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The nonlinear charge storage property of driven Si p-n junction passive resonators gives rise to
chaotic dynamics: period doubling, chaos, periodic windows, and an extended period-adding se-
quence corresponding to entrainment of the resonator by successive subharmonics of the driving fre-
quency. The physical system is described; equations of motion and iterative maps are reviewed.
Computed behavior is compared to data, with reasonable agreement for Poincaré sections, bifurca-
tion diagrams, and phase diagrams in parameter space (drive voltage, drive frequency). N =2
symmetrically coupled resonators are found to display period doubling, Hopf bifurcations, entrain-
ment horns (“Arnol’d tongues”), breakup of the torus, and chaos. This behavior is in reasonable
agreement with theoretical models based on the characteristics of single-junction resonators. The
breakup of the torus is studied in detail, by Poincaré sections and by power spectra. Also studied are
oscillations of the torus and cyclic crises. A phase diagram of the coupled resonators can be under-
stood from the model. Poincaré sections show self-similarity and fractal structure, with measured
values of fractal dimension d=2.03 and d=2.23 for N=1 and N =2 resonators, respectively.
Two line-coupled resonators display first a Hopf bifurcation as the drive parameter is increased, in
agreement with the model. For N =4 and N =12 line-coupled resonators complex quasiperiodic
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behavior is observed with up to 3 and 4 incommensurate frequencies, respectively.

I. INTRODUCTION

Many physical systems can be viewed as a collection of
coupled oscillators or modes. In this paper we report the
behavior of N driven nonlinear oscillators, coupled in
several ways, for N=1,2,4,12. The oscillator is a passive
resonator comprised of a silicon p-n junction used as a
nonlinear charge-storage element, together with an exter-
nal inductance. This physical system can be approximate-
ly modeled as a driven damped oscillator with a very non-
linear asymmetric restoring force, and has been used pre-
viously, first by Linsay! who found that it exhibited a
period-doubling sequence with convergence ratio 8 and
power spectra as predicted by Feigenbaum.? It was shown
to display other universal behavior patterns® and has been
much studied;* in particular, intermittency,” effects of
added noise,%” and crises®® have been reported. For two
or more coupled resonators (which we also refer to as “os-
cillators™) the system displays a much richer dynamical
structure:'%!! period doubling, Hopf bifurcations to quasi-
periodicity, entrainment horns, and breakup of the invari-
ant torus. This is the main subject of this paper. We view
the junction oscillator as an interesting physical system
from the viewpoint of contemporary nonlinear dynamics
theory.'? It is not an analog computer and is to be clearly
distinguished from the numerical solutions of mathemati-
cal models that approximately represent it.

To understand coupled junction oscillators we first at-
tempt to understand a single-junction oscillator in detail,
in Sec. II: we review the relevant physics of the system
and differential equations that, a priori, might approxi-
mate its behavior. The observed basic oscillator response
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function is discussed as well as elementary maps and dif-
ferential equation models. In Sec. III we show the de-
tailed behavior of a single oscillator by real-time signals,
bifurcation diagrams, return maps, phase portraits, Poin-
caré sections, fractal dimension measurements, and phase
diagrams in parameter space. These data are compared to
predictions from theoretical models. In Sec. IV we give
models for N=2 coupled oscillators, present our experi-
mental results, and compare to theory. Section V gives
some results for N =4 and N =12, where quasiperiodicity
with up to four frequencies is observed.

II. PHYSICAL SYSTEM AND MODELS

The system. In Fig. 1, the basic nonlinear element is
the p-n junction:'* a single crystal of Si containing fixed
donor ions and electrons to the right and acceptors and
holes to the left of an interface in a region ~10~* cm
wide. One solves the transport equation including drift
and mobility terms in an electric field arising from an ap-
plied potential difference V. The establishment of
electron-hole diffusive equilibrium at the interface results
in a built-in potential difference ®, and parallel layers of
fixed donor and acceptor ions, yielding an effective junc-
tion differential capacitance C;(¥)=C;o(1—V/®)~'/
for negative applied voltage. If V is positive, forward in-
jection of holes (electrons) into the n (p) regions creates a
much larger stored charge limited, however, by the recom-
bination and back diffusion of electrons and holes in
minority carrier lifetime 7. For times ¢ <7 the system is
approximated by an effective storage differential capaci-
tance C,(V)=Cspexp(V/$), with ¢=kT /e. Figure 2
shows typical data for the total differential capacitance
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FIG. 1. Experimental system, showing a p-r junction in a Si
crystal with fixed donor ions (+) and electrons (-) in the » re-
gion, and acceptors (— ) and holes (O) in the p region. A single
p-n junction is driven by a sinusoidal voltage Vy(z) through an
inductor L and resistances R¢,Ro. Connecting 4 to B makes
two resistively coupled resonators. Connecting D to B makes
two line-coupled resonators. This can be extended to N coupled
resonators by connecting E to the next inductor, etc. A junction
is modeled by a nonlinear capacitance C(V) in shunt with an
ideal Shockley diode I;(V).

C(V)=dq/dV=C;+C; versus V for junctions used here.
The junction is modeled by C(F) shunted by an ideal
Shockley diode I (V)=Iy[exp(V/¢)—1], and is usually
driven resonantly through an inductance L by a driving
voltage Vo=V sin(wt) with © =w=[LC(V=0)]"172

Eguations of motion. For a single junction and dynami-
cal variables (I,V,0), Kirchoff’s laws for Fig. 1 yield
three coupled first-order autonomous differential equa-
tions:
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FIG. 2. Measured total differential capacitance C(V) for p-n
junction vs junction voltage V. The steep rise is due to charge-
storage capacitance C;(¥), the negative voltage region to junc-
tion capacitance C;(V).
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where R=R-+R, (Fig. 1), and 6=wt. The motion can
be presented in (I,V,0) polar coordinates, so chosen that
the orbits traverse the (I,V) plane at, say, 6=0,2, ... at
consecutive times determined by the period T =27/ of
the driving voltage. This Poincaré section of the attractor
can be observed directly by displaying (I, V) on an oscillo-
scope and strobing the beam intensity at ¢=nT,
n=1,2,.... Alternatively, one displays ¥ ,I) or
(I, +1,I,), which are conjectured to be topologically
equivalent.'* Equations (1) are stiff, display a slow and a
fast manifold, but can be numerically integrated by an ex-
plicit fourth-order Runge-Kutta algorithm.'®
Equations (1) have a form discussed by Ott,?

dx;(t)/dt = fi(x1(8),x,(2),x5(2)), i=1,2,3 (2)

and a negative divergence of phase-space flow,
> 0fi/3x;. For the simpler Eq. (3) the divergence has
the value — |a |. Phase-space volumes decrease roughly
exponentially in time: A(#)=A(O)exp(—at). Since the
system is observed to display chaotic motion, one can con-
clude that it has a strange attractor, characterized by a
fractal dimension.

Physical insight comes from galculating the effective
junction  charge, g¢q(V)= f C(V)dV=¢Cglexp(V/

- 0 .- .

#)—1]42PC;o(1 =V 1—-V/P), and rewriting Egs. (1) in
the form of a driven damped oscillator

g+alq)g—f(q)=Agsin(wt) , (3)

with nonlinear damping coefficient

R 1 9l
dD=T+C) v (4a)
and nonlinear restoring force
Fl@)=—~7TV(@)+RI V(@] (4b)

Figure 3 is a plot of the force function for typical parame-
ter values used and shows a weak, almost constant nega-
tive force f(q) o« —In(g+1) for positive g (forward injec-
tion). For negative g there is a strong positive force,
f(@)~q% For g small, the expansion of Eq. (4b),
flg)=—Aq+Bg*>—Cq3+Dg*+..., shows no symme-
try; the system may show period doubling without first a
symmetry-breaking bifurcation,’® in contrast to the driven
pendulum and to Duffing’s equation with f(g)~ —g+g°>.
The junction oscillator is so nonlinear it can be driven
hard enough to shift its resonant frequency w.,, down by
an order of magnitude—an ultrasoft spring.

