must then be in-
vestigated.

Considering the complete form (4.1), a direct substitu-
tion into the equations of motion and a comparison of the
coefficients in the power series leads to a set of recursion
relations of the type ( a; =(a,a;, . . . , a;"))

MJ(d, a0)aJ =RJ(d, a0, . . . , aJ &), j)0 (4.2)

In order to understand better the relation between the
integrability of the Fokker-Planck Hamiltonian, its conse-
quences for the time-dependent solution of the Fokker-
Planck equation, and for the existence of a smooth none-
quilibrium potential P, we apply in this section a singular
point analysis of the Euler-Lagrange equations of (2.9).
Such an analysis provides a strong necessary condition for
the system having the Painleve or the weak Painleve prop-
erty.

It is said that a system of ordinary differential equa-
tions has the Painleve property if the only movable singu-
larities of all its solutions in the complex time plane are
poles. In the case of the weak Painleve property also cer-
tain algebraic branch points are allowed. Investigations of
these properties have been done in both dissipative and
Hamiltonian systems. ' ' The practical relevance of
-these studies lies in the Painleve conjecture' and its exten-
sion according to which a sufficient condition for the
complete integrability of the system in question is the
Painleve and the weak Painleve property, respectively.
Therefore, the singular point analysis allows us to identify
systems which are candidates for integrability, but the fi-
nal confirmation is only provided by the explicit construc-
tion of the necessary number of conserved quantities. A
related result proved recently is that systems obeying a
certain similarity property and having singularities
characterized by irrational exponents cannot have rational
invariant phase-space functions.

Next, we outline the main steps of the singular point
analysis. A system of n variables q, a=1, . . . , n, satis-
fying n second-order differential equations of polynomial
form is considered. We try to find solutions around a
movable singularity situated at tp in the complex time
plane in the form

q (t)=a0r +c r (4.3)

into the dominant terms of the equations of motion and
keeping terms being linear in c only. When comparing
the coefficients in the power series terms of type Rj of
(4.2) do not appear and one obtains the condition M„c=0.

The third step of the singular-point analysis is then to

where Mj and Rj are, in general, nonlinear functions.
In the second step of the analysis one decides whether

the general solution of the equations of motion containing
2n free parameters and special solutions. with less free pa-
rameters can be of the form (4.1). Since for all j for
which the matrix Mj is nonsingular aj can be expressed
uniquely in terms of the amplitudes a;, i &j, the possibili-
ty of a free parameter appears for those values of j, j = r,
for which the determinant of Mj vanishes. These special
values r are called resonances'3 and can be calculated
from the 2nth-order algebraic equation obtained from
detM„=O. One of the resonances turns out to be always
r = —d and represents the arbitrariness of the location tp
of the movable singularity. (As for the special case of a
double resonance at r = —d see Appendix; if there is a
free parameter among the amplitudes a p, a resonance at
r =0 also appears. ) Thus, in general, one may write the
set of resonances at a couple (p, ,a0) as r = —d,
r&, r2, . . . , r2„&. These resonances fall into two groups
according to the sign of their real part.

(1) Resonances with negative real parts (&d) are not
consistent with the assumption that the leading terms are
a p v therefore, these values are to be excluded. If
such resonances are present the number of free parameters
in (4.1) is less than 2n —1 and the corresponding solution
of type (4.1) can represent only a special solution.

(2) The group of resonances with non-negative real
parts may have noninteger elements. If so, this indicates
the existence of a solution not of the form (4.1). The sys-
tem cannot have then the Painleve or the weak Painleve
property. (i) If all elements of the group are different in-
tegers (4.1) may represent a solution of the equation. (ii)
If among the non-negative integer resonances some are
multiple ones, the rank of the matrix M, is to be con-
sidered in order to specify the number of free parameters
appearing in (4.1). If, e.g. , at a double resonance r, =r2
the rank of M„ is n —2, there are two free parameters

among the amplitudes a„."1
One has to calculate the resonances of all couples

[(p,a0), a=1,2, . . . , n J. Owing to the presence of reso-
nances with negative real parts or of multiple integer reso-
nances it may happen that to none of the couples belong
2n —1 free parameters. Then, the general solution cannot
be of the type (4.1) and must exhibit logarithmic or even
stronger singularities. The system, therefore, does not ex-
hibit the Painleve or the weak Painleve property. If this is
not the case and no noninteger resonances with a positive
real part have been found, one can proceed to the third
step.

