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We have analyzed, in the context of a boundary-layer model, the problem of pattern selection in
dendritic growth in a situation where impurities are present in the undercooled liquid. We find that
the tip-velocity selection criterion that has been proposed recently for the geometrical model and the
boundary-layer model of a pure substance can be extended, in a nontrivial way, to this more complex
situation where two coupled diffusion fields (temperature and solute) determine the interface
dynamics. Our model predicts a sharp enhancement of tip velocity in good qualitative agreement
with experiment. This agreement is consistent with the conjecture that a solvability condition can be
used to determine the operating point of the dendrite in the full nonlocal problem.

I. INTRODUCTION

The search for an understanding of the mechanisms
which govern the formation of geometrical patterns in
nonequilibrium dissipative systems has been a continuing
subject of interest in physics and biology. Well-known ex-
amples of patterns found in physical systems include the
convection cells formed in Rayleigh-Benard convection,
the vortices formed in Taylor-Couette flow, and the den-
dritic, tree-like structures formed during the solidification
of an undercooled liquid.

In the study of dendritic solidification a large part of
the theoretical work has concentrated on predicting the
properties of the needle-shaped dendritic tips. These in-
clude the tip velocity and tip curvature, and the initial
side-branch spacing. In order to avoid the mathematical
and numerical difficulties encountered in the study of the
full free-boundary problem of solidification, several au-
thors have recently introduced local string models of in-
terface dynamics. These include the geometrical model
where the interface normal velocity is determined by the
local curvature, ' and the boundary-layer model (BLM)
where part of the memory effects contained in the full
problem are retained by allowing heat to diffuse along the
interface.

Both models have shown to be extremely useful in
understanding the tip-velocity selection mechanism. In
particular, it was shown that at nonzero surface tension
only a discrete set of needle-crystal solutions to the
steady-state equations can be found, and that the dynami-
cally selected tip corresponds to the member of this
discrete set with the maximum velocity. ' The other
members of the discrete set are all unstable and their
number could possibly be infinite at small tip velocities.

A related problem in dendritic solidification, which has
recently attracted both theoretical and experimental'
interest, is to understand the effect on the growth and
morphology of the dendritic tip of adding a small amount
of impurities to the undercooled melt.

This situation is very important technologically since it
pertains to the solidification properties of dilute binary al-

loys. From a theoretical point of view it would be very
interesting at this point to elucidate what mechanism
determines the tip velocity when impurities are present in
the melt. In particular, we would like to find out if the
selection criterion that was developed in the context of the
geometrical model and the BLM of a pure substance, ap-
plies in this more complex situation where both heat and
solute diffusion fields are coupled at the interface. If the
criterion applies, it would also be essential to know if it
can be used to predict the enhancement in tip velocity at
small impurity concentration which is seen experimental-
ly. ' Our motivation in examining this enhancement in
tip velocity is that it has been understood previously in
terms of a stability argument, which was used to perform
quantitative calculations of dendritic growth rates and tip
radii. However, these calculations were all based on
the assumption that the shape-preserving solutions of the
steady-state equations consist of a continuous family of
needle crystals. Since this assumption has been shown re-
cently to be incorrect, at least for local models, it is very
important to know at this point if a solvability condition,
assuming it generalizes to the impurity problem, can
predict this velocity enhancement. The main purpose of
this paper is to answer these questions of selection and
impurity effects, in the context of a string model (BLM)
where both heat and solute are allowed to diffuse along
the interface.

Our results show that, indeed, the selection criteria can
be extended in the case where impurities are present. This
is revealed, mathematically, by the existence of a one-
parameter family of trajectories which flow into the two
physical fixed points (8=+m./2) of the steady-state equa-
tions of our model.

This feature of the fixed points allows us to construct
explicitly needle-crystal solutions to the steady-state equa-
tions and identify uniquely the dynamically selected tip
velocity. In this way we are able, within the context of
our model, to treat exactly the effects of impurities on
dendritic growth. We find that at small solute concentra-
tion the tip velocity is enhanced initially and then de-
creases as the concentration is increased further. This is
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in complete qualitative agreement with what is seen exper-
imentally, and is consistent with the speculation that a
similar "needle-crystal" selection criterion holds in the
full free-boundary problem.

This paper is divided as follows. In Sec. II we review
the basic physics of dendritic growth in undercooled di-
lute solutions and derive the equations of motion for our
model. In Sec. III we study the steady-state equations of
the model and show how to construct needle-crystal solu-
tions. In Sec. IV we discuss the results of our numerical
simulations and finally in Sec. V we discuss the velocity
enhancement at small impurity concentration.