Oscillator response. Figure 4 shows data for the
response voltage V of a p-n junction oscillator as a func-
tion of frequency, for various values of the driving voltage
amplitude. We note the following. (i) A shift down of
W With increasing Vo: a soft spring. (ii) Hysteresis:
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"FIG. 3." Nonlinear restoring force f(q) vs g computed from
Eq. (4b) using the values C;o=6Xx10"" F, C;p=6x10"1° F,
I,=4.8%x10"° A, ¢=0.04 V, ®=0.6 V, R=90 Q,
©=4.08%10° sec™!, L=0.01 H. The units of f and ¢ have
been rescaled. Note that f(0)=0.

this is the well-known “jump” phenomena for driven non-
linear oscillators;!” it is a transcritical bifurcation.!® (iii)
Subharmonic response at w./n, n=2,3,4..., also ex-
pected.!” (iv) Increased resonance width due to increased
value of damping coefficient a(q) in Eq. (4a): the junc-
tion conducts when driven harder; a(q) switches from
R/L at V<0.3 V to Iy/¢Cg, at ¥>0.3 V, correspond-
ing to a quality factor jump from 120 to =1 as the junc-
tion becomes conducting.

Models. Equations (1) or (3) may be numerically in-
tegrated and bifurcation diagrams, Poincaré sections, and

V (volts)

0.0 i i " 1 1 'y
10 20 30 40

f (kHz)

FIG. 4. Junction voltage V vs drive frequency f for a junc-
tion resonator for drive voltage Vo.in mV rms: a, 3; b, 41; c,
103; d, 179. The system is not yet chaotic and responds like a
soft spring oscillator with subharmonic response; it also displays
jump phenomena, with hysteresis. Type-1N4723 junction,
L =100mH, R =53 Q.

return maps computed; this is done below for some cases.
The return map may be generally described by a two-
dimensional map of the form

xn+1:g(xn’yn’ﬂ)> yn+1=h(xn,yn,ﬂ) ’ (5)

where Q is the set of experimentally adjustable parame-
ters; typically, (R, V w). If the system is sufficiently
dissipative, the map may reduce to one dimensional, e.g.,

Xpp1=1—Cx}, (6)

the logistic map with one parameter C. In higher order it
may reduce to the two-dimensional invertible map of
Hénon,

xn+1:1—cx3—ynr yn+1:an (7)

with an additional parameter J, the Jacobian determinant
corresponding to the fractional area contraction per itera-
tion, and thus to the system dissipation; furthermore, with
J+#0 there is hysteresis. As discussed in Sec. III, the
driven junction oscillator is only very roughly modeled by
Eq. (6) and somewhat better by Eq. (7). It turns out that
the behavior can be better modeled by a generalization of
Eq. (7):

xn+1:f(xn’9')—yn’ yn+1:an s (8)

where the form of the function f is not simply parabolic
but is a unimodal or bimodal function chosen to model
the J;Bmction oscillator characteristic behavior, e.g., Eq.
(10).

From the physical fact that the minority carrier density
recovery after forward injection is a diffusion process, the
motion may be more properly described by differential de-
lay equations rather than Eqs. (1) and (3). In principle the
system is rather high dimensional, and Egs. (5) should be
generalized to the form x, . ,=g(x,,x,_1,%,_2 ...,
YursVn—1 - - - » ), although present data do not seem to re-
quire this, owing to the dissipation. The question can be
rephrased: how many previous cycles can the system
remember in the steady state, i.e., what is the dimension
of the phase space?

Simple ODE model. Returning to Egs. (3) and (4) we
make the simplifying assumptions a(g)—const; o—1,
driving at resonance; — f(g)— —1+expgq, an exponential
force function, to get a simple ordinary differential equa-
tion (ODE) model,

X 4ax +e*—1=Asint 9)

which we numerically integrate to get a rough idea of ex-
pected chaotic behavior of driven junctions. Figure 5(a)
shows a sequence of computed Poincaré sections, x versus
X, for consecutive times t=2w(n-+A/5) for
n=0,1,2,..., and strobe phase A=0,1,2,3,4,5,....
This shows that under the action of the Poincaré map the
attractor, initially at A=0, is stretched upward (A=1,2),
then stretched to the left (A=3), then folded down
(A=4) to its final shape (A=5,0). The stretching ratio
measured from this figure is approximately Ir/l;~1.6.

- Figures 5(b)—5(f) show the attractor computed from Eq.

(9) for some sets of parameter values (a,A), strobed at
A=0. It is clear that for small dissipation [Fig. 5(f),
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FIG. 5. Poincaré sections, x vs X, strobed at t=2mn, n=1,2, .

X

.., from numerical solutions of Eq. (9) for various parameter sets

(a,A): (a) (0.25,5), (b) (0.75,44), (c) (0.5,5), (d) (0.25,5), (e) (0.1,2.2), (f) (0.05,2). In (a) the five sections are strobed at t =2m(n+A/5)

with A shown on the figure.

a =0.05] the attractor displays self-similarity and a com-
plex fractal structure,'? characteristic of chaotic dynam-
ics. However, as the dissipation is increased, the fractal
structure is damped out, and for Fig. 5(b) (¢ =0.75) the
attractor is essentially one dimensional and could be
modeled by a one-dimensional map. Under higher resolu-
tion the attractor appears ropelike. Figure 5 sequence

demonstrates the rapid decrease of dimension of a system
as dissipation is increased; this is the essence of the
present belief that high-dimensional dissipative systems
may be usefully represented by low-dimensional maps.
It is straightforward to make semiquantitative calcula-
. tions of the fractal dimension d of the attractors in Fig. 5
using the conjecture of Kaplan and Yorke!®
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FIG. 6. Junction voltage V (vertical, arbitrary units) vs time ¢
for driven resonator, Fig. 1, with f=20.7 kHz, L =100 mH,
R=Rc+Ryp=53 Q, 1N4723 junction. Drive voltage (volts
rms): (a) 0.318; (b) 0.601; (c) 1.332; (d) 1.575, onset of chaos; (e)
1.978, one-band chaos.

J
2 M

d=j+-5—,
T+

(10a)

where A; are the characteristic Lyapunov exponents and j
is the largest integer for which (A;+A,+ -+ +4;)>0.
For Eq. (9), with three degrees of freedom we have A; >0,
Ay=0,A3<0, j=2, and

d—2_

=2-7

Since nearby orbits on the attractor diverge at the rate
r(r)=r(0)exp(A7), we estimate A;~In(lf/l;) from the
measured stretching ratio per cycle of the map (r=1).
Since the total phase-space volume contraction ratio is
exp(—at)=exp(—2ma) after one cycle of the ODE
(t =2m), we set A+ A3= —2ma to find

Ay

d=24+——"7"—
+ }L1+27T(1

(10b)
for the dimension of the whole attractor; this is reduced
by 1 for a Poincaré section. For the sections of Figs.
5(b)—5(f) the dimension is found to be 1.1, 1.15, 1.3, 1.5,
and 1.7, respectively. For map contraction ratios
exp(—2ma)=~0.1 these attractors bear a qualitative resem-
blance to those observed (cf. Fig. 15), and the dimension d
is comparable to that directly measured in Sec. III for
driven junctions.

FIG. 7. Observed bifurcation diagram [I,] vertical (arbitrary units) vs drive voltage amplitude for driven p-n junction resonator,

L =470 mH, f=3.87 kHz, R =244 Q, 300 A p-n junction.
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(b)

FIG. 8. (a) Observed 3D return map (arbitrary units) for
driven p-n junction. (b) Computed 3D return map (arbitrary
units) from Eq. (7) with C=1.5, J=—0.08.

