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Transmission of acoustic waves in a random layered medium
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The transmission of acoustic waves through a sequence of alternating layers with random

thicknesses but otherwise fixed characteristics is studied by means of the transfer-matrix formalism
of one-dimensional disordered chains. The law limz „ln(

~
Tn

~

/N)= —A, (co) of the exponential

decay of the transmission coefficient T~ as a function of the number (2Ã) of layers is determined in

a weak- (strong-) disorder regime for an arbitrary (uniform) distribution of layer thicknesses. The
localization constant A, (co) has a particularly simple form at extreme low and high frequencies co.

Namely A,(co~0)=const)&co with a slope given in terms of physical characteristics of the layers

and A, (co~ oo') =const defined by a transmission coefficient of a single interface. The predictions are
tested by Monte Carlo simulations of a simple model with characteristics of certain rocks. For all

frequencies beyond the weak-strong disorder turnover region discrepancies between theoretical and

numerical results are merely a few percent.

I. INTRODUCTION

The subject of this paper is the transmission of acoustic
waves through a sequence of alternating layers with ran-
dom thicknesses but otherwise fixed characteristics. The
analysis is carried out in the framework of the general
theory of one-dimensional disordered chains. '

The propagation of acoustic waves in a random-layered
medium has been previously examined by several authors.
Gilbert originally analyzed the problem by means of
Monte Carlo methods focusing his attention on the reflec-
tion coefficient of acoustic waves. Unfortunately the re-
sults of such analysis are not amenable to a standard sta-
tistical interpretation for the reflection coefficient does
not possess a statistically meaningful ensemble average,
i.e., its variance scales singularly. This point has been
particularly emphasized by Anderson et aI. in a different
context. Levine and Willemsen followed up Gilbert's
analysis with an attempt to cast it into the framework of
the general theory of one-dimensional random chains.
Finally, Hodges applied heuristic consideration of Ander-
son et al. to the propagation of acoustic waves through
one-dimensional chains in general, but not to layered
media.

The present analysis of the random-layered media
proceeds from general mathematical results due to
Furstenberg. These results have been surmised by Bor-
land in the context of one-dimensional liquids, but their
relevance for a description of one-dimensional chains in
general was first recognized by Matsuda and Ishii. '

Furstenberg's master formula determines the basic charac-
teristic of the disordered chain, the localization constant,
in terms of its transfer matrix.

The localization constants of some standard models
have been calculated by Box'land, Matsuda and Ishii, and

II. TRANSFER MATRIX AND LOCALIZATION
CONSTANT

Consider an alternating sequence of layers
Ac ——(x &x~), B~ ——(x~ &x &x& ), A& ——(x& &x
&x2), . . . , A~(x~ 1 &x~) consisting of different ma-
terials with densities p~, X=A,B as indicated in Fig. 1.
It will be assumed that the thicknesses 6; =x;+~—x and
Ag xg xg of the layers of different pairs
(g3;,A;),i =1,2, . . . , N are drawn independently from the
common probability distribution dp(b, ,",b,; ).
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FIG. 1. A one-dimensional medium of alternating layers A;
and B;, i = 1,2, . . . , X with random thicknesses 6; =x;+ l

—x;

Hirota' by means of successive approximations intrinsi-
cally tailored to the specific form of the transfer matrices
in question. The simple method employed in the present
work is flexible enough to apply to any random-transfer
matrix with effectively small fluctuations.

In what follows we will first define the transfer matrix
and state Furstenberg's master formula for the localiza-
tion constant. Next, the localization constant will be
evaluated in the weak- (low frequency) and strong- (high
frequency) disorder regimes for a given probability distri-
bution of layer thicknesses [see Eqs. (3.16), (3.19), and
(4.10)]. Finally the results of computer simulations will
be presented in the conclusion.
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x, &x &x; (2.1a)

(2.1b)

with the wave numbers kx ——co/cx, X=A,B. The con-
stant coefficients (a;,b; ) are related by virtue of the
boundary conditions which ensure the continuity of the
wave N(x, t) and its pressure pc 8@/Bx through the inter-
faces at x =x;(xl'), i =1,2, . . . , N (px, X=A,B stand for
densities). In particular the waves in adjacent layers are
matched by the matrix equations

a; aiB
=h "((t~; )[zk(y)]h (Pal )

i
(2.2a)

8 Iai Ig,

baal
=h'($2l;)[Zk(y)] 'h(p'„, )

i+I
(2.2b)

defined by the abbreviations

4x. =kxx Px; ——kxx, X=A, B (2.3a)