It is of great practical importance that the matrix M,
and the resonances r can be calculated also without expli-
citly constructing the hierarchy (4.2).' This is done by
inserting
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calculate RJ with j & r~, where r~ is the largest resonance,
from the complete equations of motion and to check
whether the relation (4.2) up'to j= rq has indeed a solu-
tion belonging to different couples ((p,a0), a=u~ and
az, with a~&a2]. If no inconsistency has been found the
system is a good candidate to exhibit the Painleve (d =1)
or the weak Painleve (d &1) property. However, the
singular point analysis outlined here does not signal essen-
tial singularities and this is why it does not provide also a
sufficient condition for these properties to be satisfied.
In order to detect the complete integrability a direct
search for the conserved quantities is finally necessary
which can often efficiently be made directly after the
second step of the analysis.

Now we discuss shortly the statistical physical conse-
quences following in the special cases for which the whole
program outlined above can be carried through. We re-
strict our discussion to the case of two variables. The
method then leads to the identification of completely in-
tegrable Fokker-Planck Hamiltonians H (q,p) and a
second smooth conserved phase-space function L(q,p).
The knowledge of the latter can be very valuable for the
purpose of solving the original time-dependent Fokker-
Planck equation, if the operator versions of H and L ob-
tained by the replacement p, = —gB/Bq' commute.
The eigenvalue problem of the Fokker-Planck equation

H q, —r) P;(q)= —qA. ;P;(q)
a

Bq
(4.4)

obtained from Eq. (2.2) by writing

P (q, t) =g exp( —A, ;t)P;(q) (4.5)

can then be solved simultaneously with the eigenvalue
problem

L q, —g P;(q)=l;P;(q) .
a

Bq
(4.6)

The (generally non-Hermitian) operators H and L form a
complete set, and the (generally complex) eigenvalues A,;
and l; uniquely label the eigenfunction P;(q). The P;(q)
and the eigenfunctions P;(q) of the adjoint equation

H+P; (q) = qA.;*P;(q)— (4.7)

form a biorthogonal set. The P;(q) can be chosen as
simultaneous eigenfunctions of L+, the adjoint of L,
since (H, L]=0 implies [H+,L+]=0.

In general, therefore, the knowledge of the conserved
operator L provides valuable information about the
Fokker-Planck operator which may render possible the
solution of the associated eigenvalue problem and its ad-

. joint. Also, as we have seen the smooth nonequilibrium
potential P can be calculated.

In the next part of this section we summarize our obser-
vations obtained by performing the singular point analysis
of several Fokker-Planck Hamiltonian systems. The Ap-
pendix contains an example with a relatively detailed
computation.

First, we consider the systems mentioned in Sec. III. It
is easy to check that the system with rotational symmetry

specified by a unit diffusion matrix and the drift (3.1)
with f and g polynomial passes the singular point
analysis. The operator angular momentum commutes
with the Fokker-Planck operator which separates in polar
coordinates. On the contrary, it has been shown in Ref.
24 that the solution for system (3.13) is not of the form
(4.1) owing to the presence of logarithmic terms such as
~inc, although it is also completely integrabIe. The non-
polynomial form of the conserved L with respect to p
makes it difficult, in this case, to use the operator I. In
the case of the Brownian particle under the influence of
an external force (3.20) the canonical equations can be
transformed into a fourth-order differential equation for

x" '=(2f+y )x'+f"x f'f . —

For a polynomial f of degree k (odd and different from 1)
one identifies the dominant behavior in the form of
x =aalu ~'" "with two families for the amplitudes: (a)
aa ' =2(k+1)/(k —1), (b) a0 ' ——2[(3k —1)/
(k —1) ]. Using the ansatz (4.3) we find the resonances
in case (a) as r = —(k —1), ( k —1), 4k, 2( k + 1), and in
case (b) as r = —(k —1), 4k, [(3k+1)+(33k2—26k
+9)' ]/2. Owing to the presence of irrational reso-
nances the system does not possess the weak Painleve
property. This can be a consequence of the fact that in-
tegrability is maintained on the hypersurface E =0 only.

