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The product of the rms fluctuations of an extensive thermodynamic variable with that of its con-
jugate intensive thermodynamic variable is bounded below by k in the entropy representation and by
kT in the energy representation. The uncertainty relations of statistical mechanics are equivalent to
the stability relations of equilibrium thermodynamics.

I. INTRODUCTION

Uncertainty relations may occur in physical theories
which can be formulated in terms of canonically conju-
gate variables. Two well-known uncertainty relations are
the position-momentum uncertainty relation Ap Ag >7%/2
of nonrelativistic quantum mechanics and the time-
frequency uncertainty relation Aw At>5 of Fourier
analysis and signal processing.

Statistical mechanics can be formulated in terms of
pairs of canonically conjugate variables. We show below
that uncertainty relations occur in statistical mechanics,
and have the form AE®Aig> k8%. Here E is an exten-
sive thermodynamic variable characterizing the system, ig
is the intensive thermodynamic variable conjugate to E?
in the entropy representation, A represents rms fluctua-
tions, and k is Boltzmann’s constant. A similar relation
holds in the energy representation, with a different set of
conjugate intensive variables and k replaced by k7. We
also show that the uncertainty relations of statistical
mechanics are equivalent to the stability relations of
equilibrium thermodynamics.

II. UNCERTAINTY RELATIONS

Consider a system . in thermodynamic equilibrium
with a reservoir #Z. The system’s entropy S is a function
of the system’s natural extensive thermodynamic variables
ELE? ... E" (eg., UV,N, etc). At equilibrium, the
system’s conjugate intensive thermodynamic variables
ia=0S/3E% (e.g., 1/T,P/T,—u/T, etc.) are equal to the
reservoir’s corresponding intensive variables: i,=1,.

The system will experience fluctuations around its
equilibrium. Under these conditions the extensive ther-
modynamic variables must be considered as random vari-
ables E @ with mean values E ®*=(E ®). The probability
distribution function which describes these fluctuations
depends on the equilibrium state of the system (condition-
al probability), and is given by!

W=W(E | T5)=00exp %[§(E)—27‘,Ea—§(?)] .
(1)
The function S(7) is the maximum value of S(E)
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—Ez_'aﬁ' % it is the Legendre transform of the equilibri-
um entropy.

Instead of choosing the random variables E and param-
eters i to define the probability distribution, it is possible
to choose a dual, or conjugate, set of random variables ?a
and parameters E ? defined by

i,=0S(E)/3E“, (2a)
EP=35(7)/dip . (2b)

The parameters i, in (1) and E ? in (2b) are related to the
random variables 7, in (2a) and £ in (1) by 7,=(7,),
EP=(EP).

The displacements 8E *=E£*—E @ and 8?,3 —ip—ig are
logarithmic derivatives of the conditional probability (1):

SE*=w—! —k—i— W, (3a)
la
~ —1 d
Sig=W= |+k—— |W. (3b)
AE P
The second moment
(8E*8ip)=—kd% )

is easily computed by integration by parts, invoking the
usual boundary conditions.! This result has the form of
an equipartition theorem for fluctuations. It also

expresses the conjugacy between the extensive variables E
and intensive variables i.
All second moments (4 B) may be regarded as inner

products of vectors ﬁ,fi on the linear vector space of
functions defined over the space of random variables
E ‘,E‘ 2., E ™ The measure in this inner product space
is the positive definite distribution W. As a result, the
Schwartz inequality may be applied to (4), yielding

((BE *)2)172((8ip)*)' 2> | (BE8ip) |
or
AE®Aig>k8% . ‘ (5)

For the pairs (U,1/T), (V,P/T), and (N,—u/T) of
canonically conjugate thermodynamic variables the uncer-
tainty relations (5) take the form AUA(1/T)>k,
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AV AP/T)>k,and AN A(u/T) > k.
A similar calculation can be carried out in the energy
representation, leading to

AE®Aig>kT8}, ©6)

where 7 3=3U(E)/dE®. For the pairs (S,T) (V,—P),
and (N,u) of canonically conjugate variables in the energy
representation, the uncertainty relations take the form
AS AT > kT, AV AP > kT, and AN Ap > kT.

III. PHYSICAL INTERPRETATION

In the canonical formulation of equilibrium statistical
mechanics a system .# is assumed to be in equilibrium
with a reservoir % whose intensive thermodynamic vari-
ables are precisely defined. Fluctuations in the system’s
extensive thermodynamic variables can then be estimated
as moments of the conditional probability distribution
function (1).

Measurements of the system’s extensive variables (e.g.,
U,V,N, etc.) can then be used to estimate the values of the
intensive bath parameters (e.g., 1/T,P/T,—u/T). A pos-
itive fluctuation in the system’s energy (du >0) will lead
to a somewhat high estimate of the bath’s temperature
(8T >0). As a result, energy measurements (of %) and
temperature estimates (of ) are positively correlated
(6u 8T >0). More generally, (4) describes the negative
correlation between measurements of a system’s extensive
variables and estimates of the bath’s conjugate intensive
variables. The result (4) for the conjugate pair (u,1/T)
was derived by Gibbs [Ref. 2, Eq. (349)].2

Variations in measurements of the system’s extensive
variables E @ are characterized by the second moments
((SE' @)2) or the square roots, AE ¢. Similarly, variations
in estimates of the bath’s intensive variables 7,, are charac-
terized by the second moments {(8i,)*) or the square
roots, Ai,. The statistical mechanical uncertainty rela-
tions (5) and (6) are statements relating uncertainties in
measurements of the system’s extensive variables with un-
certainties in estimates of the bath’s intensive variables.