III. EXPERIMENTAL RESULTS
AND INTERPRETATION:
SINGLE-JUNCTION OSCILLATOR

Bifurcation diagram. A recording of the junction volt-
age V(1) for increasing values of the drive voltage V,,
Figs. 6(a)—6(c), shows a waveform of period 1,2,4, and
then a nonperiodic form, 6(d), corresponding to onset of
chaos. We sample and plot the set of consecutive current
values [I,] separated by the driving period (the sampling
phase is fixed at the current peaks in the periodic region)
to obtain the bifurcation diagram of Fig. 7, showing
period doubling, chaos, band merging, windows of periods
5 and 3, and veils. This is the simplest type of bifurcation
diagram observed and is displayed by all junctions studied
(approximately ten types) provided that o=,
(2m/w) ~T, a(q) is large enough, and V is not too large.

Return map. Although Fig. 7 is similar to the bifurca-
tion diagram of the logistic map, Eq. (6), the observed re-
turn map, Fig. 8(a), is not one-dimensional and shows a
structure that can be reasonably fit by Fig. 8(b), computed
from the two-dimensional Hénon map, Eq. (7), with
C=1.5, J=-—0.08. This value of J, the phase volume
contraction per cycle, is typical for junction oscillators
with moderate driving.

Phase portrait and Poincaré section. Figure 9(a) shows
the projection of the attractor onto the (I,I) plane at a
drive voltage for the period-3 window; the black dots are a
strobed Poincaré section. Figure 9(b) is the portrait for

FIG. 9. (a) Observed phase portrait, I vs I, for driven p-n
junction at period-3 window: L =100 mH, f=19.64 kHz,
R =53 Q, 1N4723 junction, V,=3.82 V rms; the three dark
dots are a strobed Poincaré section. (b) Phase portrait and Poin-
caré section (dark “bent hairpin”) for same system at one-band
chaos, V,s=3.48 V rms.

one-band chaos just below this window. The dark rings
correspond to the veils of Fig. 7, which are successive
iterates of the critical point of the map. The dark line is a
Poincaré section of the attractor showing structure topo-
logically like Fig. 8. .

Period adding. If driven hard enough, junction oscilla-
tors display the bifurcation diagram of Fig. 10(a), and an
average (over one cycle) junction current I(¢)=1 as in Fig.
10(b). In addition to period-doubling cascades to chaos,
there is a larger sequence of periodic regions of period
...,3,4,5 ...,N,... which we refer to as period adding,
which can be physically understood as follows. We ob-
serve that T is constant in a region of period N and fur-
thermore that N~ !« (I)”172; see data, Fig. 11. For
strongly driven junctions the capacitance C=C;
o exp(¥V /¢) is just proportional to the junction current Iz
for large forward injection (see Sec. II), so that the average
(over one cycle) capacitance C « I; ~1. Thus the oscilla-
tor resonant frequency @ « (€)™ 2 o« (I)~12 <« N~ 1.
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FIG. 10. (a) Bifurcation diagram [I, ] vs drive voltage Vo (arbitrary units) for p-n junction showing period doubling and period
adding (frequency locking). (b) Average junction current I vs V,, showing peaks at locked regions. f=28 kHz, L =10 mH, R =8
Q, 300 A p-n junction.

That is, as this very soft spring oscillator is driven harder,

it shifts its frequency down and becomes entrained or
locked at successive subharmonics /N of the drive fre-
quency w. Figure 12 is a two-parameter phase diagram of
the observed entrainment regions, N:1. The waveforms of
the junction voltage ¥V, current I, and I for period N=7
are shown in Fig. 13 and can be understood from numeri-
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FIG. 11.

Period N of locked region vs average junction
current I (in amperes) showing N « (I)!/2. L =10 mH, R=38
Q. Junction A: 1N4721. Junction B: 300 A.
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FIG. 12. Frequency of drive vs voltage at which locking of
period N:1 occurs for driven p-n junction, L=10 mH, R=8 Q,
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FIG. 13. Waveforms (a) I(t), (b) V(t), (c) f(t), and (d) drive
voltage V(¢) for system of Fig. 12 at the N =7 locking.

cal integration of Egs. (1).> The observed return map,
Fig. 14, for the chaotic region between period 4 and
period 5 [Fig. 10(a)] shows a structure which adds one
more branch as N—N+1. A high-resolution Poincaré
section (I ,I), Fig. 15, shows well-resolved self-similarity:
four overall branches with the upper branch further divid-
ed into four sub-branches. The ratio of the tip-to-tip
spreads is ~0.1, which corresponds to the area contrac-
tion ratio.

Comparison to theory. As an example of theoretical
modeling of behavior of a single driven junction, Fig. 16
shows a bifurcation diagram from a numerical integration
of Eq. (3) with w=1 and a=0.45, corresponding to a
contraction ratio exp(—2ma)=0.06; this is to be com-
pared to data, Figs. 7 and 17. Integration of Egs. (1) with
measured values of the junction parameters gives compar-
able results and also models period adding at large driving

I
nr+2 (a)
~In+t
(b)
{ In+2 \
36 ~In+t

FIG. 14. (a) Two-dimensional and (b) three-dimensional re-
turn maps for the system of Fig. 10 in the chaotic region be-
tween N =4 and 5.

3339

FIG. 15. Poincaré section, I vs i , showing self-similarity and
fractal structure. L =10 mH, f=76 kHz, R =43 Q, 1N4721
junction.

voltage. Period adding can also be reasonably modeled by
this two-dimensional map of the form of Eq. (8):

Xn 4 1=[%5 +1=8(x,)]—=S(A {1~ [S(=x,)1*}) =y ,

(11a)
yn+1=an > (11b)
S(x)=+[x+(x2+0.1)!?] . (11c)

Figure 18 is a bifurcation diagram computed from Egs.
(11) with B=0.1 and using A4 as the control parameter; it
is a reasonable fit to the data of Fig. 10(a), except for the

300 [
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FIG. 16. Computed bifurcation diagram [g,] vs 4o from Eq.
(3) with =1, a =0.45; compare to data, Fig. 17.
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FIG. 17. Measured bifurcation diagram, [I,] vs V, (horizontal, arbitrary units) for driven junction. L =100 mH, R=53 Q,

f=20.3 kHz, 1N4723 junction.
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0.0
-20
[ Xn]

-40

-6.0

00 20 4.0 6.0 8.0 10.0

A

FIG. 18. Bifurcation diagram: [X,] vs 4 computed from
Eq. (11) with B=0.1 showing period doubling, period adding,
and hysteresis, with overall behavior similar to the data of Fig.
10.

2—2 jump at low voltages, a subtle phenomena sensitive
to system parameters and better explained by Fig. 16.

Phase diagram. An overview of junction oscillator
behavior for the system used for Fig. 17 is provided by the
two-parameter phase diagram of Fig. 19: a plot of the
boundaries between various periodic and chaotic regions
as a function of driving voltage ¥V, and frequency
f=w/2m. The junction resonance occurs at f.,=20
kHz. Increasing V,, upward along a line of constant fre-
quency f.s yields the simplest bifurcation sequence:
periods 1,2,4,8, ..., chaos,..., two-band chaos C2,
one-band chaos C1, period-3 window (with hysteresis
1,1), period 6, three-band chaos C3, and one-band chaos
C1 (interior crisis). At higher drive voltage there begins a
period-adding sequence—see the phase diagram of Fig.
12. Moving upward along f=34 kHz in Fig. 19 gives a
sequence 1,2,4,8,4,2,1 without chaos. Increasing frequen-
cy at V,=2 V gives a sequence 1,248 ...,
chaos, . .., 8,4,2,1. This makes clear why such a wide
variety of bifurcation diagrams are observed, e.g., Fig. 20
showing reverse bifurcation.

To compare the observed phase diagram of Fig. 19 with
our model we numerically integrated Eq. (3) for a =0.45
for the two control parameters 0< Ay <20, 0.4<w<3,
with the resulting theoretical phase diagram of Fig. 21,
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f (kHz)

FIG. 19. Phase diagram: Drive voltage V, vs frequency f of junction oscillator showing boundaries between periods 1,2,4,8;
threshold for chaos; two-band chaos C2; one-band chaos C1; periods 3,6; three-band chaos C3; C1; hysteresis: (1,{); 1:1 and 2:2
jump bifurcations. L =100 mH, R =53 Q, 1N4723 junction.