II. DERIVATION OF THE MODEL

Consider a physical situation where a seed of solid is in-
troduced in an undercooled binary liquid mixture where
the concentration of solute is smaI1. As the solid seed
starts to grow a buildup of latent heat and solute appears
at the interface. The latter is a result of the discontinuity
in solute concentration at the interface, the solute concen-
tration in the liquid being much greater than in the solid.
In order for the seed to continue to grow the excess heat
and solute need to diffuse away from the interface. Their
rates of diffusion then control the rate of solidification of
the interface. To be more specific consider a binary mix-
ture with a phase diagram shown in Fig. 1. For simplicity
we assume zero solubility of impurities in the solid, we
neglect entirely the diffusion of heat in the solid, and we
restrict our study to two dimensions. In the context of a
string model we are primarily interested here in the quali-
tative features of the impurity problem and from this per-
spective we believe that these simplifications are not
essential. In what follows we will use the following nota-
tion: T~ is the melting temperature for a pure substance, -

T and C are the temperature and solute concentration
far from the interface, Tb and Cs are the temperature and
solute concentration at the interface, I. is the latent heat
of fusion, C& is the specific heat per unit volume in the
liquid, P is the slope of the liquidus, Di and D2 are,
respectively, the diffusivity of heat and solute in the
liquid, and b,, is the effective undercooling for a solute
concentration C, b, =(TM —T ) (/L /C) i0C„. &he—

temperature and solute concentration are written, respec-
tively, as T(x, t) and C(x, t) where x is the two-
dimensional position vector. It is also convenient to de-
fine a system of curvilinear coordinate 8(S), where 8(S) is
the angle between the z axis and the local normal n (S) to
the interface and S measures the arclength along the in-
terface. These conventions are summarized in Fig. 2.

For convenience we also define the spatial diffusion
fields

T(x, t) —T„
ui(x, t)=

1./Cp

C(x, t) —C„
u2(x, t) =

C

(2.1)

(2.2)

and their corresponding surface fields which are just the
spatial fields evaluated at the interface:

u;(S, t) =u;(x, t) s (i =1,2) . (2.3)

The motion of the interface is then completely determined
by the equations of motion for the spatial fields and their
boundary conditions at the interface. The spatial fields
obey the diffusion equation

Bru;=D;V' u; (t =1,2) . (2.4)

The first two boundary conditions are simply a statement
of heat and solute conservation at the interface:

(2.5)

n Vu2
V„=—D2 + 2 ) interface

(2-6)

+M Cpui+(pC„)u 2b,, — y+ 2
K .ae'

Here the difference in form between the two continuity re-
lations, Eqs. (2.5) and (2.6), comes from the fact that the
heat rejected I. is constant at any point on the interface
but the solute rejected Cb ——(1+u2)C can vary: The
third boundary condition, the Gibbs-Thomson relation, is
a statement of local thermodynamic equilibrium and cou-
ples the temperature with the solute concentration at the
interface:

M

T(C)

Here K—:B6/BS is the interface curvature and y is the
liquid-solid surface energy. In what follows we will as-
sume a simple form of angular dependence with m-fold
symmetry for y:

y =yo+ y cos( m 8) .

U IOUS = P

L I QUID

Cb SOLID

FIG.. 1. Schematic phase diagram for a two-component sys-
tem. FIG. 2. Coordinate system.
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It is then convenient to rewrite the Cxibbs-Thomson rela-
tion in terms of a scaled capillary length do and an effec-
tive anisotropy a such that

=(m —1)
'Vo

TM+p 70
L (1+a)

and

~U ( ))itt

90

u;(S, t)
n '~ui

~ interface

(2.8)

ui+(PC„)u2 ——6,—do[1+a[1—cos(m8)]JR' . (2.7)

In our numerical simulations, which will be described
in Sec. IV, we used a fourfold anisotropy (m =4), and
a=0. 1. This choice corresponds to a strength of aniso-
tropy which is less than one percent (y /@0=1/165),
and corresponds roughly to the values of surface-tension
anisotropy which have been measured for succinonitrile.
For the geometrical model, it has been shown that the an-
isotropy strength has to be above a nonzero critical value
for a tip steady state to be reached dynamically. In this
paper we have not attempted to calculate this critical
value for our model. However, the anisotropy strength
a=Oe1 that we used in all our numerical simulations was
always sufficient for a steady-state tip to be reached
dynamically.

The free boundary problem defined by Eqs. (2 4)—(2.7)
is very difficult to study both analytically and numerical-
ly. In particular, one has to solve the diffusion Eq. (2.4)
everywhere in space in order to determine V„via the con-
tinuity relations Eqs. (2.5) and (2.6). Another route is to
project the problem onto the interface by Green's-function
method. " This reduces the spatial dimensionality of the
problem by 1 but the resulting integro-differential equa-
tion one obtains is nonlocal in space and time, and very
hard to treat numerically. In order to avoid these difficul-
ties, but hopefully still retain the essential physics of the
problem, we make a boundary-layer approximation for
the thermal and solute fields. A detailed discussion of the
boundary-layer technique as it was first applied to the
solidification of a pure substance can be found in Ref. 4.
For completeness we will summarize here the essence of
the approximation. Since the boundary-layer approxima-
tion applies to the thermal and solute fields equally well,
we will keep the derivation of the equations of motion as
general as possible by referring to the thermal and solute
field by the index i = 1,2, respectively.