1
coshy =—

2
1

v Z+, Z = (cdpal Ic~p~ ), (2.3b)Z

e'& 0
h(P) =exp(ia 3P) = (2.4a)

cosily —sllllly
—sinhy coshy (2.4b)

Here the a ~ and LT3 denote ordinary Pauli matrices. Evi-
dently one can relate the incoming and outgoing waves in
the semi-infinite layer AN to those in A0 by a straightfor-
ward iteration of Eqs. (2.2):

aN
=h'(Pox )M xh ((bg l)

N

a,"
bA0

(2.5)

where MN defines the transfer matrix of all layers com-
pounded of its elementary components m;:

M~= m(a~le y)h(a~, )m(al~l, , I y)

Xh(agr 2) . h(al )m(a,
I y),

m;—:m(a; I
y)=k '(y)h(a, )k—(y), .

with

a„;=k~ (x, +,—x,' ) =k„b,~,

all; ——kll(x —x;)—:kllh; .B

(2.6)

(2.7)

The normal propagation of an acoustic wave of fre-
quency co through such a medium may be described by the
complex amplitudes

m;cr3m;=o. 3, m; E SU(1, 1),
i =1,2, . . . , N . (2.9)

It is easy to see that this is nothing more than the state-
ment of unitarity of the scattering matrix (cf. Ref. 3).
Indeed a scattering through a single layer 8; may be
described by a unitary s; -matrix which relates incoming
(a;" l, b;") and outgoing (a;,b;" l) waves and is con-
veniently parametrized in terms of complex transmission
(t; ) and reflection (r; ) coefficients

(2.10)
i —1

Of course it satisfies Eq. (2.9) trivially as claimed above.
An obvious extension of Eq. (2.12) is

—RN /TN1/T

RN /TN 1/TN
(2.13)

I Tx I'+ I&x I'=1
where TN and RN denote, respectively, the transmission
and reflection coefficients of N B-type layers separated by
N —1 A-type layers (cf. Fig. 1).

Referring back to Eq. (2.6) one immediately concludes
that the transmission coefficient of the random-layered
media in question is determined by a product of % ran-
dom matrices h(a,")m(a;

I
y) H SU(1, 1) whose parame-

ters a;=(az;, all;) have a common probability distribu-
tion, dp(a;). Large-N limits of such products have been
systematically studied in the mathematical literature.
The results relevant to the subsequent discussion will now
be stated.

Let g;:—g(a;)H SU(1, 1), i =1,2, . . . , N be random
matrices with a common probability distribution dp(a;)
of parameters a; =

I ax;,X=A,B, . . . J, acting in the com-
plex z plane as

I

Z(g) gll gl2 Z gllZ+gl2Z

Z (g) g12 g ll Z . (gllZ+gl2Z )

(2.14)

Then the limit

(2.11)
r; t;

where r = v t /t;* b—y unitarity, s;s; =I, and t'=t by
time reversal invariance. It is sufficient to recall that the
transfer matrix m; relates incoming (a; ) and outgoing
(b; ) waves on the right of the layer B; to those
(a;" l, b;" l ) on the left to infer the desired representation

1/t; r; /t;—
r;*It 1/t;*—

(2.12)

Both the transfer matrices m s and M N share an impor-
tant group-theoretical property, being elements of a non-
compact group SU(1,1):

1 z(g»g2—ln
z

~A &0 as N —+go (2.15)
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is reached with probability unity, and is determined by the
system of equations

A, = I ln v(8)d8dp(a),
Z

v(8) = I v(8(a) }[d8(a)/d8]alp(a),

8=argz, 8(a) =argz(g(a)) .

(2.16a)

(2.16b)

(2.17)

g~RgR ', R H SU(1, 1) . (2.18)

This freedom will be explored in the following sections to
facilitate calculations of A, .

The meaning of the integrand (2.16a) becomes more
transparent if one recalls the local isomorphism between
SU(1,1) and the group SL(2,R) of 2&&2 real unimodular
matrices r:

The reader should consult Ziman's book for an excellent
heuristic review of these rigorous results. '

Equation (2.16b) is the Dyson-Schmidt self-consistency
condition. The auxiliary function v(8) above is called a
stationary measure and defines an induced probability dis-

tribution of the random complex number z. Observe that
there is an arbitrariness in the definition of v(8). Indeed
it depends on the choice of the random transfer matrix
which as far as A, is concerned is defined up to an arbi-

trary similarity transformation

Henceforth the average dilation k will be referred to as a
localization constant to conform with the accepted termi-
nology in the literature. '

III. LOCALIZATION CONSTANT
IN THE %PEAK-DISORDER REGIME

Here a successive approximation scheme will be set up
for the system of Eqs. (2.16) and (2.23). This will be

achieved by assuming that the fluctuations of the disorder
variable ax about its average value ax is effectively small

and therefore its variance o-x may be used as an expansion
parameter:

x= &x —&x ~p &&1 (3.1)

axdP:—kx5x, (3.2)

X=X"'+X"'+o(o.x2),

v(8)=v' '(8)+v'"(8)+o(o ) .