FIG. 20. Observed bifurcation diagram [I,] vs V, (horizontal, arbitrary units) for driven junction, f=11.79 kHz, L =10 mH,
R =8, 300 A junction.
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FIG. 21. Computed phase diagram, 4, vs o, from integration of Eq. (3) with a =0.45, showing boundaries between periods
1,2,4,8; two-band chaos C2; one-band chaos C 1; periods 3,6; three-band chaos C3; C1; and 1:1 and 2:2 jump bifurcations.

which shows a satisfactory agreement with the data by
making the usual correspondences (A4y,0)— (voltage, fre-
quency of drive oscillator). That the theoretical diagram
does not show sharply increasing values of drive voltage
to cross boundaries on either side of resonance is probably
due to use of a constant value a(q)—a in Eq. (3). Figures

20t

logy, N(€)

3 6 9 12
log, €

FIG. 22. Plot of log,N(€) vs log,e for embedding dimension
D =6 giving line of slope d =2.04+0.03, the fractal dimension
of the attractor for driven p-n junction in chaotic region just
below period-3 window. L =100 mH, R=77 Q, f=19.881
kHz, V,=3.105 V rms, 1N4723 junction.

19 and 21 both show a period-1—period-1 bifurcation,
and a period-2—s period-2 bifurcation. These are observed
(Fig. 17) and predicted (Fig. 16) on bifurcation diagrams
and are examples of the jump phenomena for driven non-
linear oscillators; cf. Fig. 4.

Fractal dimension of attractor.’® The assumed equations
of motion, Egs. (1), contain three dynamical variables.?!
We suppose the motion can be described in a three-
dimensional phase space, neglecting the possibility (Sec.
II) that the system has a higher-dimensional memory
from diffusive motion of injected charge. We test this
supposition below. Since the system has negative diver-
gence of phase-space flow, the attractor must have zero
volume and thus must have dimension d less than three;
furthermore, to be chaotic the dimension must be greater
than two.!? So we expect the dimension to be a fractal,
2<d <3. It is of interest to measure d, and we do so as
follows.?>?* We record a data set of g =96 000 values of
the junction current I(z) using a fast 12-bit (binary digit)
analog-to-digital converter and a Digital Equipment Cor-
poration LSI-11/23 minicomputer. By strobing the con-
verter asynchronously with respect to the driving period,
we collect data from the whole attractor rather than from
a fixed Poincaré section. From the ~ data set
{Ags Aty oo o5 Apy - -, Az} we construct g vectors B,
=(Ay,, ..., A, p_1) in a D-dimensional phase space, the
“embedding” space. We measure the number of points on
the attractor N(e) which are contained in a D-
dimensional hypersphere of radius € centered on a partic-
ular B,. One expects scaling of the form

N(e) « €2,

where d is the attractor dimension. Thus a plot of



logoN(€) versus log,ge is expected to have a slope d,
where N(e) is the average for hyperspheres centered on
many different B,. This procedure can be carried out for
consecutive values of D=2,3,4,..., to ensure that the
embedding dimension is chosen sufficiently large (impor-
tant if dimension of phase space is not known) and to
discriminate against high-dimensional stochastic noise,
not of deterministic origin. The resulting plot for D=6 is
shown in Fig. 22 for the system of Fig. 17 with V' set for
a one-band chaotic attractor just below the period-3 win-
dow. From the slope we find d=2.04%£0.03. The same
slope was found for D=4, i.e., the slope converged for
D >4. Data were also taken for a Poincaré section by
strobing the converter synchronously with the drive; these
data gave a value dps=1.061+0.02, less by unity than d,
as expected. In summary, these fractal dimension mea-
surements show that 2<d <3 and are consistent with
Egs. (1) and (3). However, they do not exclude the possi-
bility that the system has a higher-dimensional phase
space, since sufficient dissipation could reduce d to the
value measured.

To summarize this section on a single-junction resona-
tor we compare various theoretical models in their ability
to predict observed behavior. The simplest, the logistic
map, Eq. (6), while yielding a bifurcation diagram superfi-
cially like those observed, cannot explain hysteresis,
period adding, nor the fractal structure. The Henon map,
Eq. (7), with a Jacobian of J~0.1, can model the return
map at moderate drive, the bifurcation diagram with hys-
teresis, but not the period adding. The two-dimensional
(2D) map of Eq. (11); of form tailored to the junction
characteristics, can model period adding. Differential
equations, Egs. (1) and (3), with more parameters, seem to
be the best models and can even model the phase diagram
in parameter space. Brorson et al.* have accurately
modeled behavior using an equation similar to Eq. (3)
with ten measured input parameters.

IV. TWO COUPLED JUNCTION OSCILLATORS

A. Introduction

Having well characterized theoretically and experimen-
tally the single driven p-n junction resonator, one is
prepared to predict and to observe the behavior when two
or more are coupled together and driven. Coupled non-
linear oscillators or modes are central to the understand-
ing of extended systems, e.g., a line of lattice oscillators or
coupled plasma-wave modes. A system of two oscillators
has the possibility to make a Hopf bifurcation to a second
incommensurate frequency and follow a quasiperiodic
route to chaos, in addition to period doubling and inter-
mittency. Such routes, first discussed by Ruelle and Tak-
ens,?* are not yet really understood.

Equations of motion; ODE model. 1t is possible to cou-
ple two identical junction resonators in various ways and
we discuss only these two. (i) Resistive coupling: in Fig.
1 connect A4 to B; the two resonators are coupled through
their currents which flow in a common coupling resis-
tance R¢ to the driving oscillator. (ii) Line coupling:
connect B to D and set Rc=0; the driving oscillator
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drives the lower resonator, which excites the upper reso-
nator in a configuration modeling a nonlinear transmis-
sion line.

For resistive coupling, the coupled equations of motion
obtained from Kirchoff’s laws and Egs. (3) and (4) are

(12a)
(12b)

q1+Blbg1+r(g1+4,)1—f(g1)=Agsin(wt) ,
q2+bgy+r(g;+42)—f(g)=Agsin(wt) ,

where r=R/L is the coupling coefficient, b(g)=(1/
C(g))(dIp/3V)~=b, b+r=a in Eq. (3), f(q) is given by
Eq. (4b), and a small term rI;(q,) is neglected in Eq. (12a)
and a term rl;(q;) neglected in Eq. (12b). 'The factor
B <1 is introduced to take into account small differences
in the two p-n junctions. From the form of Eq. (12) we
see that the coupling is through the currents via the com-
mon resistance Rc.
For line coupling the coupled equations are

(13a)
(13b)

q1-+ag;—2f(q,)+f(qy)=Agsin(wt) ,
42+aqg,—f(q2)+f(q1)=0,

where a and f(q) are given by Eq. (4). The coupling is
through the f(q) term which is essentially the potential
across the junction, corresponding to the restoring force.

Map models. In the same way that a two-dimensional
map [Eq. (8) and Egs. (11)] was used to model a single
junction, including its specific characteristics, we now
model two coupled junctions by taking two two-
dimensional maps and adding a simple linear coupling
term to each:

zp 1 1=f(A2,) =y, +CZ, , (14a)
Yn1=J2, , (14b)
Z, 1 =f\,Z,)—Y,+C'z, , (14¢)
Y, 1=JZ, . (14d)

For simplicity, choose | C’'| =C; this still leaves open two
choices, C'=C or C'=—C. From linearization about a
bifurcating fixed point we find, for C'=C, real eigen-
values of the matrix and a period-doubling bifurcation ini-
tially. For C'= —C, the eigenvalues are complex, leading
to a Hopf bifurcation initially. The experiments below
find that resistive coupling gives first a period-doubling
bifurcation, while line coupling gives a Hopf bifurcation
first. We take the following specific form of Eq. (14) to
model two coupled junctions:

Zp 1= ’}/[Z,,+1—S(Zn)]

—S(A4{1-[S) ) -y, +CZ, , (15a)
Yn1=Jz, , (15b)
Z, 1=v[Z,+1-S(Z,)]

—S(bA{1-[S(Z)*})—Y,+C'z,, (15¢)
Y, 1=JZ, , (15d)
S(2)=0.5[z+(2240.1)'7?] (15€)

with b ~1 an asymmetry parameter; C'= 4 C for resistive
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coupling; C’'= —C for line coupling; A4 is control parame-
ter; and ¥ < 1 so that map is globally stable and attracting
(typically y=0.5 for resistive coupling and y=0.85 for
line coupling).