The essence of the boundary-layer approximation is
that instead of solving for the thermal and solute dif-
fusion fields everywhere in space, we can characterize
these fields by their effective thickness of warm fluid and
excess solute ahead of the interface. Consider a typical
profile of temperature or solute concentration at a given
instant in time, along a direction g parallel to the local
normal at S. This situation is described schematically in
Fig. 3.

A good measure of the loml thickness of excess solute
or heat content is shown in Fig. 3 and can be written

FIG. 3. Schematic temperature or concentration profile.

The two continuity relation equations (2.5) and (2.6) can
be used to express V„ in terms of l;:

D]u)V„=—
l)

D2u2

l2( 1+u2)

(2.9a)

(2.9b)

d[H; b,S] = bS V„(1—u;5t;)
dt

1,

0,

+LSD,a, (l, asu;), t=1,2

/=1
l =2.

(2.1 1)

The first term on the right-hand side of Eq. (2.11) corre-
sponds to the addition of heat or impurities to the
boundary layer along the local normal n(S). In the case
of the thermal field the extra factor of —AS u] V„corre-
sponds to the amount of heat needed to warm up the cold
fluid just solidified to the loml melting temperature. For
a plane this first term on the right-hand side of Eq. (2.11)

Now to completely specify the motion of the interface
we need to specify some dynamics for l;. As such it is not
apparent how to write down an equation of motion for l;
and we eliminate l; in terms of a new field H; which cor-
responds to the excess heat or impurity content per unit
length ahead of the interface:

H;(S, t)= Ju;(g, t)dg—=u;(S, t)l;(S, t) (i =1,2) .
Qo

(2.10)

We can then derive an equation of motion for H; by con-
sidering the time rate of change, along the normal growth
direction (d/dt

~
„),of the quantity H; AS. This quantity

can change in two ways. First, heat or solute can be add-
ed to the boundary layer in a direction parallel to the local
normal n(S). Second, heat or solute can diffuse along the
interface. In a situation where the deformation of the in-
terface varies slowly on the scale of l; (Ir.l; « 1), the con-
tribution from these two processes can be treated separate-
ly. This situation will occur at large driving force 6, in
which mse V„ is large and l; is small. Following this pro-
cedure we obtain
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can be derived exactly and the details are given in Appen-
dix A. The second term on the right-hand side of Eq.
(2.11) corresponds to the addition of heat or solute by la-
teral diffusion where Bs denotes the gradient along the in-
terface. Finally, we have to specify the equations of
motion for hS and K:

]sz

dhS
dt

(2.12)

dt
(a—,'+re') v„. (2.13)

The derivation of the model is now complete. In order
to simplify the form of the equations of motion and in or-
der to work with dimensionless quantities we perform the
following manipulations. We eliminate b,S in Eq. (2.11)
using Eq. (2.12), and also eliminate l; everywhere in terms
of H; using Eq. (2.10). We scale all lengths in terms of do
and all times in terms of the "microscopic thermal dif-
fusion time" (d o ) /D &. Finally, we define a new set of di-
mensionless variables and parameters

tD) dpS» 7
& 2 ~ Vn ~n

dp (do)

D2 H;
~=avdp, r=, h;= (i =1,2) .

After performing these substitutions we obtain the follow-
ing set of equations which completely specify our string
model:

dhi h)=u„(1—u&) —u„ah, +a, a, ~,d7 u)
(2.14)

d2 h2=V„—V„~h2, +rB, B,u2d7 Q2
(2.15)

u
Vn=

h)

u2

h2(1+u2)
(2.16)

u)+(PC )u2 ——b,, —~(l+f),
f=a[1—cos(m8)) .

(2.17)

The equations of motion for K and b,S, after rescaling,
appear just as in Eqs. (2.12) and (2.13) but expressed in
terms of the new dimensionless variables ~ and As.

III. NEEDLE CRYSTALS

We now wish to find shape-preserving steady-state
growth forms, the so-called "needle crystals, " that move
with constant growth velocity vp in the z direction as
shown in Fig. 4.

The motivation here, in looking for needle crystals, is
that the dendrites obtained in the laboratory exhibit
smooth tips at least for some finite portion of arclength,
after which the side-branching activity becomes impor-
tant. Needle crystals were first discovered by Ivantsov'
in his study of the dendritic growth of a pure substance,
for zero surface tension (do=0). He found a family of

8=-~ZZ I

I

S = -COI

~8= ~ra
I
I S=+g)

FIG. 4. Needle-crystal trajectory.

parabolic shapes where the tip velocity up and the tip cur-
vature ~p obey the relation

Kp
(3.1)

and C is a constant uniquely determined by the thermal
undercooling (TM —T )/(L/C&). In a situation where
impurities are present the Ivantsov result can be general-
ized and a relation identical to Eq. (3.1) holds, except
that C is now uniquely determined by b,, and PC
These results are exact but only valid when dp =0. How-

'ever, we know that the surface tension plays a crucial role
in the pattern formation of dendrites, since it restabilizes
short-wavelength perturbations.