(3.3)

(3.4)

Obviously the average thicknesses Ax characterize the
regular counterpart of the random-layered media. Note
also that the above definition (3.1) of the weak disorder
encompasses the regime of sufficiently low frequencies.

The calculation of the localization constant (2.16a) and
the stationary measure (2.16b) will proceed from the small

parameter expansions

g=UtrU, g E SU(l, l), r E SL(2,R),

1U= ~

(2.19)

(2.20)

A significant simplification will be achieved by exploring
the freedom of choice of the auxiliary matrix R in Eq.
(2.23). Namely, it will be assumed that R renders diago-
nal the transfer matrix of the regular layered media

A+ 0
g g()= 0 A

(3.5)

Evidently r generates motion in the plane
(xi ——Rez, x2 ——Imz), i.e., xi(r)=riixi+ri2x2,
x2(r) =rex i +rpx2. In terms of the norm

I
x

I
=(x i+x2)' the desired relation is

The eigenvalues A+ and matrix R may be easily expressed
in terms of the matrix elements a and b of the regular
transfer matrix:

A,(8,g) =ln =lnz(g) I
x(r)

I

z IxI

a
h (a~ )k '(y)h (as )k(y) —= (3.6)

tan8=x, /x2 .
(2.21)

=R 'h(a~)k '(y)h(as)k(y)R . (2.23)

Hence it becomes obvious that the 'quantity A,(8,g) is the
dilation of the vector x=(x„x2) induced by the random
matrix r(a) when the probability distribution of x(8) and
r(a) are v(8)d8 and dp(a), respectively.

One readily infers from the preceding discussion that
for sufficiently large number of layers [cf. Eqs. (2.6),
(2.13), and (2.15)],

1—InI T~I A~, . (2.22)

Here A, is given by Eq. (2.16) defined in terms of a suitably
chosen transfer matrix as suggested by Eq. (2.18) (Ref. 11)

g(az, az)=R 'h(a~)m(a&
I })R

IbI ib

ib* Ib I— (3.7a)

A+ ——a„+i(1—a„)'i —=e —+',
I
a„ I

(1,
where

X+ =2(1—a„)' [a;+(1—a, )'i ],
a„=Rea, a;=Ima .

(3.7b)

(3.8a)

(3.gb)

Observe that the condition
I
a,

I
(I, i.e., I

A+(~)
I
=1 de-

fines the spectral band of normal modes of the regular
layered medium. The following calculations are restricted
to the frequencies in the spectral band for in the region of
the spectral gap

I
A+(co)

I
) 1 the regular layered medium

already exhibits a finite localization constant, i.e., an ex-
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ponential decay of the transmission amplitude and a weak
disorder merely adds small corrections to it.

We are now in a position to proceed to the determina-
tion of individual terms of the series (3.3). A simple com-
parison of the same order terms in Eq. (2.16) immediately
leads to

~=
2 pox[» lg»(a) I

]" =- +o(o') .
X

(3.12)

Thus the problem is reduced to the calculation of the ma-
trix element g»(a). It is a matter of straightforward
algebraic manipulations to show that

X'"= f d8v"'(8)ln '
(3.9a)

a;A;(a) —Re[b B(a)]
g„(a)=A„(a)+i

a 2) l /2
(3.13)

v' '(8)d8=v' '(8(a))d8(a),
82~'"= f d8 v"'(8)g —o', +v'"(8)

x 2 l3ax

(3.9b)
where the functions A(a) and 8(a) are direct extensions
of a and b, respectively, to arbitrary parameters a, i.e.,
A(a)=a and 8(a)=b. Noting that A' -=a',
A

" —=a ", etc., one easily derives

Xln z(g(a))
z

v'"(8)d8= v'"(8(a))d8(a)

(3.10a)
[gll(a)]' =;=A'+

[g22(a)]."=.-= —A+ .