Coupled logistic maps. A simpler map model is ob-
tained from Egs. (15) for very dissipative systems by tak-
ing J=0 and a simple quadratic form for the nonlineari-
ty; this yields two linearly coupled logistic maps

(16a)
(16b)

Zy +1:}‘2n(1"zn)+€yn »
yn+1=)\'yn(l—yn)+e'zn ’

where A is the drive parameter and € is the coupling pa-
rameter. This two-dimensional map has been studied in

detail by several authors,?>~%° particularly for the case
€=¢'. A phase diagram in (A,€) parameter space has been
computed®>?® showing the domains of period-doubling
and symmetry-breaking bifurcations, Hopf bifurcation to
quasiperiodicity, regions of entrainment or locking to a
rational ratio of the two frequencies, and chaos. For all
values of e=¢’, one first finds period doubling to period 2,
then a Hopf bifurcation as A is increased. Other generic
behavior studied includes oscillation of the torus,*
crises,”’ and intermittency between locked and quasi-
periodic states. The chaotic attractors have a somewhat
characteristic appearance of folded rugs or strange an-
imals.

Sine circle map. This map has been used to model the

FIG. 23. (a) Bifurcation diagram [I,] vs Vs for two identical resistively coupled junctions, showing period doubling, Hopf bifur-
cations, and chaos. (b) Enlarged bifurcation diagram [V, ] vs V, of upper center section of (a), showing Hopf bifurcation, entrain-
ment, doubling, chaos. L =100 mH, Rc=1200 2, f=27.127 kHz, 1N4723 junction.
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phase motion of two coupled oscillators:
6, 11=0, +Q—(«k/2m)sin(276,) , (17)

where the parameter Q is the frequency ratio in the ab-
sence of the last term and « is the drive (or coupling) pa-
rameter. This equation has been abundantly studied.’!"3?
In the phase diagram in k,Q parameter space, for k <1,
there are entrainment horns at all rational values of Q,
and quasiperiodic orbits in between. These ‘“Arnol’d
tongues™*® merge at k=1 at onset of chaos, accompanied
by hysteresis and intermittency; period doubling can occur
at k> 1. Universal behavior at k=1 includes scaling of
the power spectra for rotation numbers equal to the re-
ciprocal of the golden mean;’! and a fractal dimension
D=0.87... for the quasiperiodic orbit set.3> Equation
(17) is the simplest model to predict entrainment horns,
observed below in coupled junctions.

B. Resistive coupling: Experiments and interpretation
Two junction resonators, identical to that used in Fig.

17, were resistively coupled as in Fig. 1 and driven at fre-
quency f=jf;=27 kHz. The observed bifurcation dia-

FIG. 25. Measured bifurcation diagram [I,] vs V¥, for two identical resistively coupled junctions, L —8.2 mH, Rc=100 Q,

f =120 kHz, 1N4723 junction.
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FIG. 26. Bifurcation diagram [Z,] vs A computed from Eq.
(15) for two resistively coupled junctions, with ¥ =0.5, b=0.95,
C'=C=0.05, J=0.1.

gram is shown in Fig. 23(a). After period doubling to
f1/2 there occurs a Hopf bifurcation to a second, incom-
mensurate frequency, f,~0.22f;, followed by narrow
locked regions [see expanded diagram, Fig. 23(b)] and
then a wide locked region with winding number
p=f1/f2=~. Then follows period doubling to chaos, an
abrupt jump in attractor size, further locking, etc. (not
shown). This figure shows the clear distinction in a bifur-
cation diagram between period doubling and Hopf bifur-
cations. To compare this data to a model, we use the cou-
pled ODE’s, Egs. (12), to compute the bifurcation dia-
gram of Fig. 24, using 8= 15, damping constant b =0.45,
coupling constant r=0.6, and relative drive frequency
w=1.5. The model agrees with the data in showing first
a period-doubling bifurcation, then a Hopf bifurcation
with many narrow lockings. However, this model does
not then show a wide locking and period doubling to
chaos but rather more lockings, becoming wider at larger
Ao. Tt would appear that to find ODE models that give
detailed agreement is more difficult for N =2 than N=1
oscillators.

Figure 25 is another experimental bifurcation diagram
taken under different experimental parameters corre-
sponding to weaker coupling, Rc=100 . The data show
period doubling, Hopf bifurcation, locking, jump to
period 4, chaos, period 3, Hopf bifurcation, rough period

6, chaos, crisis (jump), etc. We compare this data to a dif-

ferent model: Fig. 26 shows a bifurcation diagram com-
puted from -the iterative map model, Eq. (15), with
¥y=0.5, asymmetry parameter b=0.95, and coupling
C’'=+4C=0.05. The qualitative agreement with Fig. 25
is surprisingly good: The sequence of events is close to
that of the data. Both the data and the model show first a
period-doubling bifurcation, a Hopf bifurcation, period 4,
chaos , and then period 3. The data then show a Hopf bi-

FIG. 27. (a) Observed bifurcation diagram [I,] vs V,, for
system of Fig. 25 with coupling increased to R¢c=1200 Q.
Compare to model, Fig. 28(a). (b) Expanded view of center sec-
tion of (a).

furcation and a period-6 band, whereas the model does
not show this Hopf bifurcation but rather a clear period 6.

Figure 27 is a diagram for the same system as in Fig.
25 but with the coupling resistance increased to
R-=1200 Q. Figure 28(a) is a diagram computed from
Eq. (15) with coupling C'=C=0.6; it compares well with
the data of Fig. 27(a). Figure 28(b) is a high-resolution
expansion of the diagram at 2—1 band merge. There are
21 lines resolved, to be compared to approximately the
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same number in the data, Fig. 27(b). This is probably for-
tuitous since we do not expect such detailed agreement
with the model.

In summary, for two resistively coupled junction reso-
nators we find qualitative agreement with bifurcation dia-
gram data using the ODE model, Eq. (12), and somewhat

_better agreement with the four-dimensional map model,
Eq. (15). We note that bifurcation diagrams computed
from coupled logistic maps (Ref. 28, Fig. 2 for coupling
€=0.06; Ref. 25, Fig. 4 for coupling d =0.1) also bear a
qualitative resemblance to our data.

Phase diagram. An overview of the behavior of two
coupled junction resonators is given by the phase diagram
in Fig. 29 in (V,f) parameter space (not shown is a bi-
furcation from period 1 to period 2 along a line similar to
that in Fig. 19 for one resonator). Along the boundary of
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(volts )

FIG. 29. Observed phase diagram for two resistively coupled
junction oscillators: in parameter space, drive voltage V., and
drive frequency f), the heavy line is the boundary of a Hopf bi-
furcation from f, /2 to quasiperiodicity, with new frequency f,.
Entrainment horns are labeled by P/Q=f,/f,. Period dou-
bling (dotted lines) occurs within horn.

the Hopf bifurcation the frequency ratio p=f,/f, varies
continuously from 4.73218 (upper left of Fig. 29) to
4.344 42 (upper right). Where p tends to a rational num-
ber P/Q, a point of resonance, there emerges from the
boundary an entrainment horn or Arnol’d tongue.’
There are many other narrow horns not shown. Period
doubling to chaos occurs within the horns,>* as shown.
Where two horns overlap there is hysteresis and intermit-
tency between the two attractors, leading to chaos: one
can say that this “confusion leads to chaos.”®> The re-

00 1.0 20

FIG. 30. Phase diagram, A4, vs o, for two resistively coupled
junctions computed from Eq. (12) with y=19/20, b=0.45,
r=0.6, showing boundary of 1:1 jump bifurcation, 1:2 period
doubling, Hopf bifurcation, and approximate region of chaos.
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gions of chaos (however reached: by period doubling, by
overlap of horns, by following a “true” quasiperiodic
route along an irrational rotation number) are widespread
but fall roughly in the shaded region shown. We note that
this phase diagram for two driven passive resonators is
qualitatively similar to a much more detailed phase dia-
gram for a driven active nonlinear oscillator.*®*” In both
cases the entrainment horns are very roughly modeled by
Eq. (17).