Recent studies of local models of interface dynamics '

have given us a good clue to what happens when do&0.
In particular, it was found that in this case only a discrete
set of needle crystals could exist. Furthermore, the
member of this discrete set with the maximum velocity
corresponded to the state selected in numerical simula-
tions of the dynamical models studied. Our aim here is to
elucidate if needle crystals ca.n be found when impurities
are present. To do so we look for shape-preserving solu-
tions of Eqs. (2.14)—(2.17) with u„=uocos8 and
Bh;/Br ~, =0 (i =1,2) as shown in Fig. 4. The later con-
straints simply say that at steady state h; remains invari-
ant, at constant s, in a frame which moves at speed uo.
The relation between the constant s and normal time
derivative for steady state is simply

d
d7.

a
+vpsin6 a, .

87

Setting u„=upcos8, Bh;/Br ~, =0, and eliminating
d/dr

~ „ in Eqs. (2.14) and (2.15) we obtain, after some
simple algebraic manipulations, the steady-state equations
describing shape-preserving growth forms. To describe
the needle-crystal trajectories it is convenient to write
down the steady-state equations as an autonomous system
of five coupled ordinary-differential equations (ODE s)
with dependent variables u ~, u q, A, ~

—=du ~ /ds,
A,2=du2/ds, 8, and independent variable s:
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de =v=(h, —ui —PC uz)/(1+ f),ds

dQ(

(3.3)

(3.4)

dQ2
~2

ds
(3.5)

dS

KQ &Up —vpcos 8
cos8

1 —ui

—A, &(z tan8 —2vpsin8)— (3.6)

KQ2Up

d$ r cost9

vpcos 6 1+u2
Q2

UpsinO 2+ Q2
K tanO—

r 1+u2

X2

u~(1+uz)
(3.7)

Note that Up enters here only as an external parameter.
We now discuss qualitatively the properties of the set of

equations (3.3)—(3.7). In this way we hope to give some
intuition for the problem of finding needle crystals and
also give some motivation for the asymptotic analysis that
will follow. First, consider the simpler problem of finding
needle-crystal solutions in the case of a pure substance
(PC =0). In this case only the variables 8, u &, and A,

&

enter together with Eqs. (3.3), (3.4), and (3.6). There are
two physical fixed points of this set of equations at
8=+@/2, u

&

——b„and A.
&

——0. Needle-crystal solutions
correspond to trajectories that leave the 8= —m/2 fixed
point and intersect the 0=0 plane at X~ ——0. Since the
steady-state equations are invariant under reflection sym-
metry about the z axis (8=0), these trajectories will
necessarily flow into the other fixed point at 8=~/2. In

what follows we will only refer to the 0= —m/2 fixed
point but everything that will be said also applies to the
other fixed point. A detailed study of the 8= —m/2 fixed
point shows that only a single trajectory flows out of this
fixed point for a given value of vp. In general, this tra-
jectory will not intersect the 0=0 plane at A,

&
——0 unless Up

has special values. Therefore, at best, only a discrete set
of needle crystals can exist. We now turn to the situation
where impurities are present (PC &0). In this case the
phase space is five-dimensional and needle-crystal solu-
tions correspond to trajectories that leave the 0= —m. /2,
u& ——u&, u2 ——u2, k~ ——k2 ——0 fixed point and intersect the
8=0 hyperplane at kt ——0 and A,q ——0. (The fixed-point
values u ~ and uq will be determined below. ) Consequent-
ly, in general for needle crystals to exist we need at least
two free parameters to satisfy the two conditions A,

&
——0

and A,z ——0. The first free parameter is as before the tip
velocity vp. The second free parameter will be shown to
exist below and follows from the finding that a single-
parameter family of trajectories leave the 8= —~/2 fixed
point (when PC &0).

The existence of two free parameters is only a necessary
condition for the existence of needle crystals when
PC„&0. One then needs to construct these solutions ex-
plicitly by direct numerical integration of Eqs. (3.3)—(3.7).
That is, one needs to show that A, ~

——0 and A, 2 ——0 can be
satisfied simultaneously at the tip by adjusting vp and the
free parameter at the fixed point. The details of this con-
struction will be discussed later in this section.

We now wish to study the 8= —m. /2 fixed point when
PC &0 and demonstrate mathematically the existence of
a single-parameter family of trajectories that flow out of
this fixed point. For this purpose it is more convenient to
eliminate the s coordinate in terms of a new coordinate
x =—cosO which can serve as an expansion variable in the
neighborhood of the fixed point, and rewrite the steady-
state equations (3.3)—(3.7) as two coupled second-order
ODE's in the new variable x. After simple algebraic ma-
nipulations we obtain

QiK
Upx

UpX

1 —Q) Bu) B~ ~(1 x ) Oui
2vpir(1 —x ) — +v(1 —x ) +a.