I1V. DISCUSSION

The following remarks are useful.

(1) Uncertainty relations of the type (5) will occur in

any physical theory formulated in terms of canonically
conjugate variables which obey duality relations of the
form (4), where the expectation value employs a positive
(semi)definite measure.

(2) The statistical mechanical uncertainty relations are
representative of a much broader class of uncertainty rela-
tions expressing the duality between probability and statis-
tics. Typically, probability distributions for random vari-
ables (e.g., E9 depend on parameters (e.g., i,) whose
values are fixed but unknown. Determining the probabili-
ty of a measurement of random variables given the values
of the parameters is the provenance of probability theory.
Estimating the values of the parameters in the probability
distribution given the measured values of the random
variables is the provenance of statistics. Although the
values of the parameters may be fixed, estimates of these
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values will vary because the measurements on which they
are based will have varying outcomes. An uncertainty in
the value of a measurement demands an uncertainty in the
estimate of the parameters in the associated probability
distribution.

(3) The uncertainty relations Ap Ag> %ﬁ and
Aw At > 5 involve a factor of 5, not present in the statist-
ical mechanical uncertainty relations (5) and (6). This
difference comes about because the conjugacy relations in
the latter case are obtained by taking derivatives of a
probability distribution function, while in the former
cases they are obtained from probability amplitudes

_#fad _14d
pzﬁ—i axzﬁ, a)f(t)—i dtf(t)

whose absolute square (¥*(x)¥(x), f%(¢)) is used as the
probability distribution function.

(4) In the formal limits #—0, k—0, quantum mechan-
ics and statistical mechanics go over to their classical lim-
its: classical mechanics and thermodynamics. In these
limits the positive lower bounds on the uncertainty rela-
tions go to zero, indicating the lack of uncertainty rela-
tions in the classical theories.

(5) The values of the variances AE*,Aig can be comput-
ed explicitly from the matrices

(8E“8E3)=—k%%=—ksaﬁ, (7a)
Ly lB
A A 2S(E ~
(87, 875 = —k<%>= k8. . (7b)
dEaF

These matrix elements are standard thermodynamic linear
response functions. The uncertainty relations take the
more explicit form

AE®Aig=k(5%8 )" > >k . (8)

The inequality S “a§aa >1 is a quantitative statement of
LeChatelier’s principle, itself a quantitative formulation
of the stability criteria of equilibrium thermodynamics.?
Therefore the uncertainty relations of statistical mechan-
ics are equivalent to the stability relations of equilibrium
thermodynamics.

(6) For a simple single component fluid the more expli-
cit form (8) for the uncertainty relations in the energy rep-
resentation is

AS AT =kT(Cp/Cy)'*> kT, (9a)
AV AP=kT(kp/ks)' > >kT , (9b)

where Cy are the specific heats and «y are the compress-
ibilities. In the entropy representation these relations are

AUAG/T=k | S 2EVer P | k
=klT, "¢ T, =k
(10a)
1/2
kr  2PVkr P*Wkr
AVAP/T)=k | “L _
( / ) Ks FV TCV k ?
(10b)
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where oap is the thermal-expansion coefficient and
T'y=T(3S/0P)y.

(7) Several simplifications occur in the linear-response,
or Gaussian, regime. In this regime the function S(E) is
expanded around the equilibrium value E® and only
terms up to second order in the fluctuations 8E “ are re-
tained. In this regime S %8 is the matrix inverse of Sap:
S8 gy =0y. The conjugate fluctuation quantities
SE “,8;'\5 are related by a linear susceptibility tensor:
8?,,:5:; 8E . Fluctuations about equilibrium decrease
the entropy from its maximum and increase the energy
from its minimum by amounts

—_—

(88) =( L5588 *6E £y = 1 (87, 8B ) = — Lnk

(11a)
(80 ) =( LU p0E *SE Py =1 (81, 8E*)y=L1nkT ,
(11b)

where in the entropy representation
88= |S(B)- 37, Ee ] - [§(E>— STEY|,

and similarly in the energy representation. The fluctua-
tions about these mean values are
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((85)2) —((88))?=k(—8S) , (12a)
(80)2) —((8U) ?=kT(80) . (12b)

Equations (11) are an equipartition theorem for fluctua-
tions in entropy and energy: there is 5 a unit (— k, +kT)
of potential entropy and potential energy stored in each
independent thermodynamic degree of freedom. The
factor + is not surprising, since the Gaussian approxima-
tion is an assumption that the entropy and energy func-
tions are quadratic forms in the displacements. Missing
from this equipartition theorem is another 5 unit of “ki-
netic entropy” and “kinetic energy” per thermodynamic
degree of freedom associated with terms of the form

S SESEF.
a,B

The treatment of these kinetic terms falls outside the
scope of equilibrium thermodynamics.*
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