To test the ODE model we have used Egs. (12) to com-
pute the phase diagram of Fig. 30 which shows reasonably
well the principal features of the data, Fig. 29, including
the boundaries of the period doubling and Hopf bifurca-
tions and the region of chaos.

Breakup of the torus. From the five-dimensional phase
space of two driven coupled resonators (e.g., I,V ,1I5,
V,,0) we select the space (I,,¥,0) to examine experi-
mentally and look at the ([,(#),V;(z)) phase portrait.

FIG. 31. (a) Phase portrait, I,(¢) vs ¥ (), for two resistively coupled junctions, showing piece of two-loop torus and strobed circu-
lar Poincaré section; Vos=3.2 V rms. (b) At V,,=4.8 V rms torus is broken up, the Poincaré section is the dark “rabbit”-like object.

L =100mH, Rc=1200 Q, f=27.1 kHz, 1N4723 junction.
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There is first a single loop which bifurcates to a double
loop as the drive voltage is increased; then there occurs a
Hopf bifurcation to a double-loop torus. The projection
of one loop of this torus onto the (I,,V;) plane is shown
in Fig. 31(a) for V,,=3.2 V rms; the dark circle is a Poin-
caré section strobed at t=n7T. At V,=4.2 V rms the
torus has broken up: the Poincaré section, Fig. 31(b),
resembles a ‘“‘strange rabbit.” We next show the details of
the breakup of this circle, a simple graphic view of events
on the road to chaos in this system (for the exact same
system, Fig. 23 shows the bifurcation diagram, Fig. 34 the
power spectra, and Fig. 29 the phase diagram). As V is
increased, we see in the Poincaré sections of Fig. 32 (a) the
invariant circle just after the Hopf bifurcation, (b) wrin-
kling of the circle, (c) more wrinkling, with small folds,
(d) frequency locking, f,/f,=-". In Fig. 33 we see (a)
period doubling, (b) nine-band chaos, strange (“rabbit”) at-
tractor, (c) folding, (d) more folding, a “folded rug” at-
tractor. There is another similar attractor corresponding
to the lower branch of Fig. 23(a).

The models, Eqgs. (12) and (15), yield computed Poin-
caré sections similar to those observed. We also point out
the good correspondence between our data and sections
computed for two coupled logistic maps. For example,
the folded rug of Fig. 33(d) is visually quite similar to the
attractor computed by Froyland (Ref. 25, Fig. 5, lower),

FIG. 32. Sequéﬁce of Pomcaféééc ions, I, vs

by Kaneko [Ref. 26, Fig. 2(f)], and by Hogg and Huber-
man [Ref. 28, Fig. 7(a)]. The rabbit of Fig. 33(b) is simi-
lar to Ref. 25, Fig. 5, upper. The general sequence, Figs.
32 and 33, is also qualitatively represented by Poincaré
sections computed by Curry and Yorke*® for a map of the
plane. The sequence is perhaps even more similar to those
computed by Kaneko®® for a two-dimensional delayed
logistic map.

Fractal dimension. Using the method described in Sec.
ITI we measure a fractal dimension of the attractor under
conditions similar to those for Fig. 33(d). For Rc=1200
Q, Vo=7.191 V rms, f1=29.671 kHz, we sampled
g=96000 consecutive values of I,(¢) by strobing asyn-
chronously with reference to the drive period. This data
yielded d =2.23+0.04 in a plot similar to Fig. 22, with
embedding dimension D=6. It is not yet clear if any-
thing significant can be said about this value of d. If the
two oscillators are very strongly coupled, one expects the
temporal behavior of I,(#) to be representative of the
whole system, operationally represented by I (z)
=1I,(t)+1,(t), so that a measurement of dimension d,
from the time series I,(¢) should yield essentially the
same value as d; from I (z). However, if the coupling is
reduced to zero, we have complete localization and I,(¢)
and I,(¢) have no temporal correlation; one then expects
d;~2d,. Similar ideas apply to a line of N identical os-

1,‘ for fwo fesistively couﬁled junctioxis (Fig. 31) for inéreasinyg' drive voltage Vs (V

rms): (a) 3.165, smooth circle just after Hopf bifurcation; (b) 3.681, wrinkled circle; (c) 4.028, more wrinkled; (d) 4.190, entrainment

(locking) at f;/f,=18/4.
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FIG. 33. Sequence of Poincaré sections, I, vs V|, continued from Fig. 32. (a) V,=4.409, period doubling of locked state; (b)
4.882, strange rabbit attractor; (c) 5.132, folding; (d) 8.958, more folding.

cillators where some localization may occur even if the
coupling is nonzero.*

Power spectra. For each of the values of the drive volt-
age in the sequence of Figs. 32 and 33 we recorded the
power spectrum, shown in Fig. 34. For V <3.1 V rms
the spectrum is a set of sharp lines at f /2, f1, 3f1/2, etc.
The new frequency f, appears after the Hopf bifurcation
in Fig. 34(a), together with the combination frequencies
f1/2—f3, f1/2+f, (not shown), etc., all given by
Som=nf1/2+mf, with m,n positive and negative in-
tegers. In Fig. 34(f) the rabbit attractor has appeared and
the spectrum has broadband character: onset of chaos, in
this instance, by period doubling. In Fig. 34(h) the spec-
trum is very broadband with sharp peaks at f;/2 and f,
and their harmonics (not shown).

Oscillations of the torus. Figure 35 shows two Poincaré
sections for increasing drive voltage following Hopf bifur-
cation just prior to locking at P/Q=4/1. The counter
clockwise orbit rapidly approaches the upper right-hand
corner, bends left, slows down, and develops damped
transverse oscillations. The orbit lingers near points A
and B, Fig. 35(b), which become stable fixed points.
Similar-looking orbits have been computed for two cou-
pled logistic maps [see Ref. 28, Fig. 6(a)]. Insight into the
details for a similar case is given by Kaneko,’® who stud-
ied the oscillations for a two-dimensional delayed logistic

map. He attributes the effect to damped oscillation of an
unstable manifold of a periodic saddle. Figure 36 is a
schematic showing two stable fixed points with manifolds
M, and M, along the amplitude and phase directions,
respectively, and two (unstable) saddle points with mani-
folds M, and M,,. If M, crosses My, once, it must
cross an infinite number of times, hence the oscillations of
M,,. The damping is determined by the eigenvalue A, of
the Jacobian matrix, which is close to —1 near the bifur-
cation point, where the oscillations have maximum ampli-
tude. This model gives a good qualitative explanation of
our observations. It is related to heteroclinic crossings in
area-preserving maps, but the oscillations in our case are
damped.