Bx X Bx u) Bx

2

——~(l —x ) =0,a"
BX

(3.8)

U px 7'u 2K

T UpX

1+Q2 Bug vp(1 —x )K(2+up) lr~
& fir ~~(1 x~). Bug

+~(1—x )
BX r(1+up) x Bx uz(1+uq) Bx

2

—~(1—x ) =0,8 Q2

BX

[1+8ax (1—x ))~=5,—u~ —(PC„)uq .

(3.9)

(3.10)

Equations (3.8) and (3.9) are the heat and solute
boundary-layer equations at steady state and Eq. (3.10) is
the Gibbs-Thomson relation with a simple choice of a
fourfold anisotropy (I=4).

A first step in the study of the x =0 fixed point is to
extract the leading behavior of v as a function of x and
the fixed-point values of temperature and concentration
u ~ and u2. To do so we note that the leading singularity
in Eqs. (3.8) and (3.9) has to vanish as x~0 [first term in Vp

1 —Q)

(ui)
(3.11)

square brackets in Eqs. (3.8) and (3.9)]. Any other possi-
bility leads to an inconsistency in which u& and u2
diverge at x =0. This implies that K=K*x to leading or-
der in x.

Setting the main singularities equal to zero [first term
in large parentheses in Eqs. (3.8) and (3.9)] we have
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TK

Uo

1+u 2

(u2)

ui +(pC )u2 ——b,

From the Gibbs-Thomson condition we also have

(3.12)

(3.13)

tories and the details of this special case are shown in Ap-
pendix B. A plot of 5—1 versus PC„ for
5, =0.2,0.5,0.8 and r =0.01 is shown in Fig. 5.

The trajectories which leave the x=0 fixed point are
characterized by surface temperature and concentration
profiles u

&
and u2 of the form

Equations (3.11)—(3.13) determine u &, u2, and Ir' unique-
ly. At zero surface tension dp ——0 the isothermal and iso-
concentration trajectories K=K x, u&

——u&, and u2 ——uz
are the exact Ivantsov parabolic trajectories for our model.

To investigate the properties of the fixed point further
(do&0) we write ir, u~, and u2 in a power-series expan-
sion in x of the following form:

(n, n)
p&n, m & 00

a(n m)x" +ms (3.14)

ug =
(n, m)

0&n, m & oc

u;(n, m )x"+ (i = 1,2) . (3.15)

Here we have allowed for the possibility of noninteger
powers of x. We shall see shortly that this inclusion turns
out to be crucial here. Next we substitute Eqs. (3.14) and
(3.15) into Eqs. (3.8)—(3.10), expand, and solve for the
x(n, m) and u;(n, m). At lowest order we recover
tc(0,0)=tc', u;(0, 0)=u;* (i=1,2). Now at the lowest or-
der in the expansion where 5 fi'rst appears we obtain
(PC„&0)

[(1—25)(1—u i )+1](ui)' u]
u )(0, 1)

Up ir(0, 1) =0,
[(1—5)(2+u2)] u2

r(/3C )(u2 )

(3.16)

where we have eliminated u2(0, 1) in favor of u~(0, 1) via
the Gibbs- Thomson relation

u i(0, 1)+(pC )u2(0, 1)=0 . (3.17)

Now the heart of our argument is that given b,„PC„,
and r, for a particular value of 5 the determininant of the
matrix 2 [defined by Eq. (3.16)] vanishes. Setting
detA =0 and solving for 5 we obtain at once

ru i (/3C„)(u 2 )

[2(1—u&)r(pC )(u2) +(2+u2)(u~) ]
(3.18)

u( ——u)+u((0, 1)x +u((x),

u i(0, 1)
u2 ——u2 — x +u2(x),

(3.19)

where

u (x)=
(n, m) [+(p,p), (p, l)]

0&n, m & ao

u;(n, m )x"+ (3.20)

is determined uniquely in terms of u &(0, 1) (which is arbi-
trary) and b„, /3C, and r. To see this, when we elim-
inate u2(n, m) in favor of u ~(n, m) via Eq. (3.10) we find,
at each order in the expansion, the following structure:

T

b)) b, 2 u, (n, m )

b22 b22

C(

C2

( n, m )&(0,0);(0,1) (3.21)

0.3

with detB&0 and the b,j's and c s uniquely determined
in terms of previous coefficients u ~ ( n ', m '), Ir( n ', m ')
where n'+m'5&n+m5. Since now 5 is fixed [Eq.
(3.18)], in general detB&0 and the u&(n, m) and ir(n, m)
are all uniquely determined. We verified that detB&0 for
the next few orders in the fixed-point expansion. Also we
integrated the system of ODE's Eqs. (3.3)—(3.7) near the
fixed point (x =0.01) and measuring the slope of
ln

~

r)u;/Bx
~

plotted versus lnx (slope =5—1) we found 5
to agree with Eq. (3.18) within less than 1% for different
values of u ~(0, 1), 6„/3C, and r.