We have performed the singular point analysis for
several Fokker-Planck models with quadratic or cubic
drift terms like, e.g., those discussed in Ref. 40. In sys-
tems where the potential is not known in a whole region
of parameters we have found only special values where
the (weak) Painleve property can be satisfied. These
values were always associated with simple known inte-
grable systems and potentials. Also models for which a
potential P exists in a whole region of the parameter
space have passed the singular point analysis only for
excep- tional values of the parameters (see Appendix). In-
finitesimal changes in the drift orthogonal or parallel to
equipotential surfaces of P may destroy the (weak) Pain-
leve property. In the example discussed in the Appendix
the singular point analysis led to the identification of
three integrable special cases for which the conserved
L(q,p) could be found explicitly. In all three cases the
eigenvalue problem of H is found to be separable.

These observations illustrate the value of the singular
point analysis for detecting cases where operators L exist
commuting with the Fokker-Planck operator. Among
general stochastic processes such cases are extremely rare.

Our findings also illustrate that the existence of a
smooth potential does not imply the (weak) Painleve prop-
erty, and, vice versa, that the singular point analysis can
hardly yield predictions about the potential. The reason
for this failure is the fact that the (weak) Painleve proper-
ty turns out as too strong a requirement for this purpose.
It is a sufficient condition for and, therefore, even
stronger than the integrability at arbitrary energy. On the
other hand, the existence of a smooth potential is only
connected with integrability at energy E =0, in the sense
that all structural perturbations preserving integrability at
E =0 but destroying it for E&0 still preserve the
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smoothness of the potential. In the following section we
present numerical examples of cases where even integra-
bility in the entire hypersurface E =0 is a stronger prop-
erty than the existence of a smooth separatrix. In other
words, there are found to exist special structural perturba-
tions which destroy integrability on the hypersurface
E =0, while preserving the smoothness of the separatrix
E =0, L (q,p) =Lo. Even excluding such special cases it
seems clear that methods testing for integrability on cer-
tain hypersurfaces in phase space, like E =0, would be
better suited for the problem at hand, than tests for in-
tegrability in the entire phase space, but methods of this
type remain to be developed. (For a first effort in this
direction see Ref. 41.)

V. NUMERICAL RESULTS

K"=e(x —x )( I+a cosy), K~= 1

and the diffusion matrix

(5.1)

1 0
0 0

We have seen in Sec. II that the mechanical motion
described by the canonical equations of a Fokker-Planck
Hamiltonian is typically unbounded. This makes a nu-
merical investigation, in general, extremely difficult. The
situation is better in periodic systems where the bounded-
ness of at least one variable is ensured by periodicity. In-
tegrability can then be studied by investigating the motion
on an appropriate Poincare section. Note, that a singular
point analysis can in such cases not be applied as the
equations are nonpolynomial.

First, we recall a model which has been investigated
earlier in more detail. ' It is defined by the drift terms

K~= r (x,y), (5.3)

where r stands for a smooth function, 2' periodic in y.
We concentrate on the case a =0. The potential is obvi-
ously (5.2) at any choice of r since r represents a circula-
tion on equipotential surfaces of P [cf. (2.6)j. As long as r
depends only on x or y the system is also integrable with
L =p~ or L =p~r as a constant of the motion, respective-
ly. On the separatrix, I takes the special value Lo ——0.
For a bivariate function r(x,y) the functions L are no
longer conserved, in general. Indeed, the numerical simu-
lation of the Fokker-Planck dynamics suggests that gen-
eral integrability on the hypersurface E =0 has been lost
while the separatrix with E=0, L =0 remains smooth.
For comparison we have plotted the points on the same

and describes the Brownian motion of an overdamped
anharmonic oscillator under the influence of a periodic
forcing term with an x-dependent amplitude. For a =0
the Fokker-Planck Hamiltonian is trivially integrable. It
represents a special case of the separable systems
described by (3.6). The conserved quantity can be chosen
to be the momentum p~, and the potential is given by

P= —e(x —x "/2) . (5.2)

According to numerical investigations the system loses its
integrability in the presence of the forcing term, i.e., for
a&0. This has been demonstrated by plotting the inter-
section points of trajectories with the Poincare plane
y =0, E =0 (Fig. 3). The attractors (limit cycles) of the
deterministic system also for a &0 are at x = + 1. The
nontrivial separatrix of these attractors undergoes rapid
oscillations around the origin (a repellor) illustrating that
the nonequilibrium potential cannot be smooth.