Crises of the attractor.® Another example of characteris-
tic behavior of coupled oscillators is shown in Fig. 37.
After period doubling and a Hopf bifurcation, the system
is entrained at P/Q=14/3, Fig. 37(a); by increasing the
drive voltage there is another Hopf bifurcation to 14 “is-
land” attractors; the seven upper islands are shown in Fig.
37(b). As the drive voltage is further increased, these be-
gin to break up, and a crisis ensues: a cyclic collision of
the seven attractors with the boundaries that separate the
basins of attraction, resulting in a sudden merging into
one attractor, Fig. 37(c). This behavior is expected
theoretically and has been noted in computations for two
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FIG. 34. Power spectra, P in dB vs frequency for two resis-
tively coupled junctions, for same sequences of drive voltage as
in Figs. 32 and 33, V, (V rms): (a) 3.165, (b) 3.681, (c) 4.028, (d)
4.190, (e) 4.409, (f) 4.882, (g) 5.132, (h) 8.958.

coupled logistic maps (Ref. 29, Fig. 5; Ref. 25, Fig. 6).
Symmetry. For two resistively coupled junctions with
very weak coupling (Rc=383 Q) Fig. 38 shows that the
two junction waveforms V(¢) and ¥V,(t) are in time phase
(a) before and (b) after a period-doubling bifurcation, lead-
ing to chaos, (c). No Hopf bifurcation is observed. When
the coupling is slightly increased (Ro=107 ), the
waveforms are initially in time phase, Fig. 38(d), then be-
come out of phase just at the period-doubling bifurcation,
(e); there follows a Hopf bifurcation, (f); chaos is reached
at much higher drive voltages (not shown). For two line-
coupled junctions, where the coupling cannot be made
very weak, Fig. 38(g) shows that even for low drive volt-
ages the waveforms are out of phase, and remain so as a

FIG. 35. Poincaré section, I, vs V|, for two resistively cou-
pled junctions showing oscillation of the torus near period-4
locking. (a) Vos=1.976 V rms, (b) V,=2.003. At V,,=2.045
points A and B become stable fixed points. L =100 mH,
Rc=510 Q, f=27.164 kHz, 1N4723 junction.

Hopf bifurcation [Fig. 38(h)] is reached; no period dou-
bling occurs. These two types of symmetry, in phase and
out of phase, correspond crudely to the two modes of two
line-coupled oscillators. Generally, we observe that a
Hopf bifurcation can occur only from an out-of-phase
state. This is consistent with Kaneko’s phase diagram?®
for two coupled logistic maps; see also Refs. 25 and 28 for
a similar treatment of the effects of symmetry.

FIG. 36. Two periodic stable points (O) and manifolds
M,,My; two unstable saddle points (X) and manifolds
M, M,,. Damped radial oscillations occur where M, inter-
sects M, [after Ref. 30 (1984), Figs. 2 and 4].
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(c)

FIG. 37. Poincaré sections, I, vs V7, for two resistively cou-
pled junctions showing (a) frequency locking (P/Q=14/3) at
Vos =6.152; there is a second set of seven dots corresponding to
the lower branch of the attractor (not shown); (b) V,=6.298,
second Hopf bifurcation; (c) V,s=6.359, cyclic crisis. L =100
mH, Rc=1200 Q, f=24.46 kHz, 1N4723 junction.

C. Line coupling: Experiments and interpretation

Figure 39 is a bifurcation diagram observed for two
line-coupled resonators, connected as explained in the cap-
tion of Fig. 1. This is analogous to a nonlinear transmis-
sion line with inductors in series and p-n junctions in
shunt.* This system displayed first a Hopf bifurcation,
then locking, period doubling, chaos, locking, etc., in a
quite complex diagram. For comparison, Fig. 40 is a bi-
furcation diagram computed from the map model, Eq.
(15) with y=0.8, b=0.95, and —C'=C=0.5. It shows
an overall resemblance to the data including the first
Hopf bifurcation and the bifurcation to period 3 and
period 6.

Figure 41 shows the breakup of the circle in the (1,,V,)
Poincaré section as the drive voltage is increased. Figure
42 shows corresponding sections computed from the map
model, Eq. (15), with y=0.8, 5=0.95, and —C’
=C=0.5, J=0.1. The overall agreement is good if one
compares the structural features. '

(a)
T Van Ve VeV
W

W

(b)

FIG. 38. Junction voltage waveforms, V,(¢) and V,(t), for
two coupled junctions for Rc=83 Q: (a) V,,=0.513 V rms; (b)
Vos=0.645, period doubling; (c) V,=1.913, onset of chaos.
For Rc=106 Q: (d) V,s=0.519; (e) Vos=0.645, jump to out of
phase and period doubling; (f) V,=1.641, Hopf bifurcation
from out-of-phase state. For line coupling, (g) V,,=1.134; (h)
Vos=1.158, Hopf bifurcation. L =100 mH, f =20 kHz.

V. COUPLED OSCILLATORS WITH N >2

For N =4 line-coupled junction resonators we observed
the power spectra of Fig. 43 at increasing drive voltage at
frequency f;. In Fig. 43(a) the system has made a Hopf
bifurcation to a second frequency f,. In Fig. 43(b) a
second bifurcation to a third frequency f; has occurred.
In Fig. 43(c) the intensity of f; is more fully developed.
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FIG. 39. Observed bifurcation diagram [I,] vs ¥V, for two identical line-coupled resonators showing Hopf bifurcation and fre-
quency locking. L =8.2 mH, Ry=70 Q, f =90 kHz, 1N4723 junction.

All lines in this quasiperiodic spectrum are fit by the ex-
pression for the combination frequency

f=mifi+myfo+ - +mf; (18)

with the set of integers (m, . . ., m;) shown in the figure.
Figure 43(a) is fit by two frequencies, and (b)—(d) by three
frequencies: f,=167 kHz, f,=63.6 kHz, f;=11.53
kHz. f, is set by the drive oscillator, whereas f, and f;
are determined by the system dynamics and depend on the

drive voltage, but this dependence has not been measured. '

We believe that if any two frequencies f; and f; are
locked, then the locking ratio f;/f; must have integers
larger than at least 30 since with our apparatus we could
have observed such ratios. Within this error we believe

that the three frequencies are incommensurate. We note’

that as the drive voltage is increased, the spectral intensity
at f; and its combination frequencies is increased, e.g., the
line f,-f; in Fig. 43(c). Figure 43(d) shows onset of
chaos: there is the beginning of a broadband line centered

at f-f3. If there is a fourth frequency, its intensity must
be at least 10 dB below that of f7.

For N =12 junction resonators with line coupling, the
observed power spectra are shown in Fig. 44, for increas-
ing values of drive voltage. As in all line-coupled systems
there is a first Hopf bifurcation to a second frequency f»,
then to a third frequency f3, etc. All spectral lines in Fig.
44 can be fit by Eq. (18) extended to four frequencies.
Figure 44(a)—(d) require 2, 2, 3, and 4 frequencies, respec-
tively. This conclusion is supported by the direct observa-
tion of the following Poincaré sections: Fig. 44(a), a sin-
gle loop (a section of a 2-torus); Fig. 44(b), a complicated
loop (but still a section of a 2-torus); Fig. 44(c), a compli-
cated 2-torus (a section of a 3-torus); Fig. 44(d), an object
suggestive of a 2D projection of a 3-torus (itself a section
of a 4-torus). Chaos is just beginning to set in for Fig.
44(d). On the whole it was difficult to experimentally
find the parameter values (V,f;) at which quasiperiodi-
city with four frequencies was observed.
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1Zp]

A

FIG. 40. Bifurcation diagram [Z,] vs A for line-coupled iterative map model, Eq. (15), with y=0.8, b=0.95, —C'=C=0.5,

J=0.1.

VI. SUMMARY AND CONCLUSIONS

A driven p-n junction resonator is highly nonlinear
with an asymmetric weak-strong restoring force, owing to
charge storage in forward injection. The system displays
a period-doubling cascade to chaos, which is part of a
larger period-adding sequence in which the resonator is
entrained to successive subharmonics of the drive frequen-
cy. To model the effects of dissipation, attractors are
computed for various values of a in an exponential force
model, Eq. (9); the results, Fig. 5, show a marked depen-
dence of the fractal dimension on a. Measured bifurca-
tion diagrams are reasonably similar to those computed
from a three-dimensional ODE model [Eq. (3)] and a
two-dimensional iterative map model [Eq. (11)] with a
form chosen to represent the junction resonator charac-
teristics. The measured phase diagram in parameter space
(drive voltage, drive frequency) is similar to that comput-
ed from Eq. (3). At low drive voltage the observed return
map is similar to that computed from Hénon’s map, Eq.
(7), with contraction ratio J~ —0.1. Poincaré sections
show self-similarity and fractal structure; a fractal dimen-
sion d =2.041+0.03 is measured for the one-band chaotic

attractor just before the period-3 window for a particular
set of system parameters.