We now would like to discuss the physical meaning of
the free parameter u&(0, 1), the explicit construction of
needle-crystal solutions, and the limit of zero impurity
concentration (PC —+0).

Since detA =0, u~(0, 1) is undetermined and conse-
quently a one-parameter family of trajectories leave (or
approach) the x =0 fixed point, tangent to the Ivantsov
trajectory K=K*x, ui ——u j, u2 ——u2. Note that 5 defined
by Eq. (3.18) is always positive, which is consistent with
the requirement that u ~ and uz remain finite at x =0. In
the case where 6 i.s an integer, which can occur for special
values of PC „,b,„and r, and for special values of this in-
teger such that Eq. (3.17) involves the coefficient ir(0, 1)
(for example, if 5=3) the above analysis has to be general-
ized to include logarithms (x"lnx) in the expansion.
However, we still find a one-parameter family of trajec-

0.2

O. I

0 IO

FICs. 5. 5—1 vs PC for b, =0.2, 0.5, and O.g. r =0.01.
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The physical meaning of u~(0, 1) is contained in the
Gibbs-Thomson relation, Eq. (3.10). When PC &0 the
surface temperature u~ and concentration u2 can be ad-
justed without affecting the surface tension, namely the
curvature, simply by sliding along the liquidus. This
statement is contained in Eq. (3.17). At PC„=O the tem-
perature cannot be adjusted independently of the curva-
ture and in this more stringent situation only a single tra-
jectory leaves the fixed point.

To construct the needle-crystal solutions for given
values of h„PC, and r we proceed as follows. We first
fix Uo and find the value of u~(0, 1) such that
A,2(8=0)=0. This is done by integrating numerically the
system of ODE's (3.3)—(3.7) from the fixed point to the
tip. In practice, we start close to the fixed point (x =0.1)
and move our starting point closer to the fixed point until
the values at the tip have converged sufficiently. For a
given vo the value of A, ~(8=0)—:A, ~(UO) such that
Az(8=0)=0 is, in general, nonzero. We then repeat this
procedure for different values of Uo and plot A, ~(vo) versus
vo. The zero crossings of this curve correspond to the
needle crystals. The crossing with the maximum velocity
determines the special velocity v o ——v o and its correspond-
ing tip curvature Kp(8=0)=KO. A plot of A, ~(UO) versus
vo in the neighborhood of vo for b,, =0.9, PC =0.01,
r =0.2, and a =0.1 is shown in Fig. 6.

We now discuss the limit of zero solute concentration
/3C ~0. In the case of a pure substance u &(0, 1)=0, and
a single trajectory leaves the fixed point. When /3C &0,
no matter how small, u&(0, 1) is arbitrary and a one-
parameter family of trajectories leave the fixed point. In
this sense the nature of the fixed points (8=+sr/2)
changes discontinuously as impurities are added. This
feature can be regarded as a mathematical property of the
fixed points. However, the important physical limit here,
which relates to the shape and velocity of the needle-
crystal solutions as PC ~0, is continuous. This follows
from a simple scaling observation. For any value of x, no
matter how small, tt 2(x ) has to remain finite as PC„~O.

2.5

O
0O

C)
-25—

Since 5~1 as /3C„~O it follows from Eq. (3.19) that the
only possibility is that u &(0, 1) vanishes at least as fast as
PC for u2(x) to remain finite. Consequently, the
needle-crystal solutions at various PC for fixed b,, and r
approach the pure thermal needle crystal smoothly as
pC ~0. We verified this conjecture numerically and
found that u

~ (0, 1) had to be made increasingly smaller to
construct a needle crystal as /3C —+0.

Finally, we mention that since 5 is, in most cases,
noninteger and slightly greater than 1, one could object
that 8 u;/Bx diverges at x =0. This singularity is of no

' physical consequence whatsoever since all physical deriva-
tives involve the gradient along the interface B„and
B,=x (8/Bx) (x &&1). Consequently, 8,"u; is always fi-
nite for all n.

IV. NUMERICAL SIMULATION

To investigate the relevance of the needle-crystal solu-
tions to the dynamics of our model we integrate numeri-
cally the system of equations (2.12)—(2.17) by using an al-
gorithm very close to the one that was developed in Ref.
4. The difference here is that we also have to track an ex-
tra field, namely the solute concentration. The essence of
the algorithm is that instead of using a two-dimensional
grid in real space it is easier to track the interface using
curvature as a function of arclength ~(s, t) This re. duces
the dimensionality of the numerical problem by 1. The
new difficulty that arises, however, is that the arclength is
tim dependent. This problem is shown in Fig. 7, where
we have shown a portion of interface at two different
times ht apart.