Let us now modify the model by taking
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FIG. 3. The Poincare surface [(x,p„) plane at y =0] for system (5.1) with a = 1, @=0.1 as obtained by numerical integration of
the canonical equations of the Fokker-Planck Hamiltonian (2.9). The dots belong to the trajectories with initial condition

0
——0.05,0. 1, . . . , 0.65, Pxo= —exo. The border line of this region is the wild separatrix emanating from the attractor point (),0)
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5H =p 5r"(q)

with

5r (q) =0a

Bq

(5.4)

which vanishes identically on the curve p, =OP/Bq'. It
follows from (2.6) that 5r is a shift of the circulation vec-
tor r" and, therefore, leaves P unchanged. The separatrix
H =0, L; =L;o is thus preserved, but otherwise the in-
tegrability of the Fokker-Planck Hamiltonian at E =0
may be lost.

We conclude that a general method predicting the ex-
istence of a smooth potential in nonequilibrium systems is
not provided by the usual techniques searching for com-
plete integrability. In those special cases, however, where
integrability is maintained at any values of the energy,
such methods can be usefully applied. As a practical
method to detect cases with a smooth potential there
remains the possibility to compute perturbative solutions

Poincare plane as in the case of r—:I, a&0 (Fig. 3) with
the same initial conditions. Chaotic trajectories appear in-
side the domain bounded by the nontrivial separatrix of
the attractor, which remains smooth and passes through
the origin (Fig. 4). This peculiar behavior can be under-
stood by observing that the perturbation of the Fokker-
Planck Hamiltonian relative to the case r=—1, a =0 van-
ishes identically on the nontrivial separatrix of the unper-
turbed system, which, therefore, remains unchanged.

Nonintegrable mechanical systems with some integrable
smooth separatrices have been found earlier in rather ar-
tificial examples only. For Fokker-Planck Hamil-
tonians such cases can occur more commonly, although
remain exceptional. An integrable system with conserved
quantities L ~,L2, . . . , L„&,different from H and with a
smooth potential P associated with the separatrix H =0,
L; =L;o, i = 1,2, . . . , n —1, can be perturbed by the
Hamiltonian of the special form

of the Hamilton-Jacobi equation for the potential with the
boundary condition (2.7), expanding in some parameters
for which the potential is known in zeroth order. If after
a few steps the potential remains smooth, there is a good
chance that the system possesses a smooth potential. A
proof of this conjecture can then be sought by looking for
an exact solution of the Hamilton-Jacobi equation. Ac-
cording to our experience the oscillating behavior of the
nontrivial separatrix appears, perhaps on small scales
only, immediately when making such a calculation. '

Imposing on the parameters of a dissipative dynamical
system the condition that oscillatory terms of the non-
trivial separatrix vanish in the first few steps of such a
perturbative analysis is, up to now, the most efficient
practical method to detect those special cases where a
smooth potential exists.

Also apart from this, the mechanical picture established
in Sec. II remains useful in studying nonequilibrium po-
tentials: on the one hand, it makes possible the investiga-
tion of general questions and, on the other hand, in
periodic systems it provides a practical method for calcu-
lating numerically the separatrices of the attractors and
from this the nonequilibrium potential itself. "
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APPENDIX

As an illustrative example we perform here the singular
point analysis of the Fokker-Planck Hamiltonian system
with a unit diffusion matrix and the drift terms
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K (x,y) = —x '+ A,xy, K~(x,y) = —y +kx y .

(Al)

For A, & 1 the origin is an attractor of the deterministic
motion. For A, & 1 it is a saddle point. For any value of A,

a smooth potential

( M„)~ ~
———s + 15a p +6' pb p +Kb p

4 2 2 4

(M„)~q
——(M„)2~ 4——~(a oh p+ a oho )

(M„)22———.s +zap +6xa pb p+ 15bp,

(A12)

P(x,y)=x /2+y /2 —A,x y (A2)
s =(r —1)(r —3)/4 . (A13)

exists yielding a normalizable probability distribution for
XQ 1.