For two resistively coupled junction resonators we find
two-frequency quasiperiodicity. As the drive voltage is
increased we observe: period 1—2 doubling, Hopf bifur-
cation to a second incommensurate frequency, entrain-
ment, additional Hopf bifurcations and/or period dou-
bling, chaos. Bifurcation diagrams are compared to those
computed from a coupled ODE model, Eq. (12); and also
to an iterative map model, fashioned from coupling two
two-dimensional maps, Eq. (15). Qualitative agreement is
found; two coupled logistic maps are also found to be a
reasonable model. The phase diagram in parameter space
(drive voltage, drive frequency) is found to display en-
trainment horns emanating from the Hopf bifurcation
boundary, with period doubling within a horn. The major
boundaries in the phase diagram can be understood by
computations using Eq. (12). The breakup of the torus is
observed in detail, simultaneously in Poincaré sections and
in power spectra. The strange attractor is found to be
quite similar to that from maps of the plane. A fractal
dimension d =2.23+0.04 was measured for a “fully fold-
ed” strange attractor. Other generic behavior reported in-



FIG. 41. Observed Poincaré sections, V,.vs I,, for two line-
coupled junctions for increased drive voltage, from (a) to (c),
showing breakup of the torus; system same as in Fig. 39.

cludes oscillators of the torus, cyclic crises of the attrac-
tor; and effects of coupling on the symmetry.

For two line-coupled junction resonators we find first a
Hopf bifurcation as the drive voltage is increased in con-
trast to the resistively coupled case. This is found to be in
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[(Yn]

FIG. 42. Computed Poincaré sections of [Z,] vs [Y,] com-
puted from map model, Eq. (15), with y=0.8, b=0.95,
—C'=C=0.5, J=0.1. (a) A4=2.25 (b) A=2.29, (¢
A=2.357. ' .

agreement with the model, Eq. (15), which also explains
reasonably the Poincaré sections.

For a line of N=4 coupled resonators we find quite
complex behavior in bifurcation diagrams; almost any se-
quence of patterns can occur. Power spectra are fit to
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FIG. 43. Quasiperiodic power spectrum (relative dB vertical)
observed for N =4 identical line-coupled junctions for increased
drive voltage, from (a) to (d), with integers (m,m,,m3) in Eq.
(16) which classify the spectrum lines. This system is quasi-
periodic with three incommensurate frequencies. L =8.2 mH,
R =70 Q, drive frequency f; =167 kHz, 1N4723 junctions.

three-frequency quasiperiodicity. For N =12 resonators
we find four-frequency quasiperiodicity. No attempts
were made to model the detailed behavior for these cases.

In conclusion, we find that the chaotic dynamics of
N=1 and N=2 coupled p-n junction resonators can be
reasonably understood by tractable models. The driven
p-h junction is a simple but very useful physical system
for further study of quasiperiodicity in high-dimensional
systems, e.g., the question of localization. Such studies
are now in progress.
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FIG. 44. Quasiperiodic power spectrum (relative dB vertical)
observed for N =12 identical line-coupled junctions for in-
creased drive voltage, from (a) to (d). The spectrum lines in (a)
and (b) can be fit by Eq. (16) with (m,m,,m;) shown. (c) re-
quires three frequencies and (d) requires four frequencies.
L=8.2 mH, R=70 Q, drive frequency is f;=220 kHz,
1N4723 junction. :
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FIG. 10. (a) Bifurcation diagram [I,] vs drive voltage V., (arbitrary units) for p-n junction showing period doubling and period
adding (frequency locking). (b) Average junction current I vs V, showing peaks at locked regions. f=28 kHz, L =10 mH, R =8
Q, 300 A p-n junction.



FIG. 15. Poincaré section, I vs f, showing self-similarity and
fractal structure. L =10 mH, f=76 kHz, R =43 Q, 1N4721
junction.
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FIG. 17. Measured bifurcation diagram, [I,] vs V¥, (horizontal, arbitrary units) for driven junction. L =100 mH, R=53 Q,
f=20.3 kHz, IN4723 junction.



FIG. 20. Observed bifurcation diagram [I,] vs ¥V, (horizontal, arbitrary units) for driven junction, f=11.79 kHz, L =10 mH,
R =8, 300 A junction.



FIG. 23. (a) Bifurcation diagram [I,] vs ¥V, for two identical resistively coupled junctions, showing period doubling, Hopf bifur-
cations, and chaos. (b) Enlarged bifurcation diagram [V, ] vs ¥, of upper center section of (a), showing Hopf bifurcation, entrain-
ment, doubling, chaos. L =100 mH, R=1200 Q, f=27.127 kHz, 1N4723 junction.



FIG. 25. Measured bifurcation diagram [I,] vs V, for two identical resistively coupled junctions, L =8.2 mH, Re=100 (,
f=120 kHz, 1N4723 junction.



)

-“".“.‘.’.‘

FIG. 27. (a) Observed bifurcation diagram [I,] vs ¥V, for
system of Fig. 25 with coupling increased to Rc=1200 (.
Compare to model, Fig. 28(a). (b) Expanded view of center sec-

tion of (a).



FIG. 31. (a) Phase portrait, I,(t) vs ¥,(1), for two resistively coupled junctions, showing piece of two-loop torus and strobed circu-
lar Poincaré section; V,,=3.2 V rms. (b) At V,,=4.8 V rms torus is broken up, the Poincaré section is the dark “rabbit”-like object.
L =100 mH, Rc=1200 Q, f=27.1 kHz, IN4723 junction.
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FIG. 32. Sequence of Poincaré sections, I, vs ¥, for two resistively coupled junctions (Fig. 31) for increasing drive voltage V,, (V
rms): (a) 3.165, smooth circle just after Hopf bifurcation; (b) 3.681, wrinkled circle; (c) 4.028, more wrinkled; (d) 4.190, entrainment
(locking) at f /f,=18/4.



FIG. 33. Sequence of Poincaré sections, I, vs V¥, continued from Fig. 32. (a) V,=4.409, period doubling of locked state; (b)
4.882, strange rabbit attractor; (c) 5.132, folding; (d) 8.958, more folding.
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FIG. 35. Poincaré section, I, vs ¥, for two resistively cou-
pled junctions showing oscillation of the torus near period-4
locking. (a) V=1.976 V rms, (b) V,=2.003. At V,=2.045
points A and B become stable fixed points. L =100 mH,
Re=510 1, f=27.164 kHz, 1N4723 junction.



FIG. 39. Observed bifurcation diagram [I,] vs V, for two identical line-coupled resonators showing Hopf bifurcation and fre-
quency locking. L=8.2 mH, R,=70 , f =90 kHz, 1N4723 junction.
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FIG. 41. Observed Poincaré sections, ¥, vs I, for two line-
coupled junctions for increased drive voltage, from (a) to (c),
showing breakup of the torus; system same as in Fig. 39.
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FIG. 7. Observed bifurcation diagram [I,] vertical (arbitrary units) vs drive voltage amplitude for driven p-n junction resonator,
L =470 mH, f=3.87 kHz, R =244 (), 300 A p-n junction.
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FIG. 9. (a) Observed phase portrait, I vs I, for driven p-n
junction at period-3 window: L =100 mH, f=19.64 kHz,
R =53 ), 1N4723 junction, V,=3.82 V rms; the three dark
dots are a strobed Poincaré section. (b) Phase portrait and Poin-
caré section (dark “bent hairpin”) for same system at one-band
chaos, V,,=3.48 V rms.