In places of positive (negative) curvature the local grid
spacing hs; stretches (shrinks). To avoid this difficulty
the grid points are redistributed equally along the arc-
length at each time step and the values of the fields
K h &, h2, . . . are interpolated to identify their values at the
new, equally spaced points. Another problem that arises
is that the fields u~ and u2 cannot be easily eliminated in
terms of h& and h2. If one attempts this elimination by
combining Eqs. (2.16) and (2.17), one is left with a quartic
equation with no simple roots. To circumvent this prob-
lem u2 is eliminated in terms of u ~, h ~, and h2 by solving
a simple quadratic equation, and u& is treated artifically
as a dynamical field in the implicit scheme by Taylor-
series expanding the Gibbs-Thomson relation Eq. (2.17).
The algorithm can be summarized as follows. First, the
five fields ~, b,s, h &, h2, and u

&
are time-stepped forward

using an implicit scheme:

-50—

t h,s

+h, t ~ gs

I 0 vp

FIG. 6. X~(UO) vs Uo for 6, =0.9, PC =0.01, and r=0.2.
The zero crossing identifies the needle-crystal solution and the
selected velocity Uo.

S)

K&O

FIG. 7. Portion of interface at two times ht apart.
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yt+tt t yf = ~+(4I I t+ z+/4l l t+t t (4.1)

where g is the 5X-dimensional vector (i.e., 5 fields and X
grid points) and F is the nonlinear operator defined by the
equations of motion (2.12)—(2.17). Equation (4.1) is
Taylor-series expanded about t and the resulting set of
coupled linear equations are solved by upper-
diagonalization. Then lb is redistributed equally along
the arclength and the four fields K, h i, h2, and tt i are in-
terpolated by a simple cubic-spline routine. Step 1 is then
restarted.

Another problem we have to overcome in doing our nu-
merical simulations is that the boundary-layer model, as it
stands, cannot describe the physics of the grooves that
form on the sides of the dendrite. Numerically this defi-
ciency of the model translates into a strong numerical in-
stability when the groove becomes too deep. In this
present paper, however, we are only interested in the tip
properties, and this problem can be circumvented by keep-
ing only a finite portion of arclength behind the tip, up to
where the grooves become too deep. In this way, a tip
steady state can be reached without the algorithm failing.
To convince ourselves that the steady-state tip reached us-
ing this procedure was insensitive to the position behind
the tip of the truncation of the interface, we repeated the
simulations with different arclengths behind the tip and
found that the steady state was not altered. This indicates
that the steady-state tip is rather insensitive to perturba-
tions down the side of the dendrite. Although this pro-
cedure seems adequate to describe the tip properties it
cannot be used to describe the repeated formation of side
branches, if present in the model. In order to remove this
deficiency, there is presently work in progress trying to
modify the boundary-layer model.

Using the procedures outlined above, we performed a
very careful numerical experiment at b,, =0.9,
PC =0.01, and r=0.2. We also used a value of aniso-
tropy sufficient to attain a steady state: a=0. 1. We
found that the state selected dynamically shared the same-
tip properties as the needle crystal with the maximum
velocity. That is, we found u,„„,=uo and K,„~,=Ko (with
a discrepancy less than 1%), where u,„~, and K,„~, are,
respectively, the values of tip velocity and tip curvature
found in the numerical experiment, and v&

——7.18&&10
and Kp ——3.35& 10 are, respectively, the tip velocity and
tip curvature of the corresponding needle-crystal solutions
(see Fig. 6). This is in complete agreement with the previ-
ous results obtained for the geometrical model and the
single-field boundary-layer model. '

b., =0.5, r =0.01 (typically for a liquid mixture
r —10,10 ), and a strength of anisotropy sufficient to
insure a steady state a=0.1. To check that this strength
of anisotropy was sufficient to reach a steady state we
performed a numerical simulation, as described in Sec. IV,
for b„=0.5, r =0.01, PC =0.002, and found that a con-
stant tip velocity and tip curvature were reached in quan-
titative agreement with the predictions from the solvabili-
ty condition. We have then calculated uo and Ko as func-
tions of impurity concentration /3C using the solvability
condition and the needle-crystal construction discussed in
Sec. III. Our results are shown in Fig. 8. We find at
small impurity concentration a sharp enhancement in tip
velocity in good qualitative agreement with real solidifica-
tion experiments. ' %'e emphasize that, in the context of
the boundary-layer model, which is valid in the hmit of
large undercoolings and in two dimensions, we cannot
hope to predict quantitatively the results of experiments
which are done at small undercoolings and in three di-
mensions. However, this good qualitative agreement in
the tip-velocity enhancement is very suggestive of the
relevance of our model and its mathematical properties to
the more complex three-dimensional and highly nonlocal
situations. The physics of this velocity enhancement can
be understood in terms of a competition between two ef-
fects. On one hand, as impurities are added, a thin boun-
dary layer of impurities is formed around the tip. This
solute boundary layer is thinner by a factor of r than the
thermal boundary layer and will tend to sharpen the tip,
thereby enhancing the growth velocity. This tip sharpen-
ing is displayed in Fig. 8(b), also in good qualitative agree-
ment with experiments. On the other hand, impurities
diffuse much slower than heat by a factor of r, and this
second effect will tend to retard the growth velocity. The
relative strength of these two competing effects determine
the magnitude of the velocity enhancement.