Returning to Eq. (3.12) we conclude that

(3.14a)

(3.14b)

a2
+ —,

' pox 2
[v' '(8(a))d8(a)]

BCXX

(3.10b)

A, = —g —,
'

[.1+Re(BlnA+/Bax) ]ox2+o(o ) (3.15)

or more explicitly

Evidently Eq. (3.9a) determines the localization length X' '

of the regular layered media. As expected it vanishes be-

cause
l
z(g(a))

l

=
l

z
l

by Eqs. (2.14) and (3.5). As con-
cerns A,

'" it is entirely determined by v' '(8) since the
coefficient of v'"(8) in the integrand (3.10a) vanishes
identically. On the other hand the solution to Eq. (3.9b) is

obviously v' '(8)=const since by virtue of definitions
(2.17) and (3.7b) 8(a) =8+2X. Hence one concludes that

dO 1 2 82 —i8
gi~ +gi2 & e

2m' X 2 ()~x

2 (oz sin all +o ll sin a~ ) +o (o )
1 slnh(2y) 2 . 2 2 2

1 —ap
(3.16)

with

a„=cosKgcosc7B —cosh y sinK~sinKB . (3.17)

slnh 2p
2

—2 2 —2 2+ A~B++ B~A +o(a,o ) .
a g +a ll +2aga2lcosh(2y)

Observe that the localization constant increases with the
frequency approaching to the edges la„(co)

l

=1 of the
spectral band as should be expected. In the special case of
extreme low frequencies ax «1 its limiting form can be
easily deduced:

+o(cr ) . (3.11)
(3.18)

Note that the measure has been properly normalized
v'" = I/2~.

The evaluation of the above integral is trivial and yields

This is rendered more transparent in terms of the dimen-
sionful physical parameters sound speeds cx and layer
thicknesses 4x ..

sinh (2y) 6/~ ~+&a/~ a
A, (co)= (b.~/c~ )(b,ll/col)co +o(co ),

(cg /c~ )(all /kg ) + (c2l /cg )(6g /kll ) +2cosh(2y)
(3.19)

where g =—6» —Z x is the variance of the layer thickness.
The preceding analysis has been restricted to leading-

order effects. It is not difficult to see from Eq. (3.10b)
that higher-order contributions are well defined and
amenable to a direct evaluation. Indeed the estimates
v"'(8) —v"'[8(a) =8+2X]-X-co and crx -co guarantee
the validity of the perturbation theory v' '»v"'-co even
at low frequencies in contradistinction to the situation en-
countered in the Andersom model. ' In addition, only the
first few Fourier coefficients of v'"(8) are nonvanishing

for d8(a)=d8, and [d8(a)]" is just a second-order po-
lynomial in z(z'). Thus if necessary the corrections to
the above results (3.16) and (3.19) can be identified in a
straightforward manner.

IV. LOCALIZATION CONSTANT IN THE
STRONG-DISORDER REGIME

The strong-disorder regime will be characterized by
large fluctuations of disorder variables ax or, to be more



313362 VAROUZHAN BALUNI AND JORGE WILLEMSEN

precise, by the condition

o.x/2m ~&1 . (4.1)

This is a very simple result with a clear physical interpre-
tation. Name y, it pre ic sd' t a decay of the transmission

—2Xcoefficient of N pairs of layers as c

Obviously the inequali y y
h' h frequencies. It will be further assume t aig r
probability distribution of disorder variabriables is uniform

dp(a)= g, 0&as(2m .
x 2

(4.2)

ran e of u's to the intervalIt is legitimate to restrict the range
' d-ition (4.1) as well as perio-

by virtue of the inequality
I z{g(a))/g

I——1 and definition of the measure v(8).
Now we procee 0 '

b
the calculation of v(8) and A, via

d (2 23) and (4.2). First we will check y in-

that the transfer matrix (2.23) withspection that t e ran
(8)=1/2n. . It is sufficientleads to the uniform measure vs~, ——

to convince oneself that

(4.10)

M N+i =m«N+i
I
)')h«N )M N

implies the relation [cf. Eqs. (2.12) and (2.13)]

(4.11)

—1»N
I

= —ln(cosh y
1

N

T ismay ev'Th' be viewed as an effect of independent scatter-
2N interfaces since the wave transm'nsmittedings rom in er

inite la ers isthrough the interface of two semi-in ini e y
damped by a factor (coshy) [see q .see E s. (2.4b) and (2.12)].
Perhaps it should be reemphasized that no simplifying as-

h b made concerning the scattering
n th" of individual interfaces (cf. Re . 13."strengt o in

' '