By means of the singular point analysis we hope to
identify the values of A, for which the Fokker-Planck
Hamiltonian is completely integrable. It is worth noticing
that the gauge transformation p —+p with

A necessary condition for the weak Painleve property to
be satisfied is that the resonances (the values of r for
which detM„=O) with positive real part are integers for
all (ap, bp) solutions of (A7). Using the simplifying fact
that r = —2(s =15/4) must be a resonance owing to the
arbitrariness of r in (A6), the equation for the resonances
is obtained as

p„=p„+2(&—1)xy', Py ——py+2(A, —l)x'y (A3)

maps the Hamiltonian with A. onto that with 2 —A,.
Therefore, it is sufficient to restrict our investigations to
the region A, & 1. Furthermore, we mention that the scalar
potential to which the drift terms (Al) are related via the
gauge transformation (2.10) is a homogeneous sixth-order
polynomial. The integrability of the motion in such a sca-
lar potential was not yet studied.

The Euler-Lagrange equations are

(s —15/4)[s + 15/4 —(15+x)(ap+ b p) —12@aobp]:0 .

(A14)

The second resonance at s =15/4 is r =6. The disap-
pearance of the second factor in (A14) specifies reso-
nances depending on k and the branch o. considered. Al-
together we find for A,&—1:

x =3x +2Kx y +Kxy, y =3y +2Kx y +Kx y

with

~=A(A, —2) .

(A4)

(A5)

r = —2, 6,2+4/(1 —1,) for cr=+. 1,

r = —2, —2, 6,6 for o= —1,

Proposing a singular behavior in the form

x =Qpv, y =bpv

~=t —tp, we find that the singularities in the different
terms of (A4) can balance for p =v= —,', that all terms are

dominant, and that Qp and bp satisfy

3Qp+2KQ pb p+Kb p
—3/4=0,

KQ p +2KQ p& p +3b p
—3 /4 =0

For ~+3 this is equivalent to

4 3 1
Qp ——— bp=cTQp 0 =+1

4 3+(1+2cr)Ir ' (A8)

while for K =3 there is only one relation

(ao+bo) =1/4.
To find the resonances we substitute

—1/2+ —]./2+ r /2x =Qp'T +c7

y=b w
' +dc ' +"

p&

(A10)

C
M (2 ap bp) d =0 (A 1 1)

where the elements of the matrix are given by

and collect the terms linear in c and d. This gives us a
linear system of the form

and for A, = —1.

r = —2,0,4,6.

Qnly the branch of the solution for which the resonances
are —2 and three non-negative integers can represent the
general solution of (A4) in the neighborhood of the singu-
larity.

Such a complete set of resonances is found for A, = —3,
namely, r = —2, 1,3,6 and also for A, = —1. A remark is
in order about the double resonance at r = —d = —2. For
A, =0 both branches 0.=+1 have this double root indicat-
ing that (A4) is separable. Then, two free parameters ap-
pear since x and y can have a singularity at different
times tp and tp. In all other cases, however, no solution
exists with to&to. Therefore, a branch with a double res-
onance at —d cannot be complete unless the Euler-
Lagrange equations are separable in the original variables.

For v &3, a&0 we also find singularities in the neigh-
borhood of which x or y behaves as ~ ' and the other
coordinate has an exponent p satisfying P(P+1)=v/4.
At those points, however, where the branches (A8) have
integer resonances these additional branches are not
present and, therefore, no additional restriction follows.

In summary, we find that the system with drift terms
(Al) passes the second step of the singular point analysis
for A, = —3, —1, and 0. In two cases the integrability can
be proved immediately by explicitly giving the second
constant of the motion. Thus, for X=O the system be-
longs to the class (3.6) with conserved quantity (3.8), the
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Fokker-Planck operator is separable in the original coor-
dinates. For A, = —1 the Hamiltonian possesses rotational
symmetry and the angular momentum (3.4) is conserved,
the Fokker-Planck operator is separable in polar coordi-
nates. At A, = —3 the system passed also the third step of
the singular point analysis and a direct search for the con-
served quantity in the form of a polynomial second order
in the momentum led to the result

L =p p~
—p, (y'+3x y) —p~(x'+3xy2) . (A15)

In this case the Fokker-Planck operator is separable in the
coordinates x'=x +y, y'= —x +y. Taking into account
the gauge symmetry (A3) we have thus found altogether
six values of A, where the system turns out to be complete-
ly integrable, the smooth potential, however, exists at any
value of the parameter A, .
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