Z.O—

(b)

V. DISCUSSION AND CONCLUSIONS

In the preceding sections we have studied a boundary-
layer model to show that a solvability condition can be
used to predict exactly the tip velocity vp and the tip cur-
vature ~o, selected dynamically in the impurity problem.
To explore the properties of our model further and make
contact, at least qualitatively, with real solidification ex-
periments, we have studied the dependence of vo and scp

on solute concentration. For this purpose we have chosen

0.5—
0

IO pCto

FICx. 8. (a} uq and (b} Kp vs PC„ for 0,, =0.5, r=0.01, and
+=0.1.
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Previous theories of the impurity effect captured the
essence of this competition by selecting, out of a family of
parabolic growth forms, the state with a marginally stable
tip. They were thereby successful in giving us a crude es-
timate of the velocity enhancement. However, from a
fundamental point of view it is clear, at least in the con-
text of our model, that the operating point is not selected
from a family of parabolic shapes but needs to be identi-
fied via a solvability condition. It still remains to be
shown if this solvability condition generalizes to the full
nonlocal free-boundary problem, but our qualitative agree-
ment with experiment shown in Fig. 8 supports the validi-
ty of this conjecture.

In this paper we have concentrated on the properties of
the tip. Questions related to the strong variations in side-
branching activity with solute concentration, seen experi-
mentally, ' still remain to be studied.

We have also used here a strength of anisotropy, a, suf-
ficient to insure a steady-state tip in the numerical simula-
tion. It has been shown in the context of the geometrical
model that when a&0;, the needle-crystal solutions be-
come unstable. A similar threshold is likely to exist in
our model and it would be feasible to study the depen-
dence of 0,, on solute concentration by performing a de-
tailed stability analysis of the needle-crystal solutions.

In conclusion, we have studied a boundary-layer model
of dendritic growth in the presence of impurities, and we
have shown that the solvability criterion propose recently
for the dendritic growth of a pure substance generalizes to
this more complex situation. This is revealed mathemati-
cally by the existence of a one-parameter family of trajec-
tories which flow in or out of the fixed points of the
steady-state equations. Furthermore, our model predicts a
tip-velocity enhancement at small impurity concentration
which has been observed experimentally. This qualitative
agreement is consistent with the conjecture that the new
velocity selection criterion applies to the full nonlocal
free-boundary problem.

Integrating by parts and eliminating the normal gradient
Bu;/Bg at the interface via the continuity equations (2.5)
and (2.6) we obtain at once

dH;
dt

= V„(1—u;5i;) . (A2)

APPENDIX B

In the special case where 5 defined by Eq. (3.18) is an
integer which coincides with a nonvanishing power of ~,
our analysis has to be modified slightly. The important
feature of a single-parameter family of trajectories
remains unchanged, however. To understand the problem
consider the simple first-order linear ODE:

—5—=x
Bx x

It has a simple solution when 5&3:
3

~0 s x

(B1)

(B2)

where P is arbitrary. When 5=3 a simple power-series
method breaks down, and we have

g=g x +x lnx . (B3)

u;(x)=u,"+u;(3)x +u (3)x lnx+ .

«(x)=«*x +«6x +«6x lnx+
(B4)

The same problem occurs in our fixed point analysis of
Sec. III. Consider, for example, the case where 5=3. In
this case, the right-hand side of Eq. (3.16) is nonzero since
uq(0, 1) depends on both ui(0, 1) and « . Yet the deter-
minant of the matrix A on the left-hand side of (3.16)
vanishes and we are left with no solutions for u i(0, 1) and
«(0, 1). To remove this difficulty we assume an expansion
of the form
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APPENDIX A

Consider a plane growing in the g direction with in-
stantaneous velocity v„. In this case we have

a2& a22

Qi(3)
=0 (B5)

and

a2) a22

&i(3) au
&
(3)

bu'i (3)+c—(B6)

with detA =0 and a, b, and c uniquely determined in
terms of u, «', . . . . From Eq. (B5) u&(3) is arbitrary.
For Eq. (B6) to have a solution we need

Substituting (B4) into Eqs. (3.8)—(3.10), we obtain a sys-
tem of two coupled homogeneous and nonhomogeneous
equations with vanishing determinant relating the under-
mined coefficients:

de ~ Bu;(g, t)= —'@pe + d'g
dt ~o Bt ui(3)=

b+(a22/a]2)a
(B7)

(Al) Then ui(3) is arbitrary (one-parameter family) and u
& (3)

is determined.
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