4.10) in a heuris-It is instructive to rederive the resu t
tic manner. or is pF th' urpose we note that the composi-
tion law of the transfer matrix 2.6)

f d8(&t) ~ x
1 (8)

dg x 2

s to check by recalling that t(a) =e=e' ' ' is relat-
fo 1 t foed to t:—e' via successive con orma

k(y), as,h( ) k '(y), and h(az), which map a unit circ e
onto itse . ence, olf. H ne readily infers the relatio

SIC A
rN+1+N( TN /TN )exp( —2«N

(4.12)

to theNow it is easy to see ath t upon averaging according to
' n,4.2) the last term vanishesprobability distribution . e

whereas the second term reproduces the integra

=lg t+gde
2 sfg„t+g, 2 I

= lcu t'+s
I

fcv t —s
I

(4.4)

(4.5)

10'
X

X
X

X XX
X

III
~ ~ ~ y~ ~ .~~ ~

defined in terms of the abbreviations

Bu=e, U=e (4.6a)

——————-+-++m-- —+--+-+

I

c =cosh/, s =sinn/,

t'=(cv t —s)/(c —sv t) .2

(4.6b)

(4.6c) o 2

(4.7)

th
'

tegral (4.3) with the relations 4.4 and
(4.5) and invoking the integral of the Poisson erne

22m.i I~ I=' u lu —iv
f

10

oneimme ia eydiately confirms the statement (4.3 .
Now we turn o et th localization constant which is given

by (2.16a) with v(8)=1:

O-4

dO~= f »
I
gii+gizt I

dv«) . (4.8)
1
O-5 l

10
iaaf ) «i«l
10 10

E' (I&H2}

d (XXk= flnfc —s u
I + =inc (4.9)

Th lting integral is trivial since
' '

gits inte rand is a har-e resu
' c~~t ~ &1. Taking intomonic function inside the unit disc

]

account the identity (4.5) one finds

FIG. 2. Continuous (dashed) curvess I II, and III represent
onstant A, (co) for three distinctthe behavior of the localization cons an

k-r Z =2 (I), 4 (II), and 8 (III) in the wea-values of the parameter Z =
( -) disorder regime as described by Eq. (3.16 q.strong- i

rves indicate the results of MontePoints near the theoretical curves in ica e
Carlo simulations for correspon gin values of co =2rrf an
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(ln
~
T~+,

~
) = (1n

~
T~ ) —ln(cosh y) . (4.13)

Hence the result (4.10) reemerges provided one assumes
following Anderson et al. that the quantity ln

~

T&
~

is
amenable to a statistical interpretation, i.e., its average
(1n T&

~
) is a typical member of the statistical ensemble

in question. Similar arguments have been also invoked by
Hodges in a general context of transmission of acoustic
waves through one-dimensional chains.

V. NUMERICAL TESTS

We have applied the results of previous sections, Eqs.
(3.16) and (4.9), to the simple model of certain rocks con-
sidered earlier in Ref. 4. The model in question represents
alternating layers of sandstone (A) and shale (8) with a
uniform distribution of thicknesses characterized by the
parameters .

3 mm&Aq &23 mm, (5.1a)

0. 1 mm&h~ &5.1 mm,

cg ——5 km,

c~ ——2 km.

(5.1b)

(5.2a)

(5.2b)

The ratio of acoustic impedances Z as defined in Eq.
(2.3b) has been considered as a free parameter.

We have computed the logarithm of the transmission

coefficient [cf. Eq. (2.22)] for 2500 pairs of layers and
averaged over 200 realizations. Results of our calcula-
tions along with corresponding theoretical predictions for
three representative values of the parameter Z=2, 4, 8 are
displayed in Fig. 2. Evidently for all frequencies beyond
the weak-strong disorder turnover region, about f=100
kHz, deviations of the Monte Carlo points from the
theoretical curves do not exceed a few percent. We believe
that the large descrepancies at the low end of the spec-
trum f= 1 kHz are entirely due to statistical fluctuations.
Indeed, by reducing the number of layers (N =100) one
discovers such discrepancies even at higher frequencies
(f= 10 kHz).

A closer examination of Fig. 2 reveals some special
features. The departure from theoretical predictions is al-
ready evident at fr=50 kHz when the variance of the
phase is still relatively small oz~~~(f )=0.35 (0.23) [cf.
Eq. (3.1)]. On the other hand, in light of the condition
(4.1), the approach to the asymptotic regime at f, =1()()
kHz seems very precocious since cr„~~~ (f, )/2~=p. ll
(0.07) «1.

We conclude that the numerical results are in excellent
agreement with the theoretical predictions (3.16) and (4.9